A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

University of Canterbury, Christchurch, 12 Feb 2016
Formulas and predicates
A theory of computable functionals
Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate
Realizability
Extracted terms
Simultaneously define formulas and predicates

\[A, B ::= P\vec{r} \mid A \to B \mid \forall_x A, \]
\[P, Q ::= X \mid \{ \vec{x} \mid A \} \mid \mu X (\forall_{\vec{x}}((A_{i\nu})_{\nu<n_i} \to X\vec{r}_i))_{i<k} \]

Need restriction: \(X \) at most strictly positive in \(A_{i\nu} \).
$$T_N := \mu X (X_0, \forall n (X_n \rightarrow X(Sn)))$$,

$$\text{Even} := \mu X (X_0, \forall n (X_n \rightarrow X(S(Sn))))$$,

$$\text{Eq} := \mu X (\forall_x X_{xx})$$,

$$\text{Ex}_Y := \mu X (\forall_x (Y_x \rightarrow X))$$,

$$\text{Cap}_{Y,Z} := \mu X (\forall_{\vec{x}} (Y_{\vec{x}} \rightarrow Z_{\vec{x}} \rightarrow X_{\vec{x}}))$$,

$$\text{Cup}_{Y,Z} := \mu X (\forall_{\vec{x}} (Y_{\vec{x}} \rightarrow X_{\vec{x}}), \forall_{\vec{x}} (Z_{\vec{x}} \rightarrow X_{\vec{x}}))$$.

Abbreviations

$$\exists_x A := \text{Ex}_{\{x|A\}}$$,

$$P \cap Q := \text{Cap}_{P,Q}$$,

$$P \cup Q := \text{Cup}_{P,Q}$$.
- Formulas and predicates
- A theory of computable functionals
- Brouwer - Heyting - Kolmogorov and decorations
- The type of a formula or predicate
- Realizability
- Extracted terms
Relation to type theory

- Main difference: partial functionals are first class citizens.
- “Logic enriched”: Formulas and types kept separate.
- Minimal logic: →, ∀ only. \(\text{Eq}(x, y)\) (Leibniz equality), \(\exists\), \(\lor\), \(\land\) inductively defined (Russell, Martin-Löf).
- \(\mathbf{F} := \text{Eq}(\text{ff}, \text{tt})\). Ex-falso-quodlibet: \(\mathbf{F} \rightarrow A\) provable.
- “Decorations” \(\rightarrow^{nc}\), \(\forall^{nc}\) (i) allow abstract theory (ii) remove unused data.
Theory of computable functionals TCF

Typed variables, ranging over the partial continuous functionals. Minimal logic, with intro and elim for \rightarrow and \forall. Axioms:

- $I^+_i : \forall \bar{x}((A_\nu(I))_{\nu<n} \rightarrow I\bar{r})$
- $I^- : \forall \bar{x}(I\bar{x} \rightarrow (\forall \bar{x}_i((A_{i\nu}(I \cap X))_{\nu<n_i} \rightarrow X\bar{r}_i))_{i<k} \rightarrow X\bar{x})$

Induction $= \text{elimination for totality over } \mathbb{N}$.

$T^-_N : \forall_n(T_N n \rightarrow X0 \rightarrow \forall_n(T_N n \rightarrow Xn \rightarrow X(Sn)) \rightarrow Xn)$.

Remarks

- Every “competitor” X satisfying the clauses contains T_N.
- Induction for \mathbb{N}, which only holds for total numbers.
- Fits the logical elimination rules (main part comes first).
- “Strengthened” step formula $\forall_n(T_N n \rightarrow Xn \rightarrow X(Sn))$.
For nullary predicates $P = \{ A \}$ and $Q = \{ B \}$ we write $A \land B$ for $P \cap Q$ and $A \lor B$ for $P \cup Q$. Introduction axioms:

\[
\forall_x (A \rightarrow \exists_x A),
\]

\[
A \rightarrow B \rightarrow A \land B,
\]

\[
A \rightarrow A \lor B, \quad B \rightarrow A \lor B.
\]

Elimination axioms:

\[
\exists_x A \rightarrow \forall_x (A \rightarrow B) \rightarrow B \quad (x \notin \text{FV}(B)),
\]

\[
A \land B \rightarrow (A \rightarrow B \rightarrow C) \rightarrow C,
\]

\[
A \lor B \rightarrow (A \rightarrow C) \rightarrow (B \rightarrow C) \rightarrow C.
\]
Equalities

(i) Defined function constants D introduced by computation rules, written $\ell = r$, but intended as left-to-right rewrites.

