Extracting programs from proofs

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

University of Canterbury, Christchurch, 17 Feb 2016

1/25

» Ishihara’s trick

» Logic for Gray-code computation (j.w.w. Ulrich Berger, Kenji
Miyamoto and Hideki Tsuiki)

2/25

Theorem (lIshihara’s trick)

Let f be a linear map from a Banach space X into a normed space
Y, and let (up) be a sequence in X converging to 0. Then for
0 < a < b either a < |fup| for some n or |fun| < b for all n.

Proof. Let M be a modulus of convergence of (u,) to 0; assume
MO = 0. Call ma hiton nif My < m < Mpy1 and a < |fup|.
First goal: define a function h: N — N such that

» h, =0 if for all N < n there is no hit;
» h, = m+ 2 if at n for the first time we have a hit, with m;
» h, =1 if there is an n’ < n with a hit.

3/25

We will need the bounded least number operator u,g defined
recursively as follows (g a variable of type N — B).

pog =0,

)0 if g0
fion€ = Sun(goS) otherwise.

From un,g we define

n . (/Jnfno)\mg(m + nO)) + no if ng<n
lu’nog = H
0 otherwise.

4/25

To define h we use a function g of type N — B (to be defined
from cApproxSplit) such that

a<|fum| ifgm
[fum| < b otherwise.

Then we can define h, := H(g, M, n) where

0 if M, < puy, g and /\/in+1 <y
H(g,M,n):= ,uM"“g+ 2 if M, <pum,g and ,u g < Mpt1
1 if fm,8 < Mp.

5 /25

Next goal: define from h a sequence (v,) in X such that

» v, =0if h, =0;

> v, = nuy, if h, = m+2;

> Vv, = Vp_1 if h, = 1.
Let £ be the type of elements of X, and us: N — £ a variable.
Define v, := Ve(g, M, us, n) where (writing uy, for us(m))

0 if H(g, M, n) =
Ve(g, M, us, n) := { "™ i”ﬂ&MIﬂ—m+2

0 (arbitrary) if Hig,M,n)=1and n=10

Ve(g, M, us,n—1) if H(g,M,n)=1and n> 0,

One can show that (v,) has the properties listed above.

6 /25

Next we show that (v,) is a Cauchy sequence with modulus
N(k) := 2k + 1, which satisfies

_1
oN(k) = 2k’

Since our goal is stable, we may employ arbitrary case distinctions
(here: there is a hit / there is no hit).

By the assumed completeness of X we have a limit v of (v,). Pick
ng such that |fv| < npa. Assume that there is a first hit at some
n > ng, with value m. Then v = v, = nu,, and

na < nlfum| = [n(fum)| = |f(num)| = [fv] < noa < na,
a contradiction. Hence beyond this ng we cannot have a first hit.

If V<nohn = 0 then there is no hit and we have |fu,| < b for all n.
Otherwise there is a hit before ng, hence a < |fu,| for some n.

7/25

The computational content machine extracted from this proof is

[f,us,M,a,al,k]
[let g
([nlnegb(cAC([nO] cApproxSplitBooleRat
a a0 lnorm(f(us n0))k)n))
[case (H g M
(cRealPosRatBound
lnorm(f ((cXCompl xi)
((V xi)g M us)
([k0] abs (IntS(2*k0)max 0))))
a))
(Zero -> False)
(Succ n -> True)]]

Here H and V are the functionals defined above.

cAC is the computational content of the axiom of choice

(pp IIACH)
all m ex boole (Pvar nat boole)” m boole —>
ex g all m (Pvar nat boole)” m(g m)

and hence the identity. cApproxSplitBooleRat and
cRealPosRatBound are the computational content of lemmata

all a,b,x,k(Real x -> 1/2%xk<=b-a ->
ex boole((boole -> x<<=b) andu ((boole -> F) —> a<<=x)))

all x,a(Real x -> 0<a -> ex n x<<=n%*a)

9/25

» Ishihara's trick

» Logic for Gray-code computation (j.w.w. Ulrich Berger, Kenji
Miyamoto and Hideki Tsuiki)

10 /25

Dyadic rationals:

3 % with a; € {—1,1} =: PSD.
i<k

with 1 := —1. Adjacent dyadics can differ in many digits:

7 - 9 e
16"~ 1111, 6"~ 1111.

