
Intro Model TCF Realizability Conclusion

A theory of computable functionals

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

Gothenburg, 2. September 2022

1 / 30



Intro Model TCF Realizability Conclusion

A theory of computable functionals (TCF)

Similar to HAω, but

• add inductively and coinductively defined predicates,

• distinguish computationally relevant (c.r.) and
non-computational (n.c.) predicates,

• add realizability predicates (internal “meta”-step),

• allow partial functionals, defined by equations (possibly
non-terminating, like corecursion),

• minimal logic: only →, ∀ primitive. ∨, ∃, ∧ inductively
defined.

Minlog implements TCF.

2 / 30



Intro Model TCF Realizability Conclusion

• TCF has an intended model: partial continuous functionals.

• Defined via information systems (Scott). Has function spaces.

• It consists of ideals (infinite) approximated by tokens (finite).

• Ideals are consistent and deductively closed sets of tokens.

• Tokens are constructor trees with possibly ∗ at some leaves.

• Examples: natural numbers N, binary trees Y.

3 / 30



Intro Model TCF Realizability Conclusion

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

• {S0, S(S∗)} is inconsistent.

• {S∗, S(S∗)} is an ideal.

• {S∗,S(S∗),S(S0)} is an ideal (“total”).

• {S∗, S(S∗),S(S(S∗)), . . . } is an infinite ideal (“cototal”).

4 / 30



Intro Model TCF Realizability Conclusion

An ideal x in a closed base type

• is cototal if for each of its tokens t(∗) with a distinguished
occurrence of ∗ there is another token of the form t(C~∗ ) in x ,

• total if it is cototal and finite.

5 / 30



Intro Model TCF Realizability Conclusion

The base type Y (binary trees) is given by the constructors

− : Y (leaf),

C : Y→ Y→ Y (branch).

Example of a cototal ideal in Y

−

−

−

− ∗

6 / 30



Intro Model TCF Realizability Conclusion

Another example of a cototal ideal in Y

−

− −

− ∗ −

− ∗

7 / 30



Intro Model TCF Realizability Conclusion

Example of a total ideal in Y: deductive closure of

−
− −

HHH��
�
@@��

Example of a neither total nor cototal ideal: deductive closure of

−
∗ −

HHH��
�
@@��

8 / 30



Intro Model TCF Realizability Conclusion

Totality TN is inductively defined as the least fixed point (lfp) of
the clauses

0 ∈ TN, n ∈ TN → Sn ∈ TN.

Cototality coTN is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

n ∈ coTN → n ≡ 0 ∨ ∃n′(n′ ∈ coTN ∧ n ≡ Sn′).

9 / 30



Intro Model TCF Realizability Conclusion

Similarity ∼Y is a binary variant of totality. It is inductively defined
as the least fixed point (lfp) of the clauses

− ∼Y −,
t1 ∼Y t ′1 → t2 ∼Y t ′2 → Ct1t2 ∼Y Ct ′1t

′
2.

Bisimilarity ≈Y is a binary variant of cototality. It is coinductively
defined as the greatest fixed point (gfp) of its closure axiom

t ≈Y t ′ → ((t ≡ −) ∧ (t ′ ≡ −)) ∨
∃t1,t2,t′1,t′2(t1 ≈Y t ′1 ∧ t2 ≈Y t ′2 ∧ t ≡ Ct1t2 ∧ t ′ ≡ Ct ′1t

′
2)

10 / 30



Intro Model TCF Realizability Conclusion

Lemma
For every closed base type bisimilarity implies Leibniz equality.

• Example: Y. Let a range over tokens, t over ideals.

• By induction on the height of extended tokens a∗ we prove

∀a∗,t,t′(t ≈Y t ′ → a∗ ∈ t → a∗ ∈ t ′).

• It suffices to consider the case Ca∗1a
∗
2.

• From t ≈ t ′ by closure we have ideals t1, t2, t
′
1, t
′
2 with

t1 ≈ t ′1 ∧ t2 ≈ t ′2 ∧ t ≡ Ct1t2 ∧ t ′ ≡ Ct ′1t
′
2.

• Then a∗i ∈ ti , and by IH a∗i ∈ t ′i . Thus Ca∗1a
∗
2 ∈ t ′.

