Intro
o]

Model TCF Realizability Conclusion
000000000 000000000 000000000 o]

A theory of computable functionals

Helmut Schwichtenberg
Mathematisches Institut, LMU, Miinchen

Gothenburg, 2. September 2022

1/30



Intro

A theory of computable functionals (TCF)

Similar to HAY, but
® add inductively and coinductively defined predicates,

e distinguish computationally relevant (c.r.) and
non-computational (n.c.) predicates,

® add realizability predicates (internal “meta”-step),

® allow partial functionals, defined by equations (possibly
non-terminating, like corecursion),

® minimal logic: only —, V primitive. V, 3, A inductively
defined.

Minlog implements TCF.

2/30



Intro Model TCF Realizability Conclusion
o] 000000000 000000000 000000000 o]

TCF has an intended model: partial continuous functionals.

Defined via information systems (Scott). Has function spaces.

® |t consists of ideals (infinite) approximated by tokens (finite).

Ideals are consistent and deductively closed sets of tokens.
® Tokens are constructor trees with possibly * at some leaves.

® Examples: natural numbers N, binary trees Y.

3/30



OOOOOOOOO

e {50,5(5%)} is inconsistent.

e {Sx,5(5%)} is an ideal.

e {S5%,5(5%),5(50)} is an ideal (“total”).

e {Sx,5(5%),5(5(5%)),...} is an infinite ideal (“cototal”).

4/30



Model
00®000000

An ideal x in a closed base type

® is cototal if for each of its tokens t(x) with a distinguished
occurrence of x there is another token of the form ¢(Cx) in x,

e total if it is cototal and finite.

5/30



Model
000800000

The base type Y (binary trees) is given by the constructors

—:Y (leaf),
C:Y—=Y—=Y (branch).

Example of a cototal ideal in Y

- *

-V

6/30



Intro Model TCF Realizability Conclusion
o] 0000e0000 000000000 000000000 o]

Another example of a cototal ideal in Y

7/30



Model
000008000

Example of a total ideal in Y: deductive closure of

Example of a neither total nor cototal ideal: deductive closure of

* —

~

8/30



Model
000000800

Totality Ty is inductively defined as the least fixed point (Ifp) of
the clauses

0e Ty, ne Ty — Sne Ty.

Cototality Ty is coinductively defined as the greatest fixed point
(gfp) of its closure axiom

ne“°Tn—n=0Vv3,(ne“°TyAn=Sn).

9/30



Model
000000000

Similarity ~v is a binary variant of totality. It is inductively defined
as the least fixed point (Ifp) of the clauses

- ~Y
t1 ~y t; — ta ~y th — Ctity ~y Ctith.
Bisimilarity =y is a binary variant of cototality. It is coinductively
defined as the greatest fixed point (gfp) of its closure axiom
vyt = ((t=-)A(F=-))V
o byt ey i A=y At =Ctitg At = Ctity)

10/30



Model
00000000e

Lemma
For every closed base type bisimilarity implies Leibniz equality.

® Example: Y. Let a range over tokens, t over ideals.

® By induction on the height of extended tokens a* we prove

Vorp(teyt 5 a et —a* et).

It suffices to consider the case Cajaj.

® From t &~ t’ by closure we have ideals ti, to, t7, t} with

ti~ti At~ thAt=Ctito At = Ctith.

Then af € t;, and by IH af € t/. Thus Cajaj} € t'.

11/30



TCF
©00000000

Axioms for (co)inductive predicates I+, /. Examples:
® Even. The introduction axioms (or clauses) are Eveng ;:
0 € Even, n € Even — 5(5n) € Even
and the elimination axiom is Even™:

0€X — Vp(n € Even — neX — 5(5n)eX) — Even C X.

“Every competitor X satifying the clauses is above X.”

e Similar: T, ©T*, ~F and ~F

® The n.c. Leibniz equality = is defined by

=" x"=x = i x=y = YV Xxx = Xxy

12/30



TCF
Oe0000000
We can deduce the property Leibniz used as a definition.