(ii) Leibniz equality Eq (inductively defined).

(iii) Pointwise equality between partial continuous functionals, defined inductively as well.

(iv) If ℓ and r have a finitary algebra as their type, $\ell = r$ by (i) is a boolean term. Take $\text{Eq}((\ell = r)^B, \text{tt})$.

In TCF formulas $A(r)$ and $A(s)$ are identified if $r, s \in T^+$ have a common reduct.
\[\text{Eq}^+: \forall_x \text{Eq}(x^\rho, x^\rho)\]
\[\text{Eq}^-: \forall_{x, y} (\text{Eq}(x, y) \rightarrow \forall_x X_{x} \rightarrow X_{y}).\]

Compatibility of Eq: \(\forall_{x, y} (\text{Eq}(x, y) \rightarrow A(x) \rightarrow A(y)).\)

(Use \(\text{Eq}^-\) with \(\{ x, y \mid A(x) \rightarrow A(y) \}\) for \(X\).)
Define falsity by \(F := \text{Eq}(\text{ff}, \text{tt}) \).

Ex-falso-quodlibet: TCF \(\vdash F \rightarrow A \) where \(A \) has no strictly positive occurrences of (i) predicate variables (ii) inductive predicates without nullary clauses.

Proof.

1. Show \(F \rightarrow \text{Eq}(x^\rho, y^\rho) \).

 \[
 \begin{align*}
 \text{Eq}(\mathcal{R}_B^\rho \text{ff}xy, \mathcal{R}_B^\rho \text{ff}xy) & \quad \text{by } \text{Eq}^+ \\
 \text{Eq}(\mathcal{R}_B^\rho \text{tt}xy, \mathcal{R}_B^\rho \text{ff}xy) & \quad \text{by compatibility from } \text{Eq}(\text{ff}, \text{tt}) \\
 \text{Eq}(x^\rho, y^\rho) & \quad \text{by conversion.}
 \end{align*}
 \]

2. Show \(F \rightarrow A \), by induction on \(A \). **Case \(\vec{s} \).**

 Let \(K_0 \) be the nullary clause, with final conclusion \(I\vec{t} \).

 By IH from \(F \) we can derive all parameter premises, hence \(I\vec{t} \).

 From \(F \) we also have \(\text{Eq}(s_i, t_i) \) by 1.

 Hence \(I\vec{s} \) by compatibility.

 The cases \(A \rightarrow B \) and \(\forall x A \) are obvious. \(\square \)
Formulas and predicates
A theory of computable functionals
Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate
Realizability
Extracted terms
Have \rightarrow^\pm, \forall^\pm, I^\pm. BHK-interpretation:

- p proves $A \rightarrow B$ if and only if p is a construction transforming any proof q of A into a proof $p(q)$ of B.
- p proves $\forall_x \rho A(x)$ if and only if p is a construction such that for all a^ρ, $p(a)$ proves $A(a)$.

Leaves open:

- What is a “construction”?
- What is a proof of a prime formula?

Proposal:

- Construction: computable functional.
- Proof of a prime formula $I\vec{r}$: generation tree.

Example: generation tree for $\text{Even}(6)$ should consist of a single branch with nodes $\text{Even}(0)$, $\text{Even}(2)$, $\text{Even}(4)$ and $\text{Even}(6)$.
Decoration

Which of the variables \vec{x} and assumptions \vec{A} are actually used in the “solution” provided by a proof of

$$\forall\vec{x}(\vec{A} \rightarrow I\vec{r})?$$

To express this we split each of \rightarrow, \forall into two variants:

- a “computational” one \rightarrow^c, \forall^c and
- a “non-computational” one $\rightarrow^{nc}, \forall^{nc}$ (with restricted rules)

and consider

$$\forall^{nc}_x \forall^c_y (\vec{A} \rightarrow^{nc} \vec{B} \rightarrow^c X\vec{r}).$$

This will lead to a different (simplified) algebra ν_I associated with the inductive predicate I.
Each inductive predicate is marked as computationally relevant (c.r.) or non-computational (n.c., or Harrop): $\mu^\text{nc}_X(K_0, \ldots, K_{k-1})$. Then the elimination scheme must be restricted to n.c. formulas.

