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I Proofs may have computational content.

I Programs extracted from proofs cannot go wrong.

I Proofs (as opposed to programs) can easily be checked for
correctness.

Issues:

I Attention to data necessary.

I Complexity.
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Data

I Free algebras (natural numbers, lists, . . . ).

I Functions (seen as limits of finite approximations).

I Enumerated sets (as opposed to sets given by a property).

More precisely: use the Scott-Ershov partial continuous functionals,
as the intended model of a type theory based on free algebras.

I A (higher type) functional is computable if it is the limit of a
recursively enumerable set of finite approximations.
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Language

I We teach that existence and disjunction are abbreviations:

∃̃xA := ¬∀x¬A,

A ∨̃ B := ¬(¬A ∧ ¬B)

and often forget to mention their proper versions ∃xA, A ∨ B.

I To fine tune the computational content of a proof, distinguish
→c, ∀c (computational) and →nc, ∀nc (non-computational).

Example: Variants of ∨, inductively defined by the clauses{
A→c A ∨d B

B →c A ∨d B

{
A→nc A ∨u B

B →nc A ∨u B

{
A→c A ∨l B

B →nc A ∨l B

and similar for ∨r.
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Formulas as computational problems

I Kolmogorov (1925) proposed to view a formula A as a
computational problem, of type τ(A), the type of a potential
solution or “realizer” of A.

I Example: ∀cn∃m>nPrime(m) has type N→ N.

I A 7→ τ(A), a type or the “nulltype” symbol ◦.
I In case τ(A) = ◦ proofs of A have no computational content;

such formulas A are called non-computational (n.c.) or
Harrop formulas; the others computationally relevant (c.r.).
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Decoration can simplify extracts

I Suppose that a proof M uses a lemma Ld : A ∨d B.

I Then the extract et(M) will contain the extract et(Ld).

I Suppose that the only computationally relevant use of Ld in
M was which one of the two alternatives holds true, A or B.

I Express this by using a weakened lemma L : A ∨u B.

I Since et(L) is a boolean, the extract of the modified proof is
“purified”: the (possibly large) extract et(Ld) has disappeared.
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Decoration algorithm

Goal: Insert as few as possible “decorations” ∀c,→c into a proof.

I Seq(M) of a proof M consists of its context and end formula.

I The uniform proof pattern P(M) of a proof M is the result of
changing in c.r. formulas of M (i.e., not above a n.c. formula)
all →c, ∀c into →nc, ∀nc (some restrictions apply on axioms
and theorems).

I A formula D extends C if D is obtained from C by changing
some →nc, ∀nc into →c, ∀c.

I A proof N extends M if (i) N and M are the same up to
variants of →, ∀ in their formulas, and (ii) every c.r. formula
in M is extended by the corresponding one in N.
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Decoration algorithm

Assumption: For every axiom or theorem A and every decoration
variant C of A we have another axiom or theorem whose formula
D extends C , and D is the least among those extensions.

Theorem (Ratiu, S.)

Under the assumption above, for every uniform proof pattern U
and every extension of its sequent Seq(U) we can find a decoration
M∞ of U such that

(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U
whose sequent Seq(M) extends the given extension of Seq(U)
has the property that M also extends M∞.
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Case (→nc)−. Consider a proof pattern

Φ, Γ

| U

A→nc B

Γ,Ψ

| V

A
(→nc)−

B

Given: extension Π,∆,Σ⇒ D of Φ, Γ,Ψ⇒ B. Alternating steps:

I IHa(U) for extension Π,∆⇒ A→ncD 7→ decoration M1 of U
whose sequent Π1,∆1 ⇒ C1 → D1 extends Π,∆⇒ A→ncD
(→∈ {→nc,→c}). Suffices if A is n.c.: extension ∆1,Σ⇒ C1

of V is a proof (in n.c. parts of a proof →nc, ∀nc and →c, ∀c
are identified). For A c.r:

I IHa(V ) for the extension ∆1,Σ⇒ C1 7→ decoration N2 of V
whose sequent ∆2,Σ2 ⇒ C2 extends ∆1,Σ⇒ C1.

I IHa(U) for Π1,∆2 ⇒ C2 → D1 7→ decoration M3 of U whose
sequent Π3,∆3 ⇒ C3→D3 extends Π1,∆2 ⇒ C2→D1.

I IHa(V ) for the extension ∆3,Σ2 ⇒ C3 7→ decoration N4 of V
whose sequent ∆4,Σ4 ⇒ C4 extends ∆3,Σ2 ⇒ C3. . . .
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Example: Euler’s ϕ, or avoiding factorization

Let Pn mean “n is prime”. Consider

Fact : ∀cn(Pn ∨r ∃m,k>1(n = mk)) factorization,

PTest : ∀cn(Pn ∨u ∃m,k>1(n = mk)) prime number test.