Lemma (Compatibility of EqD)

x=y — Ax) = A(y).

Proof: By the elimination axiom with

X :={xy[Ax) = Aly) }.

Using compatibility of = one proves symmetry and transitivity.
Define falsity by F := (ff = tt).

Theorem (Ex-falso-quodlibet)

We can derive F — A from assumptions Efy : V(F — YX) for
predicate variables Y strictly positive in A, and Ef;: Vz(F — IX)
for inductive predicates | without a nullary clause.

13/30



TCF
00@000000

Bisimilarity axioms:
For every closed base type bisimilarity implies Leibniz equality.

Justification: holds in the intended model.

For closed base types ¢ it follows that

t Uttt eTAt=E,
~t ettt eCT, At=t.

This is helpful because it gives us a tool (induction, coinduction)
to prove equalities t = t’, which otherwise would be difficult.

14 /30



Intro Model TCF Realizability Conclusion
o] 000000000 000e00000 000000000 [e]

Corollary

t~, tte T,
t~, tte T,

~, is an equivalence relation on T,,

=2, IS an equivalence relation on °T,.

15/30



Intro Model TCF Realizability Conclusion
o] 000000000 000080000 000000000 o]

Definition (Pointwise equality’)

(x=1y)i=(x=y)
(f i’?’—>0’ g) = VX,}’(X iT y—= fx io gy)'

Definition (Extensionality)

(x € Ext;) := (x =7 x).

!Robin Gandy, On the axiom of extensionality — Part |, JSL 1956 and Gaisi
Takeuti, On a generalized logic calculus, Jap. J. Math. 1953
16 /30



TCF
00000@000

Example of a non-extensional functional:

Define f, g of type N — N by the computation rules fn =0
and g0 =0, g(Sn) = gn.

Then f 1Ly = 0 by the computation rules for f.

For gL N no computation rule fits, but by the definition of
[AxM] we have that [gLn] is the empty ideal [Ln]-

Hence f = g, i.e., Vo m(n =N m — fn =N gm), since n =y m
implies n € Ty and n = m.

Therefore the functional F defined by Fh = h1ly maps the
pointwise equal f, g to different values.

17/30



TCF
000000000

Lemma
Ext, and ®° T, are equivalent for closed types of level <1.

Proof.

For closed base types this has been proved above. In case of level 1
we use induction on the height of the type. Let 7 — o be a closed
type of level 1. The following are equivalent.

f e Ext, o

f =150 f

vx,y(x =y — X=4 f)/)

VyeeoT, (X =4 1X) by the Corollary, since lev(7) =0
VaeeoT (fx € Ext,).

By IH the final formula is equivalent to f € “°T._,,. O

18/30



TCF
000000080

For arbitrary closed types the relation = is a “partial equivalence
relation”, which means the following.

Lemma
For every closed type T the relation =, is an equivalence relation
on Ext.

Lemma (Compatibility of terms)

For every term t(X) with extensional constants and free variables
among X we have

19/30



Intro
[e]

Model TCF Realizability Conclusion
000000000 O0000000e 000000000 o]

Lemma (Extensionality of terms)

For every term t(X) with extensional constants and free variables
among X we have

X € Exty — t(X) € Ext,.

20/30



Realizability
000000000

Need “realizability extensions” of c.r. predicates and formulas:

® Assume that we have a global assignment giving for every c.r.
predicate variable X of arity g an n.c. predicate variable X" of
arity (p, &) where £ is the type variable associated with X.

e We introduce /" /<°l" for c.r. (co)inductive predicates //l,
e.g.,

Even'00 Even"nm — Even'(5(5n))(Sm).

® A predicate or formula C is r-free if it does not contain any of
these X", I" or <",

® A derivation M is r-free if it contains r-free formulas only.

21/30



Intro
[e]

Model TCF Realizability Conclusion
000000000 000000000 O@0000000 [e]

Definition (C" for r-free c.r. formulas C)
Let zr C mean C'z.

zr Pt:= P'tz,

¢ (A= B) Vw(wrA—zwr B) if Aisc.r.
z =
A—zrB if Aisn.c.

zr YV A =Vy(zr A).

22/30



Intro Model TCF Realizability Conclusion
o 000000000 000000000 00®000000 o

Definition (Extracted term for an r-free proof M of a c.r. A)

et(u?) = 77 (zZ(A) uniquely associated to u*),
et((/\uA MB)A%B) - Azuet(M) If A ?S C.r.

et(M) if Aisn.c.
et((MABNA)B) = et(M)et(N) ff A ?s C.r.

et(M) if Aisn.c.
et((AxMA)VXA) = et(M),

et(MPAXHAMD)Y = et(M

23/30



Intro Model TCF Realizability Conclusion

000@00000

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /.
® et(/) := C; and et(/7) := R, where the constructor C; and
the recursion operator R refer to ¢; associated with /.
® et(°/~) :=D and et(“/") := ©°R, where the destructor D
and the corecursion operator “°R refer to the ¢;.

24/30



Realizability
0000e0000

Let / be an inductive predicate and ¢; its associated algebra. One
can show that

® every constructor of ¢; is extensional w.r.t. its clause Ii+,
® R} is extensional w.r.t. the least-fixed-point axiom /™,

® the destructor of ¢; is extensional w.r.t. the closure axiom
[~ and
® “OR; is extensional w.r.t. the greatest-fixed-point axiom coft,
Since the term et(M) extracted from a closed proof M of a c.r.
formula A is built from these constants by abstraction and
application, by the lemma on extensionality of terms we can
conclude that et(M) is extensional w.r.t. A.

25 /30



Realizability
00000e000

Theorem (Soundness)

Let M be an r-free derivation of a formula A from assumptions
ui: C; (i < n). Then we can derive

et((M)rA ifAiscr.
A if Ais n.c.

from assumptions

z,v G ifCiscr.
G if C; is n.c.

26 /30



Realizability
000000800

We express

e Kolmogorov's view of “formulas as problems”?

e Feferman’s dictum “to assert is to realize”3

by invariance axioms:

For r-free c.r. formulas A we require as axioms

InvAlla: Vo(zr A — A).
InvExa: A — 3,(z r A).

2Zur Deutung der intuitionistischen Logik, Math. Zeitschr., 1932

3Constructive theories of functions and classes, Logic Colloquium 78, p.208

27/30



Realizability
000000080

Invariance axioms used in the proof of soundness (1):

Case (A\,aMB)A=B with B n.c. We need a derivation of A — B.
Subcase A c.r. By IH we have a derivation of B from z r A. Using
the invariance axiom A — 3,(z r A) we get the required derivation
of B from A:

[z r A
A= 3,(zrA) A | IH
3.(zr A) B

B

3-

28 /30



Realizability
00000000 e

Invariance axioms used in the proof of soundness (2):

Case (MA7BNA)E with B n.c. Goal: find a derivation of B.
Subcase A c.r. By IH we have derivations of A — B and of
et(N) r A. From the invariance axiom V,(z r A — A) we obtain the
required derivation of B by —~ from the derivation of A — B and

V. (zr A— A) et(N) | IH
et(N)rA— A et(N)r A
A

29 /30



Conclusion
°

Conclusion

® |n TCF the computational content of a proof M is represented
by an extracted term et(M) in the language of TCF.
® The Soundness theorem provides a formal verfication in TCF
that the extracted term realizes the formula (“specification™).
This is automated in Minlog.
® Since extraction ignores n.c. parts of the proof, et(M) is much
shorter than M.
® For efficiency, in a second step one can translate the extracted
term to a functional programming language. Minlog does this
for Scheme and Haskell.
Question: TCF has an internal "meta”-theory, via realizability.
Any relation to Truth theories?

30/30



	Intro
	Model
	TCF
	Realizability
	Conclusion

