
A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

University of Canterbury, Christchurch, 12 Feb 2016

1 / 29

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

2 / 29

Simultaneously define formulas and predicates

A,B ::= P~r | A→ B | ∀xA,
P,Q ::= X | {~x | A } | µX (∀~xi ((Aiν)ν<ni → X~ri))i<k

Need restriction: X at most strictly positive in Aiν .

3 / 29

TN := µX (X0,∀n(Xn→ X (Sn))),

Even := µX (X0,∀n(Xn→ X (S(Sn)))),

Eq := µX (∀xXxx),

ExY := µX (∀x(Yx → X)),

CapY ,Z := µX (∀~x(Y~x → Z~x → X~x)),

CupY ,Z := µX (∀~x(Y~x → X~x), ∀~x(Z~x → X~x)).

Abbreviations

∃xA := Ex{x |A},

P ∩ Q := CapP,Q ,

P ∪ Q := CupP,Q .

4 / 29

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

5 / 29

Relation to type theory

I Main difference: partial functionals are first class citizens.

I “Logic enriched”: Formulas and types kept separate.

I Minimal logic: →,∀ only. Eq(x , y) (Leibniz equality), ∃, ∨, ∧
inductively defined (Russell, Martin-Löf).

I F := Eq(ff, tt). Ex-falso-quodlibet: F→ A provable.

I “Decorations” →nc, ∀nc (i) allow abstract theory (ii) remove
unused data.

6 / 29

Theory of computable functionals TCF

Typed variables, ranging over the partial continuous functionals.
Minimal logic, with intro and elim for → and ∀. Axioms:

I I+i : ∀~x((Aν(I))ν<n → I~r)

I I− : ∀~x(I~x → (∀~xi ((Aiν(I ∩ X))ν<ni → X~ri))i<k → X~x)

Induction = elimination for totality over N.

T−N : ∀n(TNn→ X0→ ∀n(TNn→ Xn→ X (Sn))→ Xn).

Remarks

I Every “competitor” X satisfying the clauses contains TN.

I Induction for N, which only holds for total numbers.

I Fits the logical elimination rules (main part comes first).

I “Strengthened” step formula ∀n(TNn→ Xn→ X (Sn)).

7 / 29

For nullary predicates P = { | A } and Q = { | B } we write
A ∧ B for P ∩ Q and A ∨ B for P ∪ Q. Introduction axioms:

∀x(A→ ∃xA),

A→ B → A ∧ B,

A→ A ∨ B, B → A ∨ B.

Elimination axioms:

∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)),

A ∧ B → (A→ B → C)→ C ,

A ∨ B → (A→ C)→ (B → C)→ C .

8 / 29

Equalities

(i) Defined function constants D introduced by computation
rules, written ` = r , but intended as left-to-right rewrites.

(ii) Leibniz equality Eq (inductively defined).

(iii) Pointwise equality between partial continuous functionals,
defined inductively as well.

(iv) If ` and r have a finitary algebra as their type, ` = r by (i) is a
boolean term. Take Eq((` = r)B, tt).

In TCF formulas A(r) and A(s) are identified if r , s ∈ T+ have a
common reduct.

9 / 29

Eq+ : ∀xEq(xρ, xρ)

Eq− : ∀x ,y (Eq(x , y)→ ∀xXxx → Xxy).

Compatibility of Eq: ∀x ,y (Eq(x , y)→ A(x)→ A(y)).

(Use Eq− with { x , y | A(x)→ A(y) } for X .)

10 / 29

Define falsity by F := Eq(ff, tt).

Ex-falso-quodlibet: TCF ` F→ A where A has no strictly positive
occurrences of (i) predicate variables (ii) inductive predicates
without nullary clauses.

Proof.
1. Show F→ Eq(xρ, yρ).

Eq(RρBffxy ,RρBffxy) by Eq+

Eq(RρBttxy ,RρBffxy) by compatibility from Eq(ff, tt)

Eq(xρ, yρ) by conversion.

2. Show F→ A, by induction on A. Case I~s.
Let K0 be the nullary clause, with final conclusion I~t.
By IH from F we can derive all parameter premises, hence I~t.
From F we also have Eq(si , ti) by 1.
Hence I~s by compatibility.
The cases A→ B and ∀xA are obvious.

