A theory of computable functionals

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

University of Canterbury, Christchurch, 12 Feb 2016

1/29

v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

2/29

Simultaneously define formulas and predicates

A B = PF| A= B| VA,
P, Q=X [{X| A} [ux(Vz((Aiv)v<n = X7i))ick

Need restriction: X at most strictly positive in Aj,.

3/29

Tn = px(X0,V,(Xn — X(Sn))),

Even := ux(X0,V,(Xn — X(S(Sn)))),

Eq = pux (VxXxx),

Bry = px(V(Yx > X)),

Capy 7 = ux(Vz(YX = ZX — XX))

Cupy 7 = pux(Vz(YX = XX), Vx(ZX — XX))

Abbreviations

dA = EX{X‘A},
PN Q := Capp q,
PU @ := Cupp q-

4/29

v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

5/29

Relation to type theory

v

Main difference: partial functionals are first class citizens.

> “Logic enriched”: Formulas and types kept separate.

v

Minimal logic: —,V only. Eq(x, y) (Leibniz equality), 3, v, A
inductively defined (Russell, Martin-Lof).

F := Eq(ff, tt). Ex-falso-quodlibet: F — A provable.

“Decorations” —"¢, V"¢ (i) allow abstract theory (ii) remove
unused data.

v

v

6/29

Theory of computable functionals TCF

Typed variables, ranging over the partial continuous functionals.
Minimal logic, with intro and elim for — and V. Axioms:

> 1T Y((A(!))v<n — IF)
L V;(I)? — (v;gl((A,,/(l N X))l/<n,- — XF;')),'<;(— X)_(')
Induction = elimination for totality over N.

Ty i Va(Tun — X0 — V,(Tun — Xn — X(Sn)) — Xn).

Remarks
» Every “competitor” X satisfying the clauses contains Ty.
» Induction for N, which only holds for total numbers.
» Fits the logical elimination rules (main part comes first).
» “Strengthened” step formula V,(Tnn — Xn — X(Sn)).

7/29

For nullary predicates P = {| A} and Q = {| B } we write
ANB for PN Q and AV B for PU Q. Introduction axioms:

V(A — 3A),
A— B — ANB,
A— AV B, B— AV B.

Elimination axioms:

IA—= V(A= B)— B (x ¢ FV(B)),
ANB—-(A—-B—C)—C,
AVB—-(A—-C)—(B—C)— C.

8/29

Equalities

(i) Defined function constants D introduced by computation
rules, written £ = r, but intended as left-to-right rewrites.

(ii) Leibniz equality Eq (inductively defined).
(iii) Pointwise equality between partial continuous functionals,
defined inductively as well.

(iv) If £ and r have a finitary algebra as their type, £ = r by (i) is a
boolean term. Take Eq((¢ = r)B,).

In TCF formulas A(r) and A(s) are identified if r,s € T have a
common reduct.

9/29

Eq™: V,Eq(x?, x)
Eq™: Ve (Eq(x, y) = Y Xxx — Xxy).

Compatibility of Eq: Yy, (Eq(x,y) = A(x) = A(y)).
(Use Eq~ with {x,y | A(x) — A(y) } for X.)

10 /29

Define falsity by F := Eq(ff, tt).

Ex-falso-quodlibet: TCF = F — A where A has no strictly positive
occurrences of (i) predicate variables (ii) inductive predicates
without nullary clauses.

Proof.
1. Show F — Eq(x”, y”).

Eq(Rgffxy, Reffxy) by Eq™"
Eq(Rgttxy, Rgffxy) by compatibility from Eq(ff, tt)
Eq(x”, y?) by conversion.

2. Show F — A, by induction on A. Case /s.

Let Ky be the nullary clause, with final conclusion /%.

By IH from F we can derive all parameter premises, hence /%.
From F we also have Eq(s;, t;) by 1.

Hence /S by compatibility.

The cases A — B and VA are obvious.

O

11/29

v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

12 /29

Brouwer - Heyting - Kolmogorov

Have —*, V*, /. BHK-interpretation:

» p proves A — B if and only if p is a construction transforming
any proof g of A into a proof p(q) of B.

» p proves V,»A(x) if and only if p is a construction such that
for all a”, p(a) proves A(a).

Leaves open:

» What is a “construction”?

» What is a proof of a prime formula?
Proposal:

» Construction: computable functional.

» Proof of a prime formula /7: generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

13 /29

Decoration

Which of the variables X and assumptions A are actually used in
the “solution” provided by a proof of

V(A = I7)?

To express this we split each of —,V into two variants:
» a “computational” one —¢,V° and
> a “non-computational” one —"¢ V¢ (with restricted rules)
and consider . _
VQCV;(A =" B = XT7).

This will lead to a different (simplified) algebra ¢; associated with
the inductive predicate /.

14 /29

Each inductive predicate is marked as computationally relevant
(c.r.) or non-computational (n.c., or Harrop): p5°(Ko, ..., Kk—1).
Then the elimination scheme must be restricted to n.c. formulas.

We usually write —, V, u for —¢, VC . Notice that in the clauses
of an n.c. inductive predicate <K decoratlons play no role.

For the even numbers we now have two variants:

Even := pux (X0, V3 (Xn — X(S5(Sn)))),
Even™ := 37 (X0,V,(Xn — X(S(Sn)))).

Generally for every c.r. inductive predicate / (i.e., defined as uxK)
we have an n.c. variant /"¢ defined as py’

15 /29

ExDy = ux(Vx(Yx — X)),
ExLy = pux(Vx(Yx =" X)).
ExRy = ux (V3 (Yx — X)),
ExUy = u5 (Vi (Yx = X)).

D for “double”, L for “left”, R for “right”, U for “uniform”.
Abbreviations

3§A = ExDyya),
EILA = ExLy|a}s
A = ExRyyay,
A = ExUqy a3

16 /29

CupDy 7 = pux(Y = X, Z = X),
CupLy 7 =pux(Y = X, Z =" X),
CupRy 7z = px(Y =" X, Z = X),
CupUy 7 = pux(Y =" X, Z =" X),

CupNCYZ =uxx (Y = X, Z = X).

The final nc-variant suppresses even the information which clause
has been used. Abbreviations

AViB = CupDy a1 418

AVIB = CupLy|a} (8}

AV' B = CupRy a8}

AV B = CupUy 4y g8}

AV B := CupNCy a B}

17 /29

v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

18 /29

Examples

Leta,beQ, xeR keZ, feR—R.

» Vapx(@a<b—x<bVv"a<x) has type
Q—-Q—~R—B.

» Vapx(@a<b—x< bVv4a < x) has type
Q- Q—-R—-Z+Z

» The formula
Vei(F(0) <0< F(1) —
1
Vas(glb —al < |7(b) ~ F(a)]) =
3, f(x)=0)

has type (R -+ R) - Z — R.

19/ 29

The type 7(C) of a formula or predicate C
7(C) type or the “nulltype symbol” o. Extend use of p — o to o:

(p—>0):=0, (0—=0):=0, (0—0):=o.

Assume a global injective assignment of a type variable £ to every
c.r. predicate variable X. Let 7(C) := o if C is non-computational.
In case C is c.r. let

(P7) :=7(P),

(A=) (1(A) = 7(B)), T(A—" B):=1(B),
(Vx) (p = 7(A), 7(ViA) == 7(A),
(X
(
(

\1

\1

\1

\]
Xl\./

{ | }) = 7(A),
T(ux (VEVy, (A =™ By = X7))ick) = pe(r(7) = 7(B}) =)ik -

N~

I Ly

\]

Ly is the algebra associated with /.
20/29

v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

21 /29

Realizability

For every predicate or formula C we define an n.c. predicate C".

For n.c. C let
C':=C.

In case C is c.r. the arity of C"is (7(C),d) with & the arity of C.

For c.r. formulas define
(PP) :={u| Pur}

(A B) = {{ ul| Y, (A'v — B"(uv))} ifAiscr.

{u|A— B'u} if Aisn.c.

(A="B) ={u|A— B'u}
(VxA)" = {u |V A (ux) }
(VA) :={u |V Au}.

For c.r. predicates: given n.c. X" for all predicate variables X.

{X|A}Y ={uX|Au}.

22 /29

Consider a c.r. inductive predicate

1= ix (V™ (A)yen =" XF))ick.

Xi

Y: all predicate variables strictly positive in some A;, except X.
Define the witnessing predicate with free predicate variables Y by

I":= M?(C'(viiyﬁf((A7yuiu)u<n; — X(Cixiti)ri))i<k

with the understanding that

(i) uj, occurs only when A;, is c.r., and it occurs as an argument
in C;X;u; only if Aj, is c.r. and followed by —, and

(i) only those xj with V§ occur as arguments in C;X;d.

We write u r A for A'u (u realizes A).

23 /29

For the even numbers we obtain

Even := ux(X0,V;¢(Xn — X(S(Sn))))
Even" := pX:(X"00,Vn,m(X"'mn — X"(Sm)(S(Sn)))).

Axiom (Invariance under realizability)

Inva: Ao 3 (ur A) for c.r. formulas A.

Lemma
For c.r. formulas A we have

(Aou) r (A= 3 (ur A)),
Aou) r (3 (ur A) — A).

24 /29

From the invariance axioms we can derive

Theorem (Choice)

Vi3, A(y) = FEVRA(fx) for An.c.
Y, 3SA(y) — FFVLA(f) for Acur.

Theorem (Independence of premise). Assume x ¢ FV(A).

A—3B)—-3 (A=B) forABnc
A3 B) 53 (A= B) for Bn.c.

(
(
(A—39B) - 34(A—=B) for Anc., Becr.
(A

- 34B) 5 34A - B) for B cur.

25 /29

v

v

v

v

v

v

Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate

Realizability

Extracted terms

26 /29

For derivations M4 with A n.c. let et(MA) := e. Otherwise

et(u™) = vy (VZ(A) uniquely associated to u*),

7(A) .)
et((AaMBYA=B) = M et(M) if Alscr.
et(M) if Aisn.c.

et((MAVBNAYBY = {et(M)et(N) fAscr
et(M) if Ais n.c.

et((Ae M™)™) = Met(M),

et((MVxA(x)) . et(/\/])r’

et((AaMPB)A7F) == et(M),

et((MA~"ENA)B) = et(M),

et (A M)A = et(M),

et((MVHCA(X)A(r)) — et(M).

27 /29

Extracted terms for the axioms.
» Let / bec.r.

et(I) == C;, et(I7) =R,

where both C; and R refer to the algebra ¢; associated with /.

» For the invariance axioms we take identities.

Theorem (Soundness)

Let M be a derivation of a c.r. formula A from assumptions u;: C;
(i < n). Then we can derive et(M) r A from assumptions v, r C;
in case C; is c.r. and C; otherwise.

Proof.
By induction on M. O

28 /29

Conclusion

v

Assume M proves A. The derivation in TCF of et(M) r A is
automatically generated and can be machine checked.

v

Minlog can translate et(M) into Scheme and Haskell code.

v

Coq’s extraction returns Ocaml, Scheme or Haskell code, not
terms in a “logical” language like T.

v

Agda views (complete) proofs as programs.

29 /29

