Minimal from classical proofs

Helmut Schwichtenberg (j.w.w. Christoph Senjak)

Mathematisches Institut der Universität München

University of Göteborg, Sweden 18. February 2011

Roadmap

Goal: an uncommon but useful approach to logic: minimal logic +

 $\tilde{\exists}, \tilde{\lor}$ (weak, classical) and \exists, \lor (strong, constructive).

- 1. Embedding classical and intuitionistic logic into minimal logic.
- 2. Geometric formulas G and geometric implications Γ . $\Gamma \vdash_c G$ implies $\Gamma \vdash_i G$.
- 3. Extended geometric implications: \rightarrow occurs positively only.
- 4. $\tilde{\exists}, \tilde{\lor}$ versus \exists, \lor : variants of Barr's theorem.
- 5. Examples.

Minimal logic

- Minimal logic \sim simply typed λ -calculus.
- ▶ Rules \rightarrow^+ , \rightarrow^- , \forall^+ , \forall^- .
- ▶ \exists , \lor , \land inductively defined. Equivalent: defined by rules.
- Semantic: Beth structures. Correct and complete.

 $\begin{array}{ll} \forall ((P \to Q) \to P) \to P & \text{Peirce} \\ \forall (P \to \exists_x Qx) \to \exists_x (P \to Qx) & \text{Independence of premise} \end{array}$

derivation	term
u: A	u ^A
$\begin{bmatrix} u \colon A \end{bmatrix} \\ \mid M \\ \frac{B}{A \to B} \to^{+} u$	$(\lambda_{u^A} M^B)^{A o B}$
$ \begin{array}{c c} M & N \\ \underline{A \to B} & \underline{A} \\ B & - \end{array} $	$(M^{A \rightarrow B} N^A)^B$

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), <

æ

Natural deduction: ∀-rules

derivation	term
$ M \\ \frac{A}{\forall_x A} \forall^+ x (Variable Cond.)$	$(\lambda_{x}M^{A})^{orall_{x}A}$ (Variable Cond.)
$\frac{ M }{\forall_x A(x) = r} \forall -$	$(M^{\forall_{x}\mathcal{A}(x)}r)^{\mathcal{A}(r)}$

э

Natural deduction: \lor , \exists -rules

Dragalin-Friedman-translation

Fix a formula A. Define B^A by

▶
$$P^A := P \lor A$$
 for prime formulas P ;
▶ $(B \circ C)^A := B^A \circ C^A$ for $\circ = \rightarrow, \land, \lor$;
▶ $(\forall_x B)^A := \forall_x B^A$ and $(\exists_x B)^A := \exists_x B^A$
Easy:

 $\Gamma \vdash B$ implies $\Gamma^A \vdash B^A$.

Embedding classical and intuitionistic logic

Fix \bot , and define $\neg A := A \rightarrow \bot$.

$$\begin{split} & \operatorname{Stab}_{P} \colon \forall_{\vec{x}} \big(\neg \neg P \vec{x} \to P \vec{x} \, \big) & \text{stability,} \\ & \operatorname{Efq}_{P} \colon \forall_{\vec{x}} \big(\bot \to P \vec{x} \, \big) & \text{ex-falso-quodlibet.} \end{split}$$

Let $\operatorname{Stab} := \{ \operatorname{Stab}_P \mid P \text{ relation} \}$, $\operatorname{Efq} := \{ \operatorname{Efq}_P \mid P \text{ relation} \}$. Easy: Stab proves $\neg \neg A \rightarrow A$ for A built with \rightarrow, \forall only.

- Define $\Gamma \vdash_c A$ by $\Gamma \cup \text{Stab} \vdash A$.
- ▶ Define $\Gamma \vdash_i A$ by $\Gamma \cup Efq \vdash A$.

Define

$$\tilde{\exists}_x A := \neg \forall_x \neg A, \qquad A \ \tilde{\lor} \ B := \neg (A \to B \to \bot).$$

Negative translation by Gödel-Gentzen

 A^g is defined by

- $\blacktriangleright \perp^{g} := \bot;$
- ▶ $P^g := \neg \neg P$ for prime formulas $P \neq \bot$ (where $\neg A := A \rightarrow \bot$);
- $(B \vee C)^g := B^g \tilde{\vee} C^g;$
- $\blacktriangleright (\exists_x B)^g := \tilde{\exists}_x B^g;$
- $(B \circ C)^g := B^g \circ C^g$ for $\circ = \rightarrow, \land;$
- $\blacktriangleright \ (\forall_{x}B)^{g} := \forall_{x}B^{g}.$

Easy:

 $\Gamma \vdash_{c} B$ implies $\Gamma^{g} \vdash B^{g}$.

Geometric implications

Geometric formulas are defined by

$$G, H ::= P \mid \bot \mid G \land H \mid G \lor H \mid \exists_x G.$$

A geometric implication has the form $\forall_{\vec{x}}(G \to H)$.

Every geometric formula can be written in the form

$$\exists_{\vec{x}}(B_1 \vee \cdots \vee B_n)$$

with B_i conjunctions of prime formulas.

Every geometric implication can be written as conjunction of

$$\forall_{\vec{x}}(B \to \exists_{\vec{y}}(B_1 \lor \cdots \lor B_n))$$

with B, B_i conjunctions of prime formulas.

Theorem. (Palmgren 2002). Let Γ be geometric implications, G a geometric formula. $\Gamma \vdash_c G$ implies $\Gamma \vdash \perp \lor G$, hence $\Gamma \vdash_i G$.

$$G^g \leftrightarrow \neg \neg G \tag{1}$$

$$(G \to H) \to G^g \to H^g$$
 (2)

$$G^A \leftrightarrow G \lor A \tag{3}$$

$$(G \to H) \to G^A \to H^A$$
 (4)

$$G^G \leftrightarrow G.$$
 (5)

 $\begin{array}{ll} \Gamma^{g} \vdash G^{g} & \text{Gödel-Gentzen} \\ \Gamma \vdash G^{g} & \text{by (2)} \\ \Gamma \vdash \neg \neg G & \text{by (1)} \\ \Gamma^{G} \vdash (\neg \neg G)^{G} & \text{Dragalin-Friedman, } A := G \\ \Gamma \vdash (\neg \neg G)^{G} & \text{by (4)} \\ (\neg \neg G)^{G} \leftrightarrow ((G^{G} \rightarrow \bot \lor G) \rightarrow \bot \lor G) & \text{for } \neg \neg G = (G \rightarrow \bot) \rightarrow \bot \\ G^{G} \rightarrow G & \text{by (5)} \end{array}$

Corollary. Let Γ be geometric implications, G a geometric formula. If $\Gamma \vdash_c G$ and Γ, G have no \bot , then $\Gamma \vdash G$. Proof.

- Suppose Γ , *G* have no \bot .
- Have proof of G from Γ and instances $\bot \to A_i$ of Efq.
- Replace \perp by $\bigwedge_i A_i$.
- ► This does not affect Γ , G and turns each $\bot \rightarrow A_i$ into a provable formula.

Extended geometric implications (EGI)

are formulas containing \rightarrow only positively. Every geometric implication is an EGI. Examples of non-EGIs:

- A double negation $(A \rightarrow \bot) \rightarrow \bot$, or
- the premise of the Peirce formula $((P \rightarrow Q) \rightarrow P) \rightarrow P$.

Theorem

For EGIs Γ and A, classical derivability of A from Γ implies intuitionistic derivability.

Theorem

For EGIs Γ , A without disjunction, classical derivability of A from Γ implies derivability in minimal logic.

Let A_1, \ldots, A_n be EGIs. We transform a classical proof in long normal form of a prime formula Q from A_1, \ldots, A_n into an intuitionistic proof of Q from the same assumptions.

Lemma

Let A_1, \ldots, A_n be EGIs. Consider a proof in long normal form of an implication-free formula, from the assumptions A_1, \ldots, A_n and stability axioms. Let u be an assumption variable bound by \rightarrow^+ . Then u is bound in a context $\operatorname{Stab}_P \vec{r} S(\lambda_u M^{\perp})$, where $u: \neg P \vec{r}$ and $\lambda_u M^{\perp}$ is a top node of the segment S.

Proof. Consider the path in the proof whose initial node is u. The path must have an order > 0, and the binding position of u must be in the introduction part of a path of possibly smaller order, ending in the side premise of an \rightarrow -rule:

$$\begin{array}{ccc}
 & u \colon A \\
 & \mid N & \mid M \\
 & \underline{A_1 \to B_1} & \underline{A_1} \\
 & \underline{B_1} & \xrightarrow{-} \end{array}$$

Therefore an implication $A \rightarrow B$ is a (strictly) positive subformula of A_1 and hence a negative subformula of $A_1 \rightarrow B_1$. By our assumptions this is only possible if N is a stability axiom applied to some terms \vec{r} . Hence we have the situation

with $u: \neg P\vec{r}$ and $\lambda_u M^{\perp}$ a top node of the segment S.

Barr's theorem

- Recall: our language has \exists, \lor and $\tilde{\exists}, \tilde{\lor}$.
- Let \tilde{A} be obtained from A by replacing \exists, \lor with $\tilde{\exists}, \tilde{\lor}$.

