
Computing with partial continuous functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

University of Canterbury, Christchurch, 10 Feb 2016

1 / 36

Proof: 2 aspects

I provides insight (uniformity)

I may have computational content

For proofs we need: logic + data + inductive definitions

I Logic: minimal, intro and elim for →, ∀
I Proof ∼ lambda-term (Curry-Howard correspondence)

I Can embed classical and intuitionistic logic

2 / 36

(a). The model of partial continuous functionals

I Information systems

I Algebras and types

I A common extension T+ of Gödel’s T and Plotkin’s PCF

I Denotational semantics

(b). A theory of computable functionals

I Formulas and predicates

I A theory of computable functionals

I Brouwer - Heyting - Kolmogorov and decorations

I The type of a formula or predicate

I Realizability

I Extracted terms

(c). Extracting programs from proofs

I Computing with infinite data: Gray-coded reals

I Ishihara’s trick

3 / 36

Computable functionals

General view: computations are finite.

Arguments not only numbers and functions, but also functionals of
any finite type.

I Principle of finite support. If H(Φ) is defined with value n,
then there is a finite approximation Φ0 of Φ such that H(Φ0)
is defined with value n.

I Monotonicity principle. If H(Φ) is defined with value n and Φ′

extends Φ, then also H(Φ′) is defined with value n.

I Effectivity principle. An object is computable iff its set of
finite approximations is (primitive) recursively enumerable (or
equivalently, Σ0

1-definable).

4 / 36

I Information systems

I Algebras and types

I A common extension T+ of Gödel’s T and Plotkin’s PCF

I Denotational semantics

5 / 36

Information system A = (A,Con,`):

I A countable set of “tokens”,

I Con set of finite subsets of A,

I ` (“entails”) subset of Con× A.

such that

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,

U,V ∈ Con→ ∀a∈V (U ` a)→ V ` b → U ` b.

x ⊆ A is an ideal if

U ⊆ x → U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).

6 / 36

Function spaces

Let A = (A,ConA,`A) and B = (B,ConB ,`B) be information
systems. Define A→ B := (C ,Con,`) where

I C := ConA × B,

I

{ (Ui , bi) | i ∈ I } ∈ Con :=

∀J⊆I (
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB),

I { (Ui , bi) | i ∈ I } ` (U, b) means { bi | U `A Ui } `B b.

A→ B is an information system.

7 / 36

Characterizing ideals in A→ B

A = (A,ConA,`A), B = (B,ConB ,`B) information systems.

Definition (r ⊆ ConA × B approximable map)

I If r(U, b1), . . . , r(U, bn), then {b1, . . . , bn} ∈ ConB .

I If r(U, b1), . . . , r(U, bn) and {b1, . . . , bn} `B b, then r(U, b).

I If r(U ′, b) and U `A U ′, then r(U, b).

Theorem
The ideals in A→ B are the approximable maps from A to B.

Application of an ideal r in A→ B to an ideal x in A is defined by

{ b ∈ B | ∃U⊆x r(U, b) }.

8 / 36

I Information systems

I Algebras and types

I A common extension T+ of Gödel’s T and Plotkin’s PCF

I Denotational semantics

9 / 36

Concrete information systems, from free algebras.

I Types will be built from base types ι by ρ→ σ.

I Information systems for base types are built from non-flat free
algebras, given by their constructors (reason: want
constructors to be injective and with disjoint ranges).

Inductively define type forms:

ρ, σ ::= α | ρ→ σ | µξ((ρiν)ν<ni → ξ)i<k

with α, ξ type variables and k ≥ 1 (since we want our algebras to
be inhabited). (ρν)ν<n → σ means ρ0 → . . .→ ρn−1 → σ.

10 / 36

Strict positivity

We define α occurs at most strictly positive in ρ, by induction on ρ.

SP(α, β)
α /∈ FV(ρ) SP(α, σ)

SP(α, ρ→ σ)

SP(α, ρiν) for all i < k , ν < ni
SP(α, µξ((ρiν)ν<ni → ξ)i<k)

11 / 36

We define Ty(ρ) “ρ is a type”, again by induction on ρ.

Ty(α)
Ty(ρ) Ty(σ)

Ty(ρ→ σ)

Ty(ρiν) and SP(ξ, ρiν) for all i < k , ν < ni
Ty(µξ((ρiν)ν<ni → ξ)i<k)

12 / 36

We call
ι := µξ((ρiν)ν<ni → ξ)i<k

an algebra.

Let (ρν(ξ))ν<n → ξ be the i-th component of ι. Call

(ρν(ι))ν<n → ι

the i-th constructor type of ι.

13 / 36

Examples of algebras:

U := µξξ (unit),

B := µξ(ξ, ξ) (booleans),

N := µξ(ξ, ξ → ξ) (natural numbers, unary),

D := µξ(ξ, ξ → ξ → ξ) (binary trees, or derivations),

Examples of algebras strictly positive in their type parameters:

L(α) := µξ(ξ, α→ ξ → ξ) (lists),

α× β := µξ(α→ β → ξ) (product),

α + β := µξ(α→ ξ, β → ξ) (sum).

Example of a nested algebra:

T := µξ(L(ξ)→ ξ) (finitely branching trees).

Note that T has a total inhabitant since L(α) has one (Nil).

14 / 36

Standard names for constructors:

ttB, ffB

0N,SN→N

0D,CD→D→D for the type D of binary trees,

NilL(ρ),Consρ→L(ρ)→L(ρ) for the type L(ρ) of lists,

(Inlρσ)ρ→ρ+σ, (Inrρσ)σ→ρ+σ for the sum type ρ+ σ,

Branch : L(T)→ T for the type T of finitely branching trees.

15 / 36

Information systems Cρ = (Cρ,Conρ,`ρ)

Cρ→σ := Cρ → Cσ. At base types ι:

Tokens are type correct constructor expressions Ca∗1 . . . a
∗
n.

(Examples: 0, C∗0, C0∗, C (C∗0)0.)

U = {a1, . . . , an} is consistent if

I all ai start with the same constructor,

I (proper) tokens at j-th argument positions are consistent.

(Example: {C∗0,C0∗}.)

U ` a (entails) if

I all ai ∈ U and also a start with the same constructor,

I (proper) tokens at j-th argument positions of ai entail j-th
argument of a.

(Example: {C∗0,C0∗} ` C00.)

16 / 36

Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

{a} ` b iff there is a path from a (up) to b (down).

17 / 36

Why non-flat domains?

rC(~x) := {C~a∗ | ∃~U⊆~x(~U ` ~a∗) }.

Lemma

(a) rC(~x) ⊆ rC(~y)↔ ~x ⊆ ~y. Hence rC is injective.

(b) rC1(~x) 6= rC2(~y), since the two ideals are non-empty and
disjoint. Hence distinct constructors have disjoint ranges.

Neither property holds for flat information systems, since for them,
by monotonicity, constructors are strict (i.e., if one argument is the
empty ideal, then the value is as well). But then

rC(∅, y) = ∅ = rC(x , ∅),
rC1(∅) = ∅ = rC2(∅).

18 / 36

Definition

I A partial continuous functional of type ρ is an ideal in Cρ.

I A partial continuous functional is computable if it is a
(primitive) recursively enumerable set of tokens.

Ideals in Cρ: Scott-Ershov domain of type ρ.
Principles of finite support and monotonicity hold (“continuity”).

Note.

I The set of all ideals of A is denoted by |A|.
I Define OU ⊆ |A| by OU := { x ∈ |A| | U ⊆ x }.
I The system of all OU with U ∈ Con forms the basis of a

topology on |A|, called the Scott topology.

19 / 36

Definition (Totality)

I x ι is total if it is generated from a total token (no ∗’s).

I f ρ→σ is total if it maps total arguments to total values.

Definition (Cototality)

I x ι is cototal if every token (i.e., constructor tree) P(∗) ∈ x
has a “one-step extension” P(C~∗) ∈ x .

I f ρ→σ is cototal if it maps cototal arguments to cototal values.

Similar: finite or infinite “locally correct” derivations [Mints 78].

20 / 36

I Information systems

I Algebras and types

I A common extension T+ of Gödel’s T and Plotkin’s PCF

I Denotational semantics

21 / 36

Computable functionals

Recall: a partial continuous functional f ρ is computable if it is a
(primitive) recursively enumerable set of tokens.

How to define computable functionals? By computation rules

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where ~Pi (~yi) are
“constructor patterns”.