11/25

Cure: flip after 1. Binary reflected (or Gray-) code.

12/25

Problem with productivity:
1111+ 1111 =7 (what is the first digit?)

Cure: delay.
» For binary code: add 0. Signed digit code
d; .
> with d; € {~1,0,1} =: SD.

2i+1
i<k

Widely used for real number computation.

» For Gray-code: add U, D, Fin; /g. Pre-Gray code.

13/25

Pre-Gray code

After computation in pre-Gray code, one can remove Fin, up to 2%:

UoFin, — aoR, Do Fin,; — Fin, o L,

14 /25

Goal: extract algorithms on infinite objects from proofs (in TCF).
Example:

> Infinite objects: streams, in pre-Gray code.
» Algorithm: average.

Framework:
» Constructive logic

» Types: only function types (Scott/Ershov partial continuous
functionals), over base types given by constructors (may
contain infinite objects).

» Inductive & coinductive predicates, with their least & greatest
fixed point axioms (i.e., induction & coinduction).

15 /25

We will coinductively define a predicate “°G and prove

x4+ x'

Vi (06 (x) = 6 (x) = “6(—5—)) (1)

(V2. the reals x, x" have no computational significance).
Associated with “°G is its realizability extension (°°G)"(p, x)
(p is a stream representation of x witnessing “°G(x)).

Soundness theorem:

x + x'
5)

(“°G)"(p,x) = (“°G)' (P, X') = (“G)"(F(p, P),

for some stream transformer f extracted from the proof of (1),
which never mentions streams.

16 /25

What is °°G? Need simultaneously “°H.

1 X

)vd XGY(y E) }7

M(X,Y) = {y| Zexhly —aX

AX,Y) = {y | FexT(y =

Teey(ly = 5)}

(3%: the real x has no computational S|gn|f|cance)
Define (°G,“H) := v(x,v)(F(X, Y), A(X, Y)).
Coinduction:

(X, Y) C (T(°GUX,CHUY), A(°GUX,“HUY)) — (X, Y) C (“°G, “°H)
Associated to I, A are algebras G, H with constructors

LR: PSD —» G — G,
U:H—-G (for “undefined”),

Fin: PSD — G — H,
D:H—H (for “delay”).

17 /25

Realizability extensions (°°G)" and (“°H)":

x' —1

M(Z, W) = { (p,x) | 3 yez3alx = a2 A p = LRy () V

/

X
Aaewlx =75 Ap=U(q)},

r x'+1 o
A"(Z,W) = {(9,%) | Jp x)ezTa(x = a > A g = Finy(p')) v
X/
a(q/,xl)ew(x = —=A q = D(q,))}

2
Define

((*°G)", (H)") := vzw)(T(Z, W), A"(Z, W))

18 /25

CoGAverage:
n Xty
Yy (6 (x) = 6 (y) = 6 (=7)).

Consider two sets of averages, the second one with a “carry”
i€SDy:={-2,-1,0,1,2}:

Av = y € G},

X+y+/

={——— | x,y€“G, ieSDy}.

Suffices: Avc satisfies the clause coinductively defining “°G, for
then by the greatest-fixed-point axiom for “°G we have Avc C “°G.
Since we also have Av C Avc we obtain Av C €°G, i.e., our claim.

19/25

CoGAvToAvc:

Xty Xy +i
v&?yecoczlf(/7y/€coczli(2 - 4)

Implicit algorithm. f* := cCoGPsdTimes, and s := cCoHToCoG.
(cL denotes the function extracted from the proof of a lemma L.)
CoGPsdTimes: V3V,(“°G(x) — “°G(a * x)).

f(LRa(p), LRx(p")) =
f(LRa(p), U(q))
f(U(q), LRa(p)) =
f(U(q),U(q))

(a+4d,f(=a,p) (=4, p)),
(a,f*(=a,p), ())
(
(

a,s(q)f*(a,p)),
0,5(q),s(q)).

20 /25

Need J: SD — SD — SD, — SD»,, K: SD — SD — SD, — SD
with d + e +2i = J(d,e, i) +4K(d, e, i) (cases on d,e,i). Then

4 2

CoGAvcSatColCl:

. X' +y'+j
x+y+i g +d

nc r 1 _
Viviyeeoc T yrecocTj a7 = 5)-

Implicit algorithm.

(i, LRa(p), LRy (p)) = (J(a, 2 i), K(a, 2. 1), F*(=a, p), £*(~a, p')),
(i, LR4(p). U(q)) = (J(a,0, 1), K(2,0,), F*(~a. p), s(q)),
(i, U(q), LRa(p)) = (J(0, a, 1), K(0.,1), 5(q). F*(~a, p)),
(7. U(q), U(q')) = (J(0,0, 1), K(0,0,), 5(q). s(d)).

21/25

CoGAvcToCoG:
X+y+i

Vo3 ceocTi(z = f) — “G(2)),
nc T X+y+l CcO
V2¢(3y yecocTi(2 —f)% H(z)).

Implicit algorithm. Proof uses SdDisj: V4(d = 0 Vv* 3,(d = a)).
g(i,p,p’) =1let (i1,d, p1, pi) = cCoGAvcSatColICl(i, p, p’) in
case ¢SdDisj(d) of
0 — U(h(ir, p1,p1))
a — LRa(g(—ai1, f*(—a, p1), f*(—a, p1)));
h(i,p,p’) = let (i1, d, p1, p;) = cCoGAvecSatColCl(i, p, p') in
case ¢SdDisj(d) of
0 — D(h(i, p1, P1))
a — Fin,(g(—air, F*(—a, p1), F*(—a, p})))-
Composing CoGAvToAvc and CoGAvcToCoG gives CoGAverage.

22 /25

Extracted term for CoGAvcToCoG:

[ipp] (CoRec sdtwo@Qag@ag=>ag sdtwo@Qag@Qag=>ah)ipp
([ippO] [1et idpp (cCoGAvcSatCoICl
left ipp0 left right ippO right right ippO)
[case (cSdDisj left right idpp)
(DummyL -> InR(InR(left idpp@right right idpp)))
(Inr a -> InL(a@InR
(a times inv left idpp@
cCoGPsdTimes inv a left right right idpp@

cCoGPsdTimes inv a right right right idpp)))1]1)
([ipp0] [1et idpp ...]1 ...)

ipp variable of type SDy; x G x G

idpp variable of type SD> x SD x G x G
[ipp]r lambda abstraction Ajpr
sdtwo@@ag@ag=>ah function type SD> x G x G — H
r@s, left r,right r product term, components

cL realizer for lemma L

23 /25

Corecursion ~ coinduction.

RGN 5 56 — 6w — G

COR(HG’H)’(”’T): T —6g — 0y — H
with step types

g =0 —=PSD x (G+o0)+ (H+17),
m=7—=>PSDx(G+o0)+(H+ 7).

PSD x (G + o) + (H + 7) appears since G has constructors
LR: PSD -G — Gand U: H — G,

and H has constructors

Fin: PSD -G —-Hand D: H— H.

24 /25

Analyzing the step terms gives the “implicit algorithm”.

Extracted terms are in an extension TT of Godel's T, the
term language of TCF. They denote partial continuous
functionals (Scott/Ershov).

Verification is automatic (soundness theorem).
Minlog provides a translation to Haskell for (lazy) evaluation.

“Code carrying proof” can be a reasonable alternative to
“Proof carrying code” (Necula).

25 /25

