Proofs and Computations

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

22. August 2010

Computing with partial continuous functionals

- ▶ Proofs in mathematics: on abstract, "higher type" objects.
- ