Intro 0 Model 000000000 TCF 000000000 Realizability

Conclusion O

A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Gothenburg, 2. September 2022

TCF 000000000

A theory of computable functionals (TCF)

Similar to $\mathrm{HA}^\omega,$ but

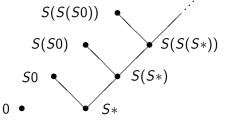
Intro

- add inductively and coinductively defined predicates,
- distinguish computationally relevant (c.r.) and non-computational (n.c.) predicates,
- add realizability predicates (internal "meta"-step),
- allow partial functionals, defined by equations (possibly non-terminating, like corecursion),
- minimal logic: only \rightarrow , \forall primitive. \lor , \exists , \land inductively defined.

Minlog implements TCF.

- TCF has an intended model: partial continuous functionals.
- Defined via information systems (Scott). Has function spaces.
- It consists of ideals (infinite) approximated by tokens (finite).
- Ideals are consistent and deductively closed sets of tokens.
- Tokens are constructor trees with possibly * at some leaves.
- Examples: natural numbers ℕ, binary trees 𝒱.

Intro	Model	TCF	Realizability	Conclusion
O	o●oooooo	00000000	00000000	O



- $\{S0, S(S*)\}$ is inconsistent.
- $\{S*, S(S*)\}$ is an ideal.
- $\{S*, S(S*), S(S0)\}$ is an ideal ("total").
- $\{S*, S(S*), S(S(S*)), \dots\}$ is an infinite ideal ("cototal").

An ideal x in a closed base type

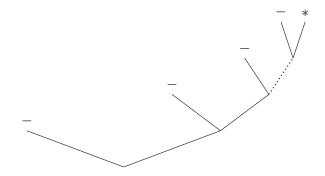
- is cototal if for each of its tokens t(*) with a distinguished occurrence of * there is another token of the form t(C*) in x,
- total if it is cototal and finite.

D	Model	TCF	Realizability	Conclusion
	00000000	00000000	00000000	0

The base type \mathbb{Y} (binary trees) is given by the constructors

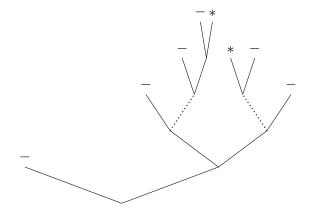
 $\label{eq:constraint} \begin{array}{ll} -\colon \mathbb{Y} & \mbox{(leaf)}, \\ \mbox{C}\colon \mathbb{Y} \to \mathbb{Y} \to \mathbb{Y} & \mbox{(branch)}. \end{array}$

Example of a cototal ideal in $\mathbb {Y}$

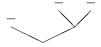


Intro	Model	TCF	Realizability	Conclusion
0	000000000	00000000	00000000	0

Another example of a cototal ideal in $\ensuremath{\mathbb{Y}}$



Example of a total ideal in \mathbb{Y} : deductive closure of



Example of a neither total nor cototal ideal: deductive closure of

Totality $\mathcal{T}_{\mathbb{N}}$ is inductively defined as the least fixed point (lfp) of the clauses

$$0 \in T_{\mathbb{N}}, \qquad n \in T_{\mathbb{N}} \to Sn \in T_{\mathbb{N}}.$$

Cototality ${}^{co}T_{\mathbb{N}}$ is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$n \in {}^{\mathrm{co}}T_{\mathbb{N}} \to n \equiv 0 \lor \exists_{n'} (n' \in {}^{\mathrm{co}}T_{\mathbb{N}} \land n \equiv Sn').$$

Similarity $\sim_{\mathbb{Y}}$ is a binary variant of totality. It is inductively defined as the least fixed point (lfp) of the clauses

$$\begin{array}{l} -\sim_{\mathbb{Y}} -, \\ t_1 \sim_{\mathbb{Y}} t_1' \to t_2 \sim_{\mathbb{Y}} t_2' \to \mathrm{C} t_1 t_2 \sim_{\mathbb{Y}} \mathrm{C} t_1' t_2'. \end{array}$$

Bisimilarity $\approx_{\mathbb{Y}}$ is a binary variant of cototality. It is coinductively defined as the greatest fixed point (gfp) of its closure axiom

$$t \approx_{\mathbb{Y}} t' \to ((t \equiv -) \land (t' \equiv -)) \lor$$
$$\exists_{t_1, t_2, t'_1, t'_2} (t_1 \approx_{\mathbb{Y}} t'_1 \land t_2 \approx_{\mathbb{Y}} t'_2 \land t \equiv Ct_1 t_2 \land t' \equiv Ct'_1 t'_2)$$

Lemma

For every closed base type bisimilarity implies Leibniz equality.