Euler’s ϕ has the properties{
ϕ(n) = n − 1 if Pn,

ϕ(n) < n − 1 if n is composed.

Using factorization and these properties we obtain a proof of

∀cn(ϕ(n) = n − 1 ∨u ϕ(n) < n − 1).

Goal: get rid of the expensive factorization algorithm in the
computational content, via decoration.
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Example: Euler’s ϕ, or avoiding factorization (ctd.)

How could the better proof be found? Recall that we assumed

Fact : ∀cn(Pn ∨r ∃m,k>1(n = mk)),

PTest : ∀cn(Pn ∨u ∃m,k>1(n = mk))

and have a proof of ∀cn(ϕ(n) = n− 1∨u ϕ(n) < n− 1) from Fact.

I The decoration algorithm arrives at Fact with goal

Pn ∨u ∃m,k>1(n = mk).

I PTest fits as well, and it has ∨u rather than ∨r, hence is
preferred.
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Example: Maximal Scoring Segment (MSS)

I Let X be linearly ordered by �. Given seg : N→ N→ X .
Want: maximal segment

∀cn∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)).

I Example: Regions with high G ,C content in DNA.

X := {G ,C ,A,T},
g : N→ X (gene),

f : N→ Z, f (i) :=

{
1 if g(i) ∈ {G ,C},
−1 if g(i) ∈ {A,T},

seg(i , k) = f (i) + · · ·+ f (k).
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Example: MSS (ctd.)

Prove the existence of a maximal segment by induction on n,
simultaneously with the existence of a maximal end segment.

∀cn(∃i≤k≤n∀i ′≤k ′≤n(seg(i ′, k ′) � seg(i , k)) ∧
∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)))

In the step:

I Compare the maximal segment i , k for n with the maximal
end segment j , n + 1 proved separately.

I If �, take the new i , k to be j , n + 1. Else take the old i , k .

Depending on how the existence of a maximal end segment was
proved, we obtain a quadratic or a linear algorithm.
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Example: MSS (ctd.)

Two proofs of the existence of a maximal end segment for n + 1:
∀cn∃j≤n+1∀j ′≤n+1(seg(j ′, n + 1) � seg(j , n + 1)).

I Introduce an auxiliary parameter m; prove by induction on m

∀cn∀cm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n + 1) � seg(j , n + 1)).

I Use ESn : ∃j≤n∀j ′≤n(seg(j ′, n) � seg(j , n)) and the additional
assumption of monotonicity

∀i ,j ,n(seg(i , n) � seg(j , n)→ seg(i , n + 1) � seg(j , n + 1)).

Proceed by cases on seg(j , n + 1) � seg(n + 1, n + 1).
If �, take n + 1, else the previous j .
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Example: MSS (ctd.)

Could decoration help to find the better proof? Have lemmas L:

∀cn∀cm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))

and LMon:

Mon→ ∀cn(ESn →c ∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1))).

I The decoration algorithm arrives at L with goal

∀ncm≤n+1∃j≤n+1∀j ′≤m(seg(j ′, n+1) � seg(j , n+1)).

I LMon fits as well, its assumptions Mon and ESn are in the
context, and it is less extended (∀ncm≤n+1 rather than ∀cm≤n+1),
hence is preferred.
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Result of demo

Extracted term for L

[le0,seg1,n2,n3]

(Rec nat=>nat)n3 0

([n4,n5][if (le0(seg1 n5(Succ n2))(seg1(Succ n4)(Succ n2)))

(Succ n4)

n5])

Extracted term for LMon

[le0,seg1,n2,n3]

[if (le0(seg1 n3(Succ n2))(seg1(Succ n2)(Succ n2)))

(Succ n2)

n3]
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Result of demo (ctd.)

Extracted term for MaxSegMon

[le0,seg1,n2]

(Rec nat=>nat@@nat@@nat)n2(0@0@0)

([n3,ijk4]

[if (le0(seg1 left ijk4 right right ijk4)

(seg1((cL alpha)le0 seg1 n3(Succ n3))(Succ n3)))

((cL alpha)le0 seg1 n3(Succ n3))

(left ijk4)]@

(cL alpha)le0 seg1 n3(Succ n3)@

[if (le0(seg1 left ijk4 right right ijk4)

(seg1((cL alpha)le0 seg1 n3(Succ n3))(Succ n3)))

(Succ n3)

(right right ijk4)])

After decoration cL is replaced by cLMon ⇒ linear algorithm.
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