11 / 29

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

12 / 29

Brouwer - Heyting - Kolmogorov

Have →±, ∀±, I±. BHK-interpretation:

I p proves A→ B if and only if p is a construction transforming
any proof q of A into a proof p(q) of B.

I p proves ∀xρA(x) if and only if p is a construction such that
for all aρ, p(a) proves A(a).

Leaves open:

I What is a “construction”?

I What is a proof of a prime formula?

Proposal:

I Construction: computable functional.

I Proof of a prime formula I~r : generation tree.

Example: generation tree for Even(6) should consist of a single
branch with nodes Even(0), Even(2), Even(4) and Even(6).

13 / 29

Decoration

Which of the variables ~x and assumptions ~A are actually used in
the “solution” provided by a proof of

∀~x(~A→ I~r)?

To express this we split each of →, ∀ into two variants:

I a “computational” one →c,∀c and

I a “non-computational” one →nc, ∀nc (with restricted rules)

and consider
∀nc~x ∀

c
~y (~A→nc ~B →c X~r).

This will lead to a different (simplified) algebra ιI associated with
the inductive predicate I .

14 / 29

Each inductive predicate is marked as computationally relevant
(c.r.) or non-computational (n.c., or Harrop): µncX (K0, . . . ,Kk−1).
Then the elimination scheme must be restricted to n.c. formulas.

We usually write →, ∀, µ for →c, ∀c, µc. Notice that in the clauses
of an n.c. inductive predicate µncX

~K decorations play no role.

For the even numbers we now have two variants:

Even := µX (X0, ∀ncn (Xn→ X (S(Sn)))),

Evennc := µncX (X0,∀n(Xn→ X (S(Sn)))).

Generally for every c.r. inductive predicate I (i.e., defined as µX ~K)
we have an n.c. variant I nc defined as µncX

~K .

15 / 29

ExDY := µX (∀x(Yx → X)),

ExLY := µX (∀x(Yx →nc X)).

ExRY := µX (∀ncx (Yx → X)),

ExUY := µncX (∀x(Yx → X)).

D for “double”, L for “left”, R for “right”, U for “uniform”.
Abbreviations

∃dxA := ExD{x |A},

∃lxA := ExL{x |A},

∃rxA := ExR{x |A},

∃uxA := ExU{x |A}.

16 / 29

CupDY ,Z := µX (Y → X , Z → X),

CupLY ,Z := µX (Y → X , Z →nc X),

CupRY ,Z := µX (Y →nc X , Z → X),

CupUY ,Z := µX (Y →nc X , Z →nc X),

CupNCY ,Z := µncX (Y → X , Z → X).

The final nc-variant suppresses even the information which clause
has been used. Abbreviations

A ∨d B := CupD{|A},{|B},

A ∨l B := CupL{|A},{|B},

A ∨r B := CupR{|A},{|B},

A ∨u B := CupU{|A},{|B},

A ∨nc B := CupNC{|A},{|B}.

17 / 29

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

18 / 29

Examples

Let a, b ∈ Q, x ∈ R, k ∈ Z, f ∈ R→ R.

I ∀a,b,x(a < b → x ≤ b ∨u a ≤ x) has type
Q→ Q→ R→ B.

I ∀a,b,x(a < b → x < b ∨d a < x) has type
Q→ Q→ R→ Z + Z.

I The formula

∀f ,k(f (0) ≤ 0 ≤ f (1)→

∀a,b
(1

2k
|b − a| ≤ |f (b)− f (a)|

)
→

∃lx f (x)=0)

has type (R→ R)→ Z→ R.

19 / 29

The type τ(C) of a formula or predicate C
τ(C) type or the “nulltype symbol” ◦. Extend use of ρ→ σ to ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦.

Assume a global injective assignment of a type variable ξ to every
c.r. predicate variable X . Let τ(C) := ◦ if C is non-computational.
In case C is c.r. let

τ(P~r) := τ(P),

τ(A→ B) := (τ(A)→ τ(B)), τ(A→nc B) := τ(B),

τ(∀xρA) := (ρ→ τ(A)), τ(∀ncxρA) := τ(A),

τ(X) := ξ,

τ({~x | A }) := τ(A),

τ(µX (∀nc~xi ∀~yi (~Ai →nc ~Bi → X~ri))i<k︸ ︷︷ ︸
I

) := µξ(τ(~yi)→ τ(~Bi)→ ξ)i<k︸ ︷︷ ︸
ιI

.