Lemma

 $\vdash_{c} \tilde{A} \leftrightarrow A^{g}.$

Theorem (Barr)

Assume that Γ consists of geometric implications and G is a geometric formula. $\tilde{\Gamma} \vdash_c \tilde{G}$ implies $\Gamma \vdash \bot \lor G$, hence also $\Gamma \vdash_i G$. If Γ , G do not contain \bot , we have $\Gamma \vdash G$.

Proof (Palmgren).

By the lemma $\tilde{\Gamma} \vdash_c \tilde{G}$ is equivalent to $\Gamma^g \vdash_c G^g$. Hence $\Gamma^g \vdash G^g$ by the Gödel-Gentzen translation, since $\vdash (A^g)^g \leftrightarrow A^g$. But Palmgren's proof above began with $\Gamma^g \vdash G^g$.

Variants of Barr's theorem

$$\vdash \exists_{x} A \to \tilde{\exists}_{x} A, \qquad \vdash A \lor B \to A \tilde{\lor} B,$$

but not conversely; this is the reason why $\tilde{\exists}, \tilde{\lor}$ are called "weak". For formulas A possibly with both \exists, \lor and $\tilde{\exists}, \tilde{\lor}$ we define strengthenings A^+ and weakenings A^- :

 $A^{+}: \quad \text{replace in } A \quad \begin{cases} \text{some positive occurrences of } \exists, \lor & \text{by } \exists, \lor, \\ \text{some negative occurrences of } \exists, \lor & \text{by } \exists, \lor, \end{cases}$

l emma

- $\blacktriangleright \vdash A^+ \to A,$ $\blacktriangleright \vdash A \to A^-.$

One proves both parts simultaneously by induction on A.

Theorem

Assume $\tilde{\Gamma} \vdash_{c} P$ where Γ has only positive occurrences of $\rightarrow, \exists, \lor$ and P is a prime formula. Then $\Gamma \vdash_{i} P$.

Proof.

By the Lemma $\Gamma \vdash \tilde{\Gamma}$, so $\Gamma \vdash_c P$, so $\Gamma \vdash_i P$ (theorem above).

Theorem

Assume $\tilde{\Gamma} \vdash_c \tilde{A}$ where

- (i) $A = \exists_{\vec{x}}(B_1 \lor \cdots \lor B_n)$ with $B_i = \forall_{\vec{y}_i} C_i$ and C_i conjunction of prime formulas $\neq \perp$;
- (ii) Γ has only positive occurrences of \rightarrow , \exists and contains neither \lor nor \perp .

Then $\Gamma \vdash A$.

Geometric formulas and geometric implications almost (no \lor, \bot) have the required form. We allow e.g. prenex formulas with prime formulas as kernel for Γ (needed in [Coquand & Lombardi 2006]), and universally quantified prime formulas for the disjunctive B_i 's.

Proof.

Assume $\tilde{\Gamma} \vdash_c \tilde{A}$ with A, Γ satisfying (i), (ii). By the Lemma and (ii) we have $\Gamma \vdash \tilde{\Gamma}$, hence $\Gamma \vdash_c \tilde{A}$. By (i) we can assume that \tilde{A} has the form $\tilde{\exists}_{\vec{x}_1} B_1 \tilde{\vee} \ldots \tilde{\vee} \tilde{\exists}_{\vec{x}_n} B_n$ with $B_i = \forall_{\vec{y}_i} C_i$ and C_i conjunction of prime formulas $\neq \bot$. Therefore

$$\Gamma, \forall_{\vec{x}_1} (\forall_{\vec{y}_1} C_1 \to \bot), \dots, \forall_{\vec{x}_n} (\forall_{\vec{y}_n} C_n \to \bot) \vdash_c \bot.$$

By a theorem above

$$\Gamma, \forall_{\vec{x}_1} (\forall_{\vec{y}_1} C_1 \to \bot), \dots, \forall_{\vec{x}_n} (\forall_{\vec{y}_n} C_n \to \bot) \vdash \bot.$$

Replace \perp by $\exists_{\vec{x_1}} \forall_{\vec{y_1}} C_1 \lor \cdots \lor \exists_{\vec{x_n}} \forall_{\vec{y_n}} C_n$. This leaves Γ intact and makes the final premises provable. Hence $\Gamma \vdash A$ as required.

Examples

- Warning: care is needed when interpreting the results.
- Reason: we have ∃, ∨ as well as ∃, V, and defined Γ ⊢_c A to mean Γ ∪ Stab ⊢ A.
- ▶ The common understanding of classical derivability of *A* from Γ is written here as $\tilde{\Gamma} \vdash_c \tilde{A}$, which is different from Γ $\vdash_c A$.

▶
$$\vdash_c P \tilde{\vee} \neg P$$
, but $\nvdash_c P \vee \neg P$.