11 / 30



Intro Model TCF Realizability Conclusion

Axioms for (co)inductive predicates I±, coI±. Examples:

• Even. The introduction axioms (or clauses) are Even+0,1:

0 ∈ Even, n ∈ Even→ S(Sn) ∈ Even

and the elimination axiom is Even−:

0∈X → ∀n(n ∈ Even→ n∈X → S(Sn)∈X )→ Even ⊆ X .

“Every competitor X satifying the clauses is above X .”

• Similar: T±ι , coT±ι , ∼±ι and ≈±ι
• The n.c. Leibniz equality ≡ is defined by

≡+ : xτ ≡ xτ ≡− : x ≡ y → ∀xXxx → Xxy

12 / 30



Intro Model TCF Realizability Conclusion

We can deduce the property Leibniz used as a definition.

Lemma (Compatibility of EqD)

x ≡ y → A(x)→ A(y).

Proof: By the elimination axiom with
X := { x , y | A(x)→ A(y) }.

Using compatibility of ≡ one proves symmetry and transitivity.
Define falsity by F := (ff ≡ tt).

Theorem (Ex-falso-quodlibet)

We can derive F→ A from assumptions EfY : ∀~x(F→ Y ~x ) for
predicate variables Y strictly positive in A, and Ef I : ∀~x(F→ I~x )
for inductive predicates I without a nullary clause.

13 / 30



Intro Model TCF Realizability Conclusion

Bisimilarity axioms:

For every closed base type bisimilarity implies Leibniz equality.

Justification: holds in the intended model.

For closed base types ι it follows that

t ∼ι t ′ ↔ t, t ′ ∈ Tι ∧ t ≡ t ′,

t ≈ι t ′ ↔ t, t ′ ∈ coTι ∧ t ≡ t ′.

This is helpful because it gives us a tool (induction, coinduction)
to prove equalities t ≡ t ′, which otherwise would be difficult.

14 / 30



Intro Model TCF Realizability Conclusion

Corollary

t ∼ι t ↔ t ∈ Tι,

t ≈ι t ↔ t ∈ coTι,

∼ι is an equivalence relation on Tι,

≈ι is an equivalence relation on coTι.

15 / 30



Intro Model TCF Realizability Conclusion

Definition (Pointwise equality1)

(x
.

=ι y) := (x ≈ι y)

(f
.

=τ→σ g) := ∀x ,y (x
.

=τ y → fx
.

=σ gy).

Definition (Extensionality)

(x ∈ Extτ ) := (x
.

=τ x).

1Robin Gandy, On the axiom of extensionality – Part I, JSL 1956 and Gaisi
Takeuti, On a generalized logic calculus, Jap. J. Math. 1953

16 / 30



Intro Model TCF Realizability Conclusion

Example of a non-extensional functional:

• Define f , g of type N→ N by the computation rules fn = 0
and g0 = 0, g(Sn) = gn.

• Then f⊥N = 0 by the computation rules for f .

• For g⊥N no computation rule fits, but by the definition of
[[λ~xM]] we have that [[g⊥N]] is the empty ideal [[⊥N]].

• Hence f
.

= g , i.e., ∀n,m(n
.

=N m→ fn
.

=N gm), since n
.

=N m
implies n ∈ TN and n ≡ m.

• Therefore the functional F defined by Fh = h⊥N maps the
pointwise equal f , g to different values.

17 / 30



Intro Model TCF Realizability Conclusion

Lemma
Extτ and coTτ are equivalent for closed types of level ≤1.

Proof.
For closed base types this has been proved above. In case of level 1
we use induction on the height of the type. Let τ → σ be a closed
type of level 1. The following are equivalent.

f ∈ Extτ→σ

f
.

=τ→σ f

∀x ,y (x
.

=τ y → fx
.

=σ fy)

∀x∈coTτ (fx
.

=σ fx) by the Corollary, since lev(τ) = 0

∀x∈coTτ (fx ∈ Extσ).

By IH the final formula is equivalent to f ∈ coTτ→σ.

18 / 30



Intro Model TCF Realizability Conclusion

For arbitrary closed types the relation
.

=τ is a “partial equivalence
relation”, which means the following.

Lemma
For every closed type τ the relation

.
=τ is an equivalence relation

on Extτ .

