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Roadmap

Goal: an uncommon but useful approach to logic: minimal logic +

∃̃, ∨̃ (weak, classical) and ∃,∨ (strong, constructive).

1. Embedding classical and intuitionistic logic into minimal logic.

2. Geometric formulas G and geometric implications Γ.
Γ `c G implies Γ `i G .

3. Extended geometric implications: → occurs positively only.

4. ∃̃, ∨̃ versus ∃,∨: variants of Barr’s theorem.

5. Examples.
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Minimal logic

I Minimal logic ∼ simply typed λ-calculus.

I Rules →+, →−, ∀+, ∀−.

I ∃,∨,∧ inductively defined. Equivalent: defined by rules.

I Semantic: Beth structures. Correct and complete.

6` ((P → Q) → P) → P Peirce

6` (P → ∃xQx) → ∃x(P → Qx) Independence of premise
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derivation term

u : A uA

[u : A]

| M
B →+ uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B
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Natural deduction: ∀-rules

derivation term

| M
A ∀+ x (Variable Cond.)
∀xA

(λxM
A)∀xA (Variable Cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)
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Natural deduction: ∨, ∃-rules

| M
A ∨+

0
A ∨ B

| M
B ∨+

1
A ∨ B

| M
A ∨ B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C

r

| M
A(r)

∃+
∃xA(x)

| M
∃xA

[u : A]

| N
B ∃−x , u (var.cond.)

B
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Dragalin-Friedman-translation

Fix a formula A. Define BA by

I PA := P ∨ A for prime formulas P;

I (B ◦ C )A := BA ◦ CA for ◦ = →,∧,∨;

I (∀xB)A := ∀xB
A and (∃xB)A := ∃xB

A.

Easy:
Γ ` B implies ΓA ` BA.
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Embedding classical and intuitionistic logic

Fix ⊥, and define ¬A := A → ⊥.

StabP : ∀~x(¬¬P~x → P~x ) stability,

EfqP : ∀~x(⊥ → P~x ) ex-falso-quodlibet.

Let Stab := {StabP | P relation }, Efq := {EfqP | P relation }.
Easy: Stab proves ¬¬A → A for A built with →,∀ only.

I Define Γ `c A by Γ ∪ Stab ` A.

I Define Γ `i A by Γ ∪ Efq ` A.

Define

∃̃xA := ¬∀x¬A, A ∨̃ B := ¬(A → B → ⊥).
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Negative translation by Gödel-Gentzen

Ag is defined by

I ⊥g := ⊥;

I Pg := ¬¬P for prime formulas P 6= ⊥ (where ¬A := A → ⊥);

I (B ∨ C )g := Bg ∨̃ C g ;

I (∃xB)g := ∃̃xB
g ;

I (B ◦ C )g := Bg ◦ C g for ◦ = →,∧;

I (∀xB)g := ∀xB
g .

Easy:
Γ `c B implies Γg ` Bg .
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Geometric implications

Geometric formulas are defined by

G ,H ::= P | ⊥ | G ∧ H | G ∨ H | ∃xG .

A geometric implication has the form ∀~x(G → H).

I Every geometric formula can be written in the form

∃~x(B1 ∨ · · · ∨ Bn)

with Bi conjunctions of prime formulas.

I Every geometric implication can be written as conjunction of

∀~x(B → ∃~y (B1 ∨ · · · ∨ Bn))

with B,Bi conjunctions of prime formulas.

Helmut Schwichtenberg (j.w.w. Christoph Senjak) Minimal from classical proofs



Theorem. (Palmgren 2002). Let Γ be geometric implications, G a
geometric formula. Γ `c G implies Γ ` ⊥ ∨ G , hence Γ `i G .

G g ↔ ¬¬G (1)

(G → H) → G g → Hg (2)

GA ↔ G ∨ A (3)

(G → H) → GA → HA (4)

GG ↔ G . (5)

Γg ` G g Gödel-Gentzen

Γ ` G g by (2)

Γ ` ¬¬G by (1)

ΓG ` (¬¬G )G Dragalin-Friedman, A := G

Γ ` (¬¬G )G by (4)

(¬¬G )G ↔ ((GG → ⊥∨ G ) → ⊥∨ G ) for ¬¬G = (G → ⊥) → ⊥
GG → G by (5)
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Corollary. Let Γ be geometric implications, G a geometric formula.
If Γ `c G and Γ,G have no ⊥, then Γ ` G .

Proof.

I Suppose Γ,G have no ⊥.

I Have proof of G from Γ and instances ⊥ → Ai of Efq.

