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Computing with partial continuous functionals

» Proofs in mathematics: on abstract, “higher type” objects.

» Therefore an analysis of computational aspects of such proofs
must be based on a theory of computation in higher types.

» Such a theory has been provided by Scott (1970) and Ershov
(1977). Basic concept: partial continuous functional F.

» Since F can be seen as a limit of its finite approximations U
we get for free the notion of a computable functional: it is
given by a recursive enumeration of finite approximations.

» The price to pay for this simplicity is that functionals are now
partial, in stark contrast to the view of Godel (1958).

» However, the total functionals can be defined as a dense
subset of the partial ones, w.r.t. the Scott topology.
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TCF, a "“theory of computable functionals”

v

The partial continuous functionals are the intended range of
its (typed) variables.

Terms: TT, an extension of Godel's T and Plotkin's PCF.
(Co)inductively defined predicates (with param.); only —,V.
Eq(r,s) (Leibniz), 3, A, V inductively defined. F := Eq(ff, tt).
» Natural deduction style (rules —*, ¥¥). F — A provable.

v

v

v

Properties

» TCF can reflect on the computational content of proofs, along
the lines of the Brouwer-Heyting-Kolmogorov interpretation.

» Main difference to Martin-Lof type theory (or Coq, Agda):
Partial continuous functionals are first class citizens.
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Finitary algebras as non-flat Scott information systems

> An algebra ¢ is given by its constructors.

» Examples:

oN, SN=N" for N (unary natural numbers),
1P, sP7P SP=P for P (Cantor algebra),

0P (axiom) and CP=P=D (yyle) for D (derivations).
» Examples of “tokens” (x: special symbol; no information):

S"0 (n > 0), S%* (in N),
505150501, S0S5150S0* (in P),
C(CO0%)(Cx*0) (in D).

> A token is total if it contains no .

» In D: total token ~ finite (well-founded) derivation.
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Finitary algebras: consistency, entailment, ideals

By example. For D (derivations):

» {COx,Cx0} is “consistent”, written COx 1 CxO0.

» {COx,Cx0} - CO00 ( “entails").

> Ideals: consistent and “deductively closed” sets of tokens.
Examples of ideals:

> {COx*, Cxx}.

» {C00, COx, Cx0, Cxx}, and generally the deductive closure of

a finite (well-founded) derivation.

> {Csx, C(Crx )k, Cx(Csxx), C(Cex ) (Cx), ... } (“cototal”).

» Locally correct, but possibly non well-founded derivations
(Mints 1978).

An ideal x is cototal if every constructor tree P(x) € x has a
“predecessor” P(Cx) € x.
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Tokens and entailment for N
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Why non-flat?

Continuous maps f: [N| — |N| (see below) are monotone:
xCy— fx Cfy.

v

» Easy: every constructor gives rise to a continuous function.

Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx # 0 and Sx = Sy — x = y).

This holds for non-flat algebras, but not for flat ones:

0 S0 S(S0)

v

v

There constructors must be strict (i.e., CX(}y = ), hence

In P: S10 =0 = S,0,
In D:  C@{0} =0 = C{0}0.
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The Scott-Ershov model of partial continuous functionals

» Let A =(A,Cong,ta), B=(B,Cong,Fpg) be information
systems (Scott). Function space: A — B := (C, Con, ), with

C := Cony x B,
{(U,‘, bi)}iel € Con := VJQ[(U UJ S COI]A — {bj}je_] c COHB),
JjeJ
{(Ui, bi)}ier = (U, b) := ({bi | UFa Ui} b b).
» Partial continuous functionals of type p: the ideals in C,,.

C, := (Tok,, Con,, +,), Crse =C, = C,.

|C,| is defined to be the set of ideals in C,.
» f € |C,|: limit of formal neighborhoods U € Con,_,,.
» f €|C,| computable: r.e. limit.
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A common extension T of Godel's T and Plotkin's PCF

» Terms of T are built from (typed) variables and constants:
M7 N = xP | (el | DP | ()\XpMa)p—w | (Mp—wNp)a.

(constructors C or defined constants D, see below)

» Every defined constant D comes with a system of
computation rules DP;(;) = M; with FV(M;) C ;.

> 13,()7,) “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables, with each
constructor C occurring in a context CP (of base type). We
assume that P; and ,E’j for i # j are non-unifiable.

Examples:
» Predecessor P: N — N, defined by PO =0, P(Sn) = n,
» Godel’s primitive recursion operators
Ry:N—= 71— (N—7—7)— 7 with computation rules
ROfg = f, R(Sn)fg = gn(Rnfg), and
> the least-fixed-point operators Y, of type (p — p) — p
defined by the computation rule Y,f = f(Y,f).
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Corecursion operators

Recall Ry: N = 7 — (N — 7 — 7) — 7 with computation rules
ROfg = f, R(Sn)fg = gn(Rnfg). Corecursion operators:

ORN:T = (T—=U+(N+7)) = N,
“Rp:t=>(r—=U+P+7)+(P+7)) =P,
“Rp:7—=(r—=U+(D+7)x(D+71))— D,
Conversion: For f: p— 7 and g: 0 — 7 we denote \(R}, ,xfg)
of type p+ o — 7 by [f, g].
CRINM = [A 0, A (S([IdN N, Ay (CREyM)Ix))(MN),
CORpNM — [A_1, A\ (So([id, Pp]x)), Ax(S1([id, Pp]x))](MN),
CORHNM — [A.0, A(C([id, Pp]x1)([id, Pp]x2))](MN).
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Denotational semantics

For every closed term A\yM of type p'— o we inductively define a
set [AxM] of tokens of type g — o.

Uk b y (U, V,c) e [AM] (U,V)g[[)\;N]](A)
(U,b) € [Aexi] (U, ¢) € [A\x(MN)] '

For every constructor C and defined constant D:

VI b* (0,V,b) € [AeyM] W P(V)
(U, V,Ch*) € [X:C] (U, W, b) € [\zD]

D)?

with one rule (D) for every computation rule DP(y) = M. Note:

(U, b) denotes (Uy,...(Un, b)...),
(U, V) C [AsM] means (U, b) € [\sM] for all b e V.
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Denotational semantics (continued)

Theorem
> For every term M, [AzM)] is an ideal.
» If a term M converts to M’ by [3n-conversion or application of

a computation rule, then [M] = [M].

Let
with [M]Y == {b| (U, b) € [\sM] }.

X1y

[M1E = | IM]

cu

C

A consequence of (A) is continuity of application:

¢ € [MN]E < 3ycquz((V, €) € [MI).
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Inductive and coinductive definitions

» Computational content of /r, with / inductively defined:
what was needed to put r into /.

» Example: Even is inductively defined by the clauses
Even(0), Vn(Even(n) — Even(S(Sn))).

A generation tree for Even(6) consists of a single branch with
nodes Even(0), Even(2), Even(4) and Even(6).

» Computational content of Jr, with J coinductively defined:
how to continue after putting r into J.
» Example: St ("t is a stream”) is coinductively defined by the
clause
St — t =nil VvV Sty V Sty.
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An abstract theory of sets of nodes

Nodes a, b, ¢ are total ideals in P, viewed as lists of 0, 1.
Let t be a variable of an unspecified type o (“set of nodes”).
Language:

» a relation of arity (P, «), written a € t,

» a function of type & — P — «, written t, (“t's subtree at a")

» a function of type P — o — «, written at (“a plus t").
Define

Tree(t) := VactVp<jajan € t  “t is upward closed”,
Inf(t) := VpJace |a| = n "t is infinite”,
UEU(t) := VpIm>nVapee(|a| = |b| = m — an = bn)
“t satisfies the uniform effective uniqueness condition”,

Cta = 3,55 Vbee(|b] = n — bla| = a) “a covers the paths in t".
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Properties

bet, < abet,
abe at<» bet,
diVa(a € t <+ A)  for A X-formula.

Covering nodes are in t:

Tree(t) — Inf(t) - Cta — a € t.
Covering nodes are “fertile”:

Tree(t) — Inf(t) — Cra — Inf(t,).
The uniform effective uniqueness property is inherited to t,:

UEU(t) — UEU(t,).
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Nodes covering the paths in t can be extended

Lemma (Extension)

Tree(t) — Inf(t) — UEU(t) — Cia — C¢(a0) vV C¢(al).

Proof.

Let t be an infinite tree. Assume UEU(t) and Ca. Then we have
n > |a| such that Vpe((|b] = n — a < b). By UEU(t) for n+ 1 we
have m > n+ 1 such that

Voeer(lb] = |c| = m — B(n + 1) = €(n + 1)).

Since t is infinite we have b € t such that |b| = m. Then bn € t
since t is a tree and m > n+ 1, hence a < bn by assumption. Let
i := (b)|s- We show Ci(ai). Take m. Clearly m > |ai|. Let c € ¢
with |c| = m. We show ai < c. Since |b| = |c| = m we have
b(|a| +1) =<¢(]a| + 1). Hence

ai = b(la| +1) =<¢(Ja| +1) < c. O
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Computational content if the Extension lemma

Tree(t) — Inf(t) - UEU(t) — Cra — C¢(a0) v Ci(al).

Relative to realizers for its assumptions on t. Let inf; and ueu; be
witnesses for t's infinity and UEU(t), i.e., for all k

inf,(k) € t A |inf(k)| = k, |a| = |b| = ueus(k) — ak = bk.

Given a, let n witness C;a. Let m := ueus(n+1) and b := inf:(m).
Then i := (b)|, determines which of the two alternatives is proved.
In each case m is the required witness for C:(ai). Hence

inl(m) if (b)\a\ = 07

h . f =
¢(a,inf, ueuy, n) {inr(m) if (b)‘a‘ =1.
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Computational and non-computational logical connectives

Idea: fine tune the computational content of proofs, by switching
on and off the computational effect of logical connectives.

» Example: in V,(Even(n) — Even(S(Sn))) only the premise
Even(n) should be computationally relevant, not the V,.

» Following Ulrich Berger (1993) we distinguish between a
computational V¢ and non-computational (“uniform”) v"¢.

» Similarly: —¢ and —"°.
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Streams

We coinductively define a predicate S of arity («) by
Vi¢(St —°¢ Eq(t,nil) v Sty Vv Sty).
The greatest-fixed-point (or coinduction) axiom for S is
Vi¢(Qt —° Vi¢(Qt —° Eq(t,nil)V(StoV Qo) V(StoV Q1)) —¢ St).
The types are, with ¢ := 7(5t) = P, 7 := 7(Qt):

t—=> U+ 1+ (type of destructor for P),
T (T —=U+0+7)+(+7)) = (type of “RT).
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Converting reals into streams

Theorem
Vi¢(Rt —¢ St), where Rt := Tree(t) A Inf(t) A UEU(t).

Proof.

Use coinduction with R for Q. Suffices: Rt — Rty V Rt;. From Rt
we obtain UEU(t). From Rt and C¢(nil) we have C;:0 or C;1, by
the Extension lemma. Assume C:0. Then Rtp, since

Tree(to) A Inf(to) A UEU(tp) (cf. “Properties” above). O

Extracted term: recall 7(Rt) = p:= (N — ¢) x (N — N).

CORg (inft, ueut)pgfﬁu+(L+P)+(L+P)

)

with g; defined from inf;, ueu; and the content h; of the
Extension lemma.

Helmut Schwichtenberg Proofs and Computations



Conclusion

v

Terms in T* (D T,PCF): denotational semantics.
TCF, a theory of computable functionals.

v

v

Witnesses of coinductively defined predicates: cototal ideals.

v

Example: abstract real — stream, from = V}¢(Rt —¢ St).
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