22 / 36

Structural recursion operators

Important example for such D [Hilbert 1925, Gödel 1958]. The
type of the recursion operator Rτι for ι = µξ((ρiν(ξ))ν<ni → ξ)i<k

with result type τ is

ι→ ((ρiν(ι× τ))ν<ni → τ)i<k → τ.

I ι is the type of the recursion argument.

I Each (ρiν(ι× τ))ν<ni → τ is called a step type.

I Usage of ι× τ (not τ) in the step types is a strengthening:
more data are available to construct the value of type τ .

I We avoid the product type in ~σ → ι× τ and take the two
argument types ~σ → ι and ~σ → τ instead.

23 / 36

Examples

RτB : B→ τ → τ → τ,

RτN : N→ τ → (N→ τ → τ)→ τ,

RτD : D→ τ → (D→ τ → D→ τ → τ)→ τ,

RτL(ρ) : L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ,

Rτρ+σ : ρ+ σ → (ρ→ τ)→ (σ → τ)→ τ,

Rτρ×σ : ρ× σ → (ρ→ σ → τ)→ τ,

RτT : T→ (L(T× τ)→ τ)→ τ.

24 / 36

Map operators

Let ρ(~α) be a type and ~α strictly positive type parameters. We
define the map operator

M~σ→~τ
λ~αρ(~α) : ρ(~σ)→ (~σ → ~τ)→ ρ(~τ)

where (~σ → ~τ)→ ρ := (σ1 → τ1)→ . . .→ (σn → τn)→ ρ.

I If none of ~α appears free in ρ(~α) let

M~σ→~τ
λ~αρ(~α)x

~f = x .

I Otherwise we use an outer recursion on ρ(~α) and if ρ(~α) is
ι(~α) an inner one on x .

I If ρ(~α) is ι(~α) abbreviate M~σ→~τ
λ~αι(~α) by M~σ→~τ

ι or M~τ
ι(~σ).

25 / 36

Immediate cases for the outer recursion:

M~σ→~τ
λ~ααi

x~f = fix , M~σ→~τ
λ~α(σ→ρ)h

~f x =M~σ→~τ
λ~αρ

(hx)~f .

It remains to consider ι(~π(~α)).
I In case ~π(~α) is not ~α let

M~σ→~τ
λ~αι(~π(~α))x

~f =M~π(~σ)→~π(~τ)
ι x(M~σ→~τ

λ~απi (~α) · ~f)i<|~π |

with M~σ→~τ
λ~απi (~α) · ~f = λxM~σ→~τ

λ~απi (~α)x
~f .

I In case ~π(~α) is ~α we use recursion on x and define for a
constructor Ci : (ρν(~σ, ι(~σ)))ν<n → ι(~σ)

M~σ→~τ
ι (Ci~x)~f

to be the result of applying C′i of type
(ρν(~τ , ι(~τ)))ν<n → ι(~τ) (the same constructor as Ci with
only the type changed) to, for each ν < n,

M~σ,ι(~σ)→~τ,ι(~τ)
λ~α,βρν(~α,β)

xν~f (M~σ→~τ
ι · ~f).

The final function argument provides the recursive call w.r.t. the
recursion on x .

26 / 36

Example: Mτ
L(σ) : L(σ)→ (σ → τ)→ L(τ) is defined by

Mτ
L(σ)Nil f

σ→τ = Nil,

Mτ
L(σ)(x

σ :: lL(σ))f σ→τ = (fx) :: (M l f).

Definition
Terms of Gödel’s T (for nested algebras) are generated from typed
variables xρ and constants for

I constructors Cιi ,

I recursion operators Rτι and

I map operators M~ρ→~τ
λ~απ

by abstraction λxρM
σ and application Mρ→σNρ.

27 / 36

Computation rules for Rτι :

Rτι (Cιi
~N) ~M = Mi (Mι→ι×τ

λαρν(α)
Nνλx〈x ι,Rτι x ~M〉)ν<n

where (ρν(ι))ν<n → ι is the type of the i-th constructor Ci .

In the special case ρν(α) = α we can avoid the product type and
instead of the pair

Mι→ι×τ
λαα

Nνλx〈x ι,Rτι x ~M〉 i.e., 〈Nι
ν ,RτιNν ~M〉

take its components Nι
ν and RτιNν ~M as separate arguments of Mi .