- Example: \mathbb{Y} . Let *a* range over tokens, *t* over ideals.
- By induction on the height of extended tokens a* we prove

$$\forall_{a^*,t,t'}(tpprox_{\mathbb{Y}}t'
ightarrow a^*\in t
ightarrow a^*\in t').$$

- It suffices to consider the case $Ca_1^*a_2^*$.
- From $t \approx t'$ by closure we have ideals t_1, t_2, t'_1, t'_2 with

$$t_1 \approx t_1' \wedge t_2 \approx t_2' \wedge t \equiv \mathrm{C} t_1 t_2 \wedge t' \equiv \mathrm{C} t_1' t_2'.$$

• Then $a_i^* \in t_i$, and by IH $a_i^* \in t'_i$. Thus $Ca_1^*a_2^* \in t'$.

Model 00000000

TCF •00000000

Axioms for (co)inductive predicates I^{\pm} , ${}^{co}I^{\pm}$. Examples:

• Even. The introduction axioms (or clauses) are $\operatorname{Even}_{0,1}^+$:

```
0 \in \text{Even}, \quad n \in \text{Even} \to S(Sn) \in \text{Even}
```

and the elimination axiom is $Even^-$:

$$0 \in X \to \forall_n (n \in \operatorname{Even} \to n \in X \to S(Sn) \in X) \to \operatorname{Even} \subseteq X.$$

"Every competitor X satifying the clauses is above X."

- Similar: T_{ι}^{\pm} , ${}^{\mathrm{co}}T_{\iota}^{\pm}$, \sim_{ι}^{\pm} and \approx_{ι}^{\pm}
- The n.c. Leibniz equality \equiv is defined by

$$\equiv^+ : x^{\tau} \equiv x^{\tau} \qquad \equiv^- : x \equiv y \to \forall_x X x x \to X x y$$

Intro 0 Model 000000000 TCF 000000000 Realizability

Conclusion O

We can deduce the property Leibniz used as a definition. Lemma (Compatibility of EqD)

$$x \equiv y \to A(x) \to A(y).$$

Proof: By the elimination axiom with $X := \{x, y \mid A(x) \rightarrow A(y)\}.$

Using compatibility of \equiv one proves symmetry and transitivity. Define falsity by $\mathbf{F} := (\mathrm{ff} \equiv \mathrm{tt})$.

Theorem (Ex-falso-quodlibet)

We can derive $\mathbf{F} \to A$ from assumptions $\operatorname{Ef}_{\mathbf{Y}} : \forall_{\vec{x}} (\mathbf{F} \to Y\vec{x})$ for predicate variables Y strictly positive in A, and $\operatorname{Ef}_I : \forall_{\vec{x}} (\mathbf{F} \to I\vec{x})$ for inductive predicates I without a nullary clause.

Intro	Model	TCF	Realizability	Conclusion
O	00000000	00●000000	00000000	O

Bisimilarity axioms:

For every closed base type bisimilarity implies Leibniz equality.

For closed base types ι it follows that

$$t \sim_{\iota} t' \leftrightarrow t, t' \in T_{\iota} \wedge t \equiv t', t \approx_{\iota} t' \leftrightarrow t, t' \in {}^{\mathrm{co}} T_{\iota} \wedge t \equiv t'.$$

This is helpful because it gives us a tool (induction, coinduction) to prove equalities $t \equiv t'$, which otherwise would be difficult.

Intro 0 Model 000000000 TCF 000000000 Realizability

Conclusion O

Corollary

- $t \sim_{\iota} t \leftrightarrow t \in T_{\iota},$ $t \approx_{\iota} t \leftrightarrow t \in {}^{\mathrm{co}} T_{\iota},$
- \sim_{ι} is an equivalence relation on T_{ι} , \approx_{ι} is an equivalence relation on ${}^{co}T_{\iota}$.

Intro	Model	TCF	Realizability	Conclusion
0	00000000	00000000	00000000	0

Definition (Pointwise equality¹)

$$(x \doteq_{\iota} y) := (x \approx_{\iota} y)$$

 $(f \doteq_{\tau \to \sigma} g) := \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} gy).$

Definition (Extensionality)

$$(x \in \operatorname{Ext}_{\tau}) := (x \doteq_{\tau} x).$$

¹Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and Gaisi Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

Example of a non-extensional functional:

- Define f, g of type $\mathbb{N} \to \mathbb{N}$ by the computation rules fn = 0and g0 = 0, g(Sn) = gn.
- Then $f \perp_{\mathbb{N}} = 0$ by the computation rules for f.
- For g⊥_N no computation rule fits, but by the definition of [[λ_xM]] we have that [[g⊥_N]] is the empty ideal [[⊥_N]].
- Hence $f \doteq g$, i.e., $\forall_{n,m} (n \doteq_{\mathbb{N}} m \rightarrow fn \doteq_{\mathbb{N}} gm)$, since $n \doteq_{\mathbb{N}} m$ implies $n \in T_{\mathbb{N}}$ and $n \equiv m$.
- Therefore the functional F defined by Fh = h⊥_N maps the pointwise equal f, g to different values.

ntro	Model	TCF	Realizability	Conclusion
)	00000000	000000000	00000000	0

Lemma

 $\operatorname{Ext}_{\tau}$ and $\operatorname{co} T_{\tau}$ are equivalent for closed types of level ≤ 1 .

Proof.

For closed base types this has been proved above. In case of level 1 we use induction on the height of the type. Let $\tau \to \sigma$ be a closed type of level 1. The following are equivalent.

$$\begin{split} f &\in \operatorname{Ext}_{\tau \to \sigma} \\ f &\doteq_{\tau \to \sigma} f \\ \forall_{x,y} (x \doteq_{\tau} y \to fx \doteq_{\sigma} fy) \\ \forall_{x \in {}^{\operatorname{co}} T_{\tau}} (fx \doteq_{\sigma} fx) & \text{by the Corollary, since } \operatorname{lev}(\tau) = 0 \\ \forall_{x \in {}^{\operatorname{co}} T_{\tau}} (fx \in \operatorname{Ext}_{\sigma}). \end{split}$$

By IH the final formula is equivalent to $f \in {}^{\mathrm{co}}T_{\tau \to \sigma}$.

Intro	Model	TCF	Realizability	Conclusion
O	00000000	0000000●0	00000000	O

For arbitrary closed types the relation \doteq_{τ} is a "partial equivalence relation", which means the following.

Lemma

For every closed type τ the relation \doteq_{τ} is an equivalence relation on $\operatorname{Ext}_{\tau}$.

Lemma (Compatibility of terms)

For every term $t(\vec{x\,})$ with extensional constants and free variables among \vec{x} we have

$$\vec{x} \doteq_{\vec{
ho}} \vec{y}
ightarrow t(\vec{x}) \doteq_{\tau} t(\vec{y}).$$

Lemma (Extensionality of terms)

For every term $t(\vec{x}\,)$ with extensional constants and free variables among \vec{x} we have

 $\vec{x} \in \operatorname{Ext}_{\vec{
ho}} \to t(\vec{x}) \in \operatorname{Ext}_{\tau}.$

Need "realizability extensions" of c.r. predicates and formulas:

- Assume that we have a global assignment giving for every c.r. predicate variable X of arity p
 ρ an n.c. predicate variable X^r of arity (p
 ρ, ξ) where ξ is the type variable associated with X.
- We introduce *I*^{**r**}/^{co}*I*^{**r**} for c.r. (co)inductive predicates *I*/^{co}*I*, e.g.,

Even^r00 Even^r $nm \rightarrow \text{Even}^{r}(S(Sn))(Sm)$.

- A predicate or formula C is r-free if it does not contain any of these X^r, I^r or ^{co}I^r.
- A derivation *M* is **r**-free if it contains **r**-free formulas only.

Definition (C^{r} for **r**-free c.r. formulas C) Let $z \mathbf{r} C$ mean $C^{r}z$.

$$z \mathbf{r} P \vec{t} := P^{\mathbf{r}} \vec{t} z,$$

$$z \mathbf{r} (A \to B) := \begin{cases} \forall_w (w \mathbf{r} A \to zw \mathbf{r} B) & \text{if } A \text{ is c.r.} \\ A \to z \mathbf{r} B & \text{if } A \text{ is n.c.} \end{cases}$$

$$z \mathbf{r} \forall_x A := \forall_x (z \mathbf{r} A).$$

ntro Model TCF Realizability Conclusion

Definition (Extracted term for an \mathbf{r} -free proof M of a c.r. A)

$$\begin{aligned} \operatorname{et}(u^{A}) &:= z_{u}^{\tau(A)} \quad (z_{u}^{\tau(A)} \text{ uniquely associated to } u^{A}), \\ \operatorname{et}((\lambda_{u^{A}}M^{B})^{A \to B}) &:= \begin{cases} \lambda_{z_{u}}\operatorname{et}(M) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((M^{A \to B}N^{A})^{B}) &:= \begin{cases} \operatorname{et}(M)\operatorname{et}(N) & \text{if } A \text{ is c.r.} \\ \operatorname{et}(M) & \text{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}(A) & \operatorname{if } A \text{ is n.c.} \end{cases} \\ \operatorname{et}((\lambda_{x}M^{A})^{\forall_{x}A}) &:= \operatorname{et}(M), \\ \operatorname{et}((M^{\forall_{x}A(x)}t)^{A(t)}) &:= \operatorname{et}(M). \end{aligned}$$

It remains to define extracted terms for the axioms. Consider a (c.r.) inductively defined predicate *I*.

- et(I_i⁺) := C_i and et(I⁻) := R, where the constructor C_i and the recursion operator R refer to ι_I associated with I.
- et(^{co}*l*⁻) := D and et(^{co}*l*⁺_i) := ^{co}*R*, where the destructor D and the corecursion operator ^{co}*R* refer to the *ι*₁.

 Model
 TCF
 Realizability

 000000000
 000000000
 000000000

Conclusion O

Let ${\it I}$ be an inductive predicate and $\iota_{\it I}$ its associated algebra. One can show that

- every constructor of ι_I is extensional w.r.t. its clause I_i^+ ,
- $\mathcal{R}^{\alpha}_{\iota_{I}}$ is extensional w.r.t. the least-fixed-point axiom I^{-} ,
- the destructor of ι_I is extensional w.r.t. the closure axiom ${}^{\rm co}\!I^-,$ and

• ${}^{co}\mathcal{R}^{\alpha}_{\iota_I}$ is extensional w.r.t. the greatest-fixed-point axiom ${}^{co}I^+$. Since the term $\operatorname{et}(M)$ extracted from a closed proof M of a c.r. formula A is built from these constants by abstraction and application, by the lemma on extensionality of terms we can conclude that $\operatorname{et}(M)$ is extensional w.r.t. A.

Theorem (Soundness)

Let *M* be an **r**-free derivation of a formula *A* from assumptions $u_i : C_i$ (i < n). Then we can derive

$$\begin{cases} et(M) \mathbf{r} A & if A is c.r. \\ A & if A is n.c. \end{cases}$$

from assumptions

$$\begin{cases} z_{u_i} \mathbf{r} C_i & \text{if } C_i \text{ is } c.r. \\ C_i & \text{if } C_i \text{ is } n.c. \end{cases}$$

We express

- Kolmogorov's view of "formulas as problems"²
- Feferman's dictum "to assert is to realize"³

by invariance axioms:

For \mathbf{r} -free c.r. formulas A we require as axioms

InvAll_A: $\forall_z (z \mathbf{r} A \rightarrow A)$. InvEx_A: $A \rightarrow \exists_z (z \mathbf{r} A)$.

 ²Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
 ³Constructive theories of functions and classes, Logic Colloquium 78, p.208

Invariance axioms used in the proof of soundness (1):

Case $(\lambda_{u^A} M^B)^{A \to B}$ with *B* n.c. We need a derivation of $A \to B$. Subcase *A* c.r. By IH we have a derivation of *B* from *z* **r** *A*. Using the invariance axiom $A \to \exists_z (z \mathbf{r} A)$ we get the required derivation of *B* from *A*:

$$\frac{A \to \exists_z(z \mathbf{r} A) \qquad A}{\exists_z(z \mathbf{r} A)} \qquad \begin{bmatrix} z \mathbf{r} A \end{bmatrix} \\ H \\ B \\ \exists_z(z \mathbf{r} A) \\ B \end{bmatrix}^{-1}$$

Invariance axioms used in the proof of soundness (2):

Case $(M^{A\to B}N^A)^B$ with B n.c. Goal: find a derivation of B. Subcase A c.r. By IH we have derivations of $A \to B$ and of $\operatorname{et}(N)$ **r** A. From the invariance axiom $\forall_z(z \mathbf{r} A \to A)$ we obtain the required derivation of B by \rightarrow^- from the derivation of $A \to B$ and

$$\frac{\forall_z (z \mathbf{r} A \to A) \quad \text{et}(N)}{\underbrace{\text{et}(N) \mathbf{r} A \to A} \quad \text{et}(N) \mathbf{r} A}_A$$

- In TCF the computational content of a proof M is represented by an extracted term et(M) in the language of TCF.
- The Soundness theorem provides a formal vertication in TCF that the extracted term realizes the formula ("specification"). This is automated in Minlog.
- Since extraction ignores n.c. parts of the proof, et(M) is much shorter than M.
- For efficiency, in a second step one can translate the extracted term to a functional programming language. Minlog does this for Scheme and Haskell.

Question: ${\rm TCF}$ has an internal "meta"-theory, via realizability. Any relation to Truth theories?