ιI is the algebra associated with I .
20 / 29

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

21 / 29

Realizability
For every predicate or formula C we define an n.c. predicate C r.
For n.c. C let

C r := C .

In case C is c.r. the arity of C r is (τ(C), ~σ) with ~σ the arity of C .
For c.r. formulas define

(P~r)r := { u | P ru~r }

(A→ B)r :=

{
{ u | ∀v (Arv → B r(uv)) } if A is c.r.

{ u | A→ B ru } if A is n.c.

(A→nc B)r := { u | A→ B ru }
(∀xA)r := { u | ∀xAr(ux) }

(∀ncx A)r := { u | ∀xAru }.

For c.r. predicates: given n.c. X r for all predicate variables X .

{~x | A }r := { u,~x | Aru }.

22 / 29

Consider a c.r. inductive predicate

I := µX (∀c/nc~xi
((Aiν)ν<ni →

c/nc X~ri))i<k .

~Y : all predicate variables strictly positive in some Aiν except X .
Define the witnessing predicate with free predicate variables ~Y r by

I r := µncX r(∀~xi ,~ui ((Ar
iνuiν)ν<ni → X r(Ci~xi~ui)~ri))i<k

with the understanding that

(i) uiν occurs only when Aiν is c.r., and it occurs as an argument
in Ci~xi~ui only if Aiν is c.r. and followed by →, and

(ii) only those xij with ∀cxij occur as arguments in Ci~xi~ui .

We write u r A for Aru (u realizes A).

23 / 29

For the even numbers we obtain

Even := µX (X0,∀ncn (Xn→ X (S(Sn))))

Evenr := µncX r(X r00, ∀n,m(X rmn→ X r(Sm)(S(Sn)))).

Axiom (Invariance under realizability)

InvA : A↔ ∃lu(u r A) for c.r. formulas A.

Lemma
For c.r. formulas A we have

(λuu) r (A→ ∃lu(u r A)),

(λuu) r (∃lu(u r A)→ A).

24 / 29

From the invariance axioms we can derive

Theorem (Choice)

∀x∃lyA(y)→ ∃lf ∀xA(fx) for A n.c.

∀x∃dyA(y)→ ∃df ∀xA(fx) for A c.r.

Theorem (Independence of premise). Assume x /∈ FV(A).

(A→ ∃lxB)→ ∃lx(A→ B) for A,B n.c.

(A→nc ∃lxB)→ ∃lx(A→ B) for B n.c.

(A→ ∃dxB)→ ∃dx (A→ B) for A n.c., B c.r.

(A→nc ∃dxB)→ ∃dx (A→ B) for B c.r.

25 / 29

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

26 / 29

For derivations MA with A n.c. let et(MA) := ε. Otherwise

et(uA) := v
τ(A)
u (v

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λ
τ(A)
vu et(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxρM
A)∀xA) := λρxet(M),

et((M∀xA(x)r)A(r)) := et(M)r ,

et((λuAM
B)A→

ncB) := et(M),

et((MA→ncBNA)B) := et(M),

et((λxρM
A)∀

nc
x A) := et(M),

et((M∀
nc
x A(x)r)A(r)) := et(M).

27 / 29

Extracted terms for the axioms.

I Let I be c.r.

et(I+i) := Ci , et(I−) := R,

where both Ci and R refer to the algebra ιI associated with I .

I For the invariance axioms we take identities.

Theorem (Soundness)

Let M be a derivation of a c.r. formula A from assumptions ui : Ci

(i < n). Then we can derive et(M) r A from assumptions vui r Ci

in case Ci is c.r. and Ci otherwise.

Proof.
By induction on M.

28 / 29

Conclusion

I Assume M proves A. The derivation in TCF of et(M) r A is
automatically generated and can be machine checked.

I Minlog can translate et(M) into Scheme and Haskell code.

I Coq’s extraction returns Ocaml, Scheme or Haskell code, not
terms in a “logical” language like T+.

I Agda views (complete) proofs as programs.

29 / 29