We usually write $\rightarrow, \forall, \mu$ for $\rightarrow^c, \forall^c, \mu^c$. Notice that in the clauses of an n.c. inductive predicate $\mu^\text{nc}_X\overrightarrow{K}$ decorations play no role.

For the even numbers we now have two variants:

Even := $\mu_X(X_0, \forall^\text{nc}_n(X_n \rightarrow X(S(Sn))))$,

Even$^\text{nc}$:= $\mu^\text{nc}_X(X_0, \forall_n(X_n \rightarrow X(S(Sn))))$.

Generally for every c.r. inductive predicate I (i.e., defined as $\mu_X\overrightarrow{K}$) we have an n.c. variant I^nc defined as $\mu^\text{nc}_X\overrightarrow{K}$.
\[
\text{ExD}_Y := \mu_X (\forall_x (Yx \rightarrow X)), \\
\text{ExL}_Y := \mu_X (\forall_x (Yx \rightarrow^{\text{nc}} X)). \\
\text{ExR}_Y := \mu_X (\forall_x^{\text{nc}} (Yx \rightarrow X)), \\
\text{ExU}_Y := \mu_X^{\text{nc}} (\forall_x (Yx \rightarrow X)).
\]

D for “double”, L for “left”, R for “right”, U for “uniform”. Abbreviations

\[
\exists^d_x A := \text{ExD}_{\{x|A\}}, \\
\exists^l_x A := \text{ExL}_{\{x|A\}}, \\
\exists^r_x A := \text{ExR}_{\{x|A\}}, \\
\exists^u_x A := \text{ExU}_{\{x|A\}}.
\]
CupD_{Y,Z} := \mu_X (Y \to X, \ Z \to X),
CupL_{Y,Z} := \mu_X (Y \to X, \ Z \to \text{nc} \ X),
CupR_{Y,Z} := \mu_X (Y \to \text{nc} \ X, \ Z \to X),
CupU_{Y,Z} := \mu_X (Y \to \text{nc} \ X, \ Z \to \text{nc} \ X),
CupNC_{Y,Z} := \mu_X (Y \to X, \ Z \to X).

The final nc-variant suppresses even the information which clause has been used. Abbreviations

A \lor^d B := \text{CupD}_{\{|A\},\{|B\}},
A \lor^l B := \text{CupL}_{\{|A\},\{|B\}},
A \lor^r B := \text{CupR}_{\{|A\},\{|B\}},
A \lor^u B := \text{CupU}_{\{|A\},\{|B\}},
A \lor^{nc} B := \text{CupNC}_{\{|A\},\{|B\}}.
Formulas and predicates
A theory of computable functionals
Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate
Realizability
Extracted terms
Examples

Let \(a, b \in \mathbb{Q}, \ x \in \mathbb{R}, \ k \in \mathbb{Z}, \ f \in \mathbb{R} \rightarrow \mathbb{R}. \)

- \(\forall_{a,b,x}(a < b \rightarrow x \leq b \lor^{u} a \leq x) \) has type \(\mathbb{Q} \rightarrow \mathbb{Q} \rightarrow \mathbb{R} \rightarrow \mathbb{B}. \)

- \(\forall_{a,b,x}(a < b \rightarrow x < b \lor^{d} a < x) \) has type \(\mathbb{Q} \rightarrow \mathbb{Q} \rightarrow \mathbb{R} \rightarrow \mathbb{Z} + \mathbb{Z}. \)

- The formula

\[
\forall_{f,k}(f(0) \leq 0 \leq f(1) \rightarrow \forall_{a,b}\left(\frac{1}{2k}|b - a| \leq |f(b) - f(a)|\right) \rightarrow \exists_{x}f(x)=0)
\]

has type \((\mathbb{R} \rightarrow \mathbb{R}) \rightarrow \mathbb{Z} \rightarrow \mathbb{R}. \)
The type $\tau(C)$ of a formula or predicate C

$\tau(C)$ type or the “nulltype symbol” \circ. Extend use of $\rho \to \sigma$ to \circ:

$$(\rho \to \circ) := \circ, \quad (\circ \to \sigma) := \sigma, \quad (\circ \to \circ) := \circ.$$