I Replace ⊥ by
∧∧

i Ai .

I This does not affect Γ,G and turns each ⊥ → Ai into a
provable formula.
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Extended geometric implications (EGI)

are formulas containing → only positively. Every geometric
implication is an EGI. Examples of non-EGIs:

I A double negation (A → ⊥) → ⊥, or

I the premise of the Peirce formula ((P → Q) → P) → P.

Theorem
For EGIs Γ and A, classical derivability of A from Γ implies
intuitionistic derivability.

Theorem
For EGIs Γ, A without disjunction, classical derivability of A from Γ
implies derivability in minimal logic.
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Let A1, . . . ,An be EGIs. We transform a classical proof in long
normal form of a prime formula Q from A1, . . . ,An into an
intuitionistic proof of Q from the same assumptions.

Lemma
Let A1, . . . ,An be EGIs. Consider a proof in long normal form of
an implication-free formula, from the assumptions A1, . . . ,An and
stability axioms. Let u be an assumption variable bound by →+.
Then u is bound in a context StabP~rS(λuM

⊥), where u : ¬P~r and
λuM

⊥ is a top node of the segment S.

Proof. Consider the path in the proof whose initial node is u. The
path must have an order > 0, and the binding position of u must
be in the introduction part of a path of possibly smaller order,
ending in the side premise of an →−-rule:
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| N
A1 → B1

u : A
| M

A1 →−
B1

Therefore an implication A → B is a (strictly) positive subformula
of A1 and hence a negative subformula of A1 → B1. By our
assumptions this is only possible if N is a stability axiom applied to
some terms ~r . Hence we have the situation

StabP : ∀~x(¬¬P~x → P~x ) ~r

¬¬P~r → P~r

| M
⊥ →+u¬¬P~r
| S

¬¬P~r →−
P~r

with u : ¬P~r and λuM
⊥ a top node of the segment S .
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Barr’s theorem

I Recall: our language has ∃,∨ and ∃̃, ∨̃.

I Let Ã be obtained from A by replacing ∃,∨ with ∃̃, ∨̃.

Lemma
`c Ã ↔ Ag .

Theorem (Barr)

Assume that Γ consists of geometric implications and G is a
geometric formula. Γ̃ `c G̃ implies Γ ` ⊥ ∨ G, hence also Γ `i G.
If Γ,G do not contain ⊥, we have Γ ` G.

Proof (Palmgren).

By the lemma Γ̃ `c G̃ is equivalent to Γg `c G g . Hence Γg ` G g

by the Gödel-Gentzen translation, since ` (Ag )g ↔ Ag . But
Palmgren’s proof above began with Γg ` G g .
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Variants of Barr’s theorem

` ∃xA → ∃̃xA, ` A ∨ B → A ∨̃ B,

but not conversely; this is the reason why ∃̃, ∨̃ are called “weak”.
For formulas A possibly with both ∃,∨ and ∃̃, ∨̃ we define
strengthenings A+ and weakenings A−:

A+ : replace in A

{
some positive occurrences of ∃̃, ∨̃ by ∃,∨,

some negative occurrences of ∃,∨ by ∃̃, ∨̃,

A− : replace in A

{
some positive occurrences of ∃,∨ by ∃̃, ∨̃,

some negative occurrences of ∃̃, ∨̃ by ∃,∨.

Lemma

I ` A+ → A,

I ` A → A−.

One proves both parts simultaneously by induction on A.
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Theorem
Assume Γ̃ `c P where Γ has only positive occurrences of →,∃,∨
and P is a prime formula. Then Γ `i P.

Proof.
By the Lemma Γ ` Γ̃, so Γ `c P, so Γ `i P (theorem above).

Theorem
Assume Γ̃ `c Ã where

(i) A = ∃~x(B1 ∨ · · · ∨ Bn) with Bi = ∀~yi
Ci and Ci conjunction of

prime formulas 6= ⊥;

(ii) Γ has only positive occurrences of →,∃ and contains neither
∨ nor ⊥.

Then Γ ` A.

Geometric formulas and geometric implications almost (no ∨,⊥)
have the required form. We allow e.g. prenex formulas with prime
formulas as kernel for Γ (needed in [Coquand & Lombardi 2006]),
and universally quantified prime formulas for the disjunctive Bi ’s.
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Proof.
Assume Γ̃ `c Ã with A, Γ satisfying (i), (ii). By the Lemma and (ii)
we have Γ ` Γ̃, hence Γ `c Ã. By (i) we can assume that Ã has the
form ∃̃~x1

B1 ∨̃ . . . ∨̃ ∃̃~xn
Bn with Bi = ∀~yi

Ci and Ci conjunction of
prime formulas 6= ⊥. Therefore

Γ,∀~x1
(∀~y1

C1 → ⊥), . . . ,∀~xn
(∀~yn

Cn → ⊥) `c ⊥.

By a theorem above

Γ,∀~x1
(∀~y1

C1 → ⊥), . . . ,∀~xn
(∀~yn

Cn → ⊥) ` ⊥.

Replace ⊥ by ∃~x1
∀~y1

C1 ∨ · · · ∨ ∃~xn
∀~yn

Cn. This leaves Γ intact and
makes the final premises provable. Hence Γ ` A as required.
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Examples

I Warning: care is needed when interpreting the results.

I Reason: we have ∃,∨ as well as ∃̃, ∨̃, and defined Γ `c A to
mean Γ ∪ Stab ` A.

I The common understanding of classical derivability of A from
Γ is written here as Γ̃ `c Ã, which is different from Γ `c A.

I `c P ∨̃ ¬P, but 6`c P ∨ ¬P.

I `c (∀xQx → P) → ∃̃x(Qx → P), but
6`c (∀xQx → P) → ∃x(Qx → P), for otherwise this formula
(an EGI) would be derivable in minimal logic, which it isn’t.
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Examples

I However, this caution is not necessary in the →,∀-fragment.

I For instance, ∀x(∀yRxy → Qx) → P is derivable in classical
logic iff it is derivable in minimal logic.

I Premises called “generalized Horn clauses”, CSL 1991.

I Related work by Dale Miller: extensions of logic programming.
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Examples in algebra

[Coquand & Lombardi 2006] consider a non-Noetherian version of
Swan’s theorem, written in a first-order way as an implication

HdimR < n → ∆n(F ) = 1 → ∃X ,Y (1 = XFY ) (6)

(X a row vector, Y a column vector, F a matrix of fixed size).
HdimR < n (the Heitmann dimension of R is < n); for n = 1:

∀x∃a∀y∃b(1 = b(1− yx(1− ax))). (7)

(n given) is an EGI, as is ∆n(F ) = 1 and ∃X ,Y (1 = XFY ). Notice:
In (6) and its premise (7) we have ∃, i.e., HdimR < 1 has a
constructive meaning. But here the variant of Barr’s theorem can
be applied: (6) with ∃ replaced by ∃̃ is provable in minimal logic.
(As reported in Mints’ survey [1991], conservativity of classical over
intuitionistic logic for such formulas follows from Orevkov [1968]).
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Examples in algebra (continued)

[Coquand and Quitté 2011] consider a theorem of Hilbert-Burch:
if we have an exact sequence

0 → R2 → R3 → 〈a1, a2, a3〉 → 0,

then the elements a1, a2, a3 have a gcd, i.e.,

∃x(x |a1 ∧ x |a2 ∧ x |a3 ∧ ∀y (y |a1 ∧ y |a2 ∧ y |a3 → y |x)).

Not a geometric formula. But: x |y can be axiomatized as a prime
formula. Consider rings with a prime formula R(a1, a2, a3, x , y) s.t.

R(a1, a2, a3, x , y) ↔ (y |a1 ∧ y |a2 ∧ y |a3 → y |x).

Then the conclusion is ∃x∀y (x |a1 ∧ x |a2 ∧ x |a3 ∧R(a1, a2, a3, x , y)),
and hence again the variant of Barr’s theorem applies.
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Necessity of the conditions

Clearly the (left) nesting of implications must be restricted, since

I `c ¬¬P → P but 6`i ¬¬P → P

I `c ((P → Q) → P) → P but 6` ((P → Q) → P) → P.

We cannot allow implications in the conclusion. Kreisel’s example:

I Let R be a primitive recursive such that ∃zRxz is undecidable.

I `c ∃̃y∀z(Rxz → Rxy) (this holds even for `).

I But there is no computable f s.t. ∀x ,z(Rxz → R(x , f (x))), for
then ∃zRxz would be decidable: it is true iff R(x , f (x)) holds.

I Hence 6` ∃y∀z(Rxz → Rxy).
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Conclusion

I An uncommon approach to logic: minimal logic +

∃̃, ∨̃ (weak, classical) and ∃,∨ (strong, constructive).

I The view of classical logic as minimal logic + stability allows
to prove new conservativity results (for EGIs).

I Corollaries: useful variants of Barr’s theorem.
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