28 / 36

Examples

I RτN : N→ τ → (N→ τ → τ)→ τ defined by

RτN0xf = x ,

RτN(Sn)xf = fx(RτNnxf).

I RτT : T→ (L(T× τ)→ τ)→ τ defined by

RτT(Branch as)f L(T×τ)→τ = f (MT×τ
L(T)asλa〈a

T,RτTaf 〉).

29 / 36

A common extension T+ of Gödel’s T and Plotkin’s PCF

Terms of T+ are built from (typed) variables and (typed)
constants (constructors C or defined constants D, see below) by
(type-correct) application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant D comes with a system of computation
rules, consisting of finitely many equations

D~Pi (~yi) = Mi (i = 1, . . . , n)

with free variables of ~Pi (~yi) and Mi among ~yi , where the arguments
on the left hand side must be “constructor patterns”, i.e., lists of
applicative terms built from constructors and distinct variables.

30 / 36

Examples

I +: N→ N→ N defined by

n + 0 = n

n + Sm = S(n + m)

I Y : (τ → τ)→ τ defined by

Yf = f (Yf)

I =N : N→ N→ B

(0 =N 0) = tt,

(0 =N Sn) = ff,

(Sm =N 0) = ff,

(Sm =N Sn) = (m =N n).

31 / 36

Corecursion

The rules for R work from the leaves towards the root, and
terminate because total ideals are well-founded.

For cototal ideals a similar operator defines functions with cototal
ideals as values: corecursion. Consider ι = µξ(κ0, . . . , κk−1).

constructor type: destructor type:∑
i<k

∏
ν<ni

ρiν(ι)→ ι ι→
∑
i<k

∏
ν<ni

ρiν(ι)

type of recursion operator: type of corecursion operator:

ι→ (
∑
i<k

∏
ν<ni

ρiν(ι× τ)→ τ)→ τ τ → (τ →
∑
i<k

∏
ν<ni

ρiν(ι+ τ))→ ι

32 / 36

Examples

coRτB : τ → (τ → U + U)→ B,
coRτN : τ → (τ → U + (N + τ))→ N,
coRτD : τ → (τ → U + (D + τ)× (D + τ))→ D,
coRτL(ρ) : τ → (τ → U + ρ× (L(ρ) + τ))→ L(ρ).

For f : ρ→ τ , g : σ → τ define [f , g]ρ+σ→τ := λx(Rτρ+σxfg). Let
x1, x2 denote the two projections of x of type ρ× σ.

coRτBNM = [λ tt, λ ff](MN),
coRτNNM = [λ 0, λx(S([idN→N, λy (coRτNyM)]x))](MN),
coRτDNM = [λ 0, λx(C([id,PD]x1)([id,PD]x2))](MN),

coRτL(ρ)NM = [λ Nil, λx(x1 :: [id, λy (coRτL(ρ)yM)]x2)](MN).

33 / 36

I Information systems

I Algebras and types

I A common extension T+ of Gödel’s T and Plotkin’s PCF

I Denotational semantics

34 / 36

How to use computation rules to define a computable functional?
Inductively define (~U, a) ∈ [[λ~xM]], where M is a term with free
variables among ~x .
Case λ~x ,y ,~zM with ~x free in M, but not y .

(~U, ~W , a) ∈ [[λ~x ,~zM]]

(~U,V , ~W , a) ∈ [[λ~x ,y ,~zM]]
(K).

Case λ~xM with ~x the free variables in M.

U ` a

(U, a) ∈ [[λxx]]
(V),

(~U,V , a) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~U ` ~a∗

(~U,C~a∗) ∈ [[C]]
(C),

(~V , a) ∈ [[λ~xM]] ~U ` ~P(~V)

(~U, a) ∈ [[D]]
(D),

with one rule (D) for every defining equation D~P(~x) = M.

35 / 36

Properties of the denotational semantics

I [[λ~xM]] is a partial continuous functional.

I The value is preserved under standard β, η-conversion and the
computation rules.

I An adequacy theorem (Plotkin) holds: whenever a closed term
Mι has a proper token in its denotation [[M]], then M (head)
reduces to a constructor term entailing this token.

36 / 36