Assume a global injective assignment of a type variable ξ to every c.r. predicate variable X. Let $\tau(C) := \circ$ if C is non-computational. In case C is c.r. let

$\tau(P \vec{r}) := \tau(P)$,

$\tau(A \to B) := (\tau(A) \to \tau(B))$, \quad $\tau(A \to^{nc} B) := \tau(B)$,

$\tau(\forall_{\chi \rho} A) := (\rho \to \tau(A))$, \quad $\tau(\forall^{nc}_{\chi \rho} A) := \tau(A)$,

$\tau(X) := \xi$,

$\tau(\{ \vec{x} \mid A \}) := \tau(A)$,

$\tau(\mu_{\chi}(\forall_{\vec{x_i}}^{nc} \forall_{\vec{y_i}}(\vec{A_i} \to^{nc} \vec{B_i} \to X\vec{r_i}))_{i<k}) := \mu_{\xi}(\tau(\vec{y_i}) \to \tau(\vec{B_i}) \to \xi)_{i<k}.$

ν_I is the algebra associated with I.
Formulas and predicates
A theory of computable functionals
Brouwer - Heyting - Kolmogorov and decorations
The type of a formula or predicate
Realizability
Extracted terms
Realizability

For every predicate or formula \(C \) we define an n.c. predicate \(C^r \).

For n.c. \(C \) let

\[
C^r := C.
\]

In case \(C \) is c.r. the arity of \(C^r \) is \((\tau(C), \vec{\sigma}) \) with \(\vec{\sigma} \) the arity of \(C \).

For c.r. formulas define

\[
(P^r) := \{ u \mid P^ru^r \}
\]

\[
(A \rightarrow B)^r := \begin{cases}
\{ u \mid \forall v(A^rv \rightarrow B^ruv) \} & \text{if } A \text{ is c.r.} \\
\{ u \mid A \rightarrow B^ru \} & \text{if } A \text{ is n.c.}
\end{cases}
\]

\[
(A \rightarrow^\text{nc} B)^r := \{ u \mid A \rightarrow B^ru \}
\]

\[
(\forall_x A)^r := \{ u \mid \forall_x A^r(ux) \}
\]

\[
(\forall^\text{nc}_x A)^r := \{ u \mid \forall_x A^ru \}.
\]

For c.r. predicates: given n.c. \(X^r \) for all predicate variables \(X \).

\[
\{ \vec{x} \mid A \}^r := \{ u, \vec{x} \mid A^ru \}.
\]
Consider a c.r. inductive predicate

\[I := \mu X (\forall_{\vec{x}}^{c/nc} ((A_{i\nu})_{\nu<n_i} \rightarrow^{c/nc} X \vec{r}_i))_{i<k}. \]

\(\vec{Y} \): all predicate variables strictly positive in some \(A_{i\nu} \) except \(X \).
Define the witnessing predicate with free predicate variables \(\vec{Y}^r \) by

\[I^r := \mu_{X^r}^{nc}(\forall_{\vec{x},\vec{u}} ((A^r_{i\nu} u_{i\nu})_{\nu<n_i} \rightarrow X^r(C_i \vec{x}_i \vec{u}_i) \vec{r}_i))_{i<k} \]

with the understanding that

(i) \(u_{i\nu} \) occurs only when \(A_{i\nu} \) is c.r., and it occurs as an argument in \(C_i \vec{x}_i \vec{u}_i \) only if \(A_{i\nu} \) is c.r. and followed by \(\rightarrow \), and

(ii) only those \(x_{ij} \) with \(\forall_{x_{ij}}^c \) occur as arguments in \(C_i \vec{x}_i \vec{u}_i \).

We write \(u \models A \) for \(A^r u \) (\(u \) realizes \(A \)).
For the even numbers we obtain

\[
\text{Even} := \mu_X (X_0, \forall_{n}^\text{nc} (X_n \rightarrow X(S(Sn)))) \\
\text{Even}^r := \mu_{X^r} (X^r_0, \forall_{n,m} (X^r_{mn} \rightarrow X^r(Sm)(S(Sn)))).
\]

Axiom (Invariance under realizability)

\[
\text{Inv}_A : A \leftrightarrow \exists^1_u (u \ r A) \quad \text{for c.r. formulas } A.
\]

Lemma

For c.r. formulas \(A\) *we have*

\[
(\lambda_u u) \ r (A \rightarrow \exists^1_u (u \ r A)), \\
(\lambda_u u) \ r (\exists^1_u (u \ r A) \rightarrow A).
\]
From the invariance axioms we can derive

Theorem (Choice)

\[\forall_x \exists_y^1 A(y) \rightarrow \exists_f^1 \forall_x A(fx) \quad \text{for } A \text{ n.c.} \]

\[\forall_x \exists_y^d A(y) \rightarrow \exists_f^d \forall_x A(fx) \quad \text{for } A \text{ c.r.} \]

Theorem (Independence of premise). Assume \(x \notin \text{FV}(A) \).

\((A \rightarrow \exists_x^1 B) \rightarrow \exists_x^1 (A \rightarrow B) \quad \text{for } A, B \text{ n.c.} \)

\((A \rightarrow_{\text{nc}}^1 \exists_x^1 B) \rightarrow \exists_x^1 (A \rightarrow B) \quad \text{for } B \text{ n.c.} \)

\((A \rightarrow \exists_x^d B) \rightarrow \exists_x^d (A \rightarrow B) \quad \text{for } A \text{ n.c., } B \text{ c.r.} \)

\((A \rightarrow_{\text{nc}}^d \exists_x^d B) \rightarrow \exists_x^d (A \rightarrow B) \quad \text{for } B \text{ c.r.} \)
Formulas and predicates

A theory of computable functionals

Brouwer - Heyting - Kolmogorov and decorations

The type of a formula or predicate

Realizability

Extracted terms
For derivations M^A with A n.c. let $\text{et}(M^A) := \varepsilon$. Otherwise

\[
\text{et}(u^A) := v_u^{\tau(A)} \quad (v_u^{\tau(A)} \text{ uniquely associated to } u^A),
\]

\[
\text{et}(\left(\lambda_{u^A} M^B\right)^{A \rightarrow B}) := \begin{cases}
\lambda_{v_u^{\tau(A)}} \text{et}(M) & \text{if } A \text{ is c.r.} \\
\text{et}(M) & \text{if } A \text{ is n.c.}
\end{cases}
\]

\[
\text{et}(\left(M^A \rightarrow B N^A\right)^B) := \begin{cases}
\text{et}(M) \text{et}(N) & \text{if } A \text{ is c.r.} \\
\text{et}(M) & \text{if } A \text{ is n.c.}
\end{cases}
\]

\[
\text{et}(\left(\lambda_{x^\rho} M^A\right)^{\forall x^A}) := \lambda_{x}^\rho \text{et}(M),
\]

\[
\text{et}(\left(M^{\forall x A(x)} r\right)^A(r)) := \text{et}(M)r,
\]

\[
\text{et}(\left(\lambda_{u^A} M^B\right)^{A \rightarrow^{\text{nc}} B}) := \text{et}(M),
\]

\[
\text{et}(\left(M^{A \rightarrow^{\text{nc}} B} N^A\right)^B) := \text{et}(M),
\]

\[
\text{et}(\left(\lambda_{x^\rho} M^A\right)^{\forall^{\text{nc}} x^A}) := \text{et}(M),
\]

\[
\text{et}(\left(M^{\forall^{\text{nc}} x A(x)} r\right)^A(r)) := \text{et}(M).
\]
Extracted terms for the axioms.

- Let I be c.r.

\[
et(I^+) := C_i, \quad \text{et}(I^-) := \mathcal{R},\]

where both C_i and \mathcal{R} refer to the algebra ι_I associated with I.

- For the invariance axioms we take identities.

Theorem (Soundness)

Let M be a derivation of a c.r. formula A from assumptions $u_i : C_i$ $(i < n)$. Then we can derive $\text{et}(M) \circ A$ from assumptions $v_{u_i} \circ C_i$ in case C_i is c.r. and C_i otherwise.

Proof.

By induction on M. □
Conclusion

- Assume M proves A. The derivation in TCF of $\text{et}(M) \rightarrow A$ is automatically generated and can be machine checked.
- Minlog can translate $\text{et}(M)$ into Scheme and Haskell code.
- Coq’s extraction returns Ocaml, Scheme or Haskell code, not terms in a “logical” language like T^+.
- Agda views (complete) proofs as programs.