Lemma (Compatibility of terms)

For every term t(~x ) with extensional constants and free variables
among ~x we have

~x
.

=~ρ ~y → t(~x )
.

=τ t(~y ).

19 / 30



Intro Model TCF Realizability Conclusion

Lemma (Extensionality of terms)

For every term t(~x ) with extensional constants and free variables
among ~x we have

~x ∈ Ext~ρ → t(~x ) ∈ Extτ .

20 / 30



Intro Model TCF Realizability Conclusion

Need “realizability extensions” of c.r. predicates and formulas:

• Assume that we have a global assignment giving for every c.r.
predicate variable X of arity ~ρ an n.c. predicate variable X r of
arity (~ρ, ξ) where ξ is the type variable associated with X .

• We introduce I r/coI r for c.r. (co)inductive predicates I/coI ,
e.g.,

Evenr00 Evenrnm→ Evenr(S(Sn))(Sm).

• A predicate or formula C is r-free if it does not contain any of
these X r, I r or coI r.

• A derivation M is r-free if it contains r-free formulas only.

21 / 30



Intro Model TCF Realizability Conclusion

Definition (C r for r-free c.r. formulas C )

Let z r C mean C rz .

z r P~t := P r~tz ,

z r (A→ B) :=

{
∀w (w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A).

22 / 30



Intro Model TCF Realizability Conclusion

Definition (Extracted term for an r-free proof M of a c.r. A)

et(uA) := z
τ(A)
u (z

τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

23 / 30



Intro Model TCF Realizability Conclusion

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate I .

• et(I+i ) := Ci and et(I−) := R, where the constructor Ci and
the recursion operator R refer to ιI associated with I .

• et(coI−) := D and et(coI+i ) := coR, where the destructor D
and the corecursion operator coR refer to the ιI .

24 / 30



Intro Model TCF Realizability Conclusion

Let I be an inductive predicate and ιI its associated algebra. One
can show that

• every constructor of ιI is extensional w.r.t. its clause I+i ,

• RαιI is extensional w.r.t. the least-fixed-point axiom I−,

• the destructor of ιI is extensional w.r.t. the closure axiom
coI−, and

• coRαιI is extensional w.r.t. the greatest-fixed-point axiom coI+.

Since the term et(M) extracted from a closed proof M of a c.r.
formula A is built from these constants by abstraction and
application, by the lemma on extensionality of terms we can
conclude that et(M) is extensional w.r.t. A.

25 / 30



Intro Model TCF Realizability Conclusion

Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui : Ci ( i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

26 / 30



Intro Model TCF Realizability Conclusion

We express

• Kolmogorov’s view of “formulas as problems”2

• Feferman’s dictum “to assert is to realize”3

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAllA : ∀z(z r A→ A).

InvExA : A→ ∃z(z r A).

2Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932
3Constructive theories of functions and classes, Logic Colloquium 78, p.208

27 / 30



Intro Model TCF Realizability Conclusion

Invariance axioms used in the proof of soundness (1):

Case (λuAM
B)A→B with B n.c. We need a derivation of A→ B.

Subcase A c.r. By IH we have a derivation of B from z r A. Using
the invariance axiom A→ ∃z(z r A) we get the required derivation
of B from A:

A→ ∃z(z r A) A

∃z(z r A)

[z r A]

| IH

B
∃−B

28 / 30



Intro Model TCF Realizability Conclusion

Invariance axioms used in the proof of soundness (2):

Case (MA→BNA)B with B n.c. Goal: find a derivation of B.
Subcase A c.r. By IH we have derivations of A→ B and of
et(N) r A. From the invariance axiom ∀z(z r A→ A) we obtain the
required derivation of B by →− from the derivation of A→ B and

∀z(z r A→ A) et(N)

et(N) r A→ A

| IH

et(N) r A

A

29 / 30



Intro Model TCF Realizability Conclusion

Conclusion

• In TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.

• The Soundness theorem provides a formal verfication in TCF
that the extracted term realizes the formula (“specification”).
This is automated in Minlog.

• Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.

• For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.

Question: TCF has an internal “meta”-theory, via realizability.
Any relation to Truth theories?

30 / 30


	Intro
	Model
	TCF
	Realizability
	Conclusion