⊢_c (∀_xQx → P) → ∃
_x(Qx → P), but
 ∀_c (∀_xQx → P) → ∃_x(Qx → P), for otherwise this formula (an EGI) would be derivable in minimal logic, which it isn't.

Examples

- ▶ However, this caution is not necessary in the \rightarrow , \forall -fragment.
- For instance, ∀_x(∀_yRxy → Qx) → P is derivable in classical logic iff it is derivable in minimal logic.
- ▶ Premises called "generalized Horn clauses", CSL 1991.
- ▶ Related work by Dale Miller: extensions of logic programming.

Examples in algebra

[Coquand & Lombardi 2006] consider a non-Noetherian version of Swan's theorem, written in a first-order way as an implication

$$\operatorname{Hdim} R < n \to \Delta_n(F) = 1 \to \exists_{X,Y} (1 = XFY)$$
(6)

(X a row vector, Y a column vector, F a matrix of fixed size). HdimR < n (the Heitmann dimension of R is < n); for n = 1:

$$\forall_{x} \exists_{a} \forall_{y} \exists_{b} (1 = b(1 - yx(1 - ax))).$$
(7)

(*n* given) is an EGI, as is $\Delta_n(F) = 1$ and $\exists_{X,Y}(1 = XFY)$. Notice: In (6) and its premise (7) we have \exists , i.e., $\operatorname{Hdim} R < 1$ has a constructive meaning. But here the variant of Barr's theorem can be applied: (6) with \exists replaced by $\tilde{\exists}$ is provable in minimal logic. (As reported in Mints' survey [1991], conservativity of classical over intuitionistic logic for such formulas follows from Orevkov [1968]).

Examples in algebra (continued)

[Coquand and Quitté 2011] consider a theorem of Hilbert-Burch: if we have an exact sequence

$$0
ightarrow R^2
ightarrow R^3
ightarrow \langle a_1, a_2, a_3
angle
ightarrow 0,$$

then the elements a_1, a_2, a_3 have a gcd, i.e.,

$$\exists_x(x|a_1 \wedge x|a_2 \wedge x|a_3 \wedge \forall_y(y|a_1 \wedge y|a_2 \wedge y|a_3 \rightarrow y|x)).$$

Not a geometric formula. But: x|y can be axiomatized as a prime formula. Consider rings with a prime formula $R(a_1, a_2, a_3, x, y)$ s.t.

$$R(a_1, a_2, a_3, x, y) \leftrightarrow (y|a_1 \wedge y|a_2 \wedge y|a_3 \rightarrow y|x).$$

Then the conclusion is $\exists_x \forall_y (x | a_1 \land x | a_2 \land x | a_3 \land R(a_1, a_2, a_3, x, y))$, and hence again the variant of Barr's theorem applies.

Necessity of the conditions

Clearly the (left) nesting of implications must be restricted, since

$$\blacktriangleright \vdash_c \neg \neg P \rightarrow P \text{ but } \not\vdash_i \neg \neg P \rightarrow P$$

$$\blacktriangleright \vdash_{c} ((P \to Q) \to P) \to P \text{ but } \not\vdash ((P \to Q) \to P) \to P.$$

We cannot allow implications in the conclusion. Kreisel's example:

• Let *R* be a primitive recursive such that $\exists_z Rxz$ is undecidable.

►
$$\vdash_c \tilde{\exists}_y \forall_z (Rxz \rightarrow Rxy)$$
 (this holds even for \vdash).

But there is no computable f s.t. ∀_{x,z}(Rxz → R(x, f(x))), for then ∃_zRxz would be decidable: it is true iff R(x, f(x)) holds.

• Hence
$$earrow \exists_y \forall_z (Rxz \rightarrow Rxy).$$

Conclusion

► An uncommon approach to logic: minimal logic +

 $\tilde{\exists}, \tilde{\lor}$ (weak, classical) and \exists, \lor (strong, constructive).

- The view of classical logic as minimal logic + stability allows to prove new conservativity results (for EGIs).
- Corollaries: useful variants of Barr's theorem.

References

- T. Coquand and H. Lombardi, A logical approach to abstract algebra. Math. Struct. in Comp. Science 16, 2006.
- T. Coquand and C. Quitté, Constructive finite free resolutions. In preparation, 2011.
- V.P. Orevkov, On Glivenko sequent classes. Proc. Steklov Inst. 98, 1968.
- E. Palmgren, An intuitionistic axiomatization of real closed fields. Math. Log. Quart. 48, 2002.
- ► H.S., Minimal from classical proofs. Proc. CSL 1991.
- H.S. and S.S. Wainer, Proofs and Computations. Perspectives in Mathematical Logic, Cambridge UP. To appear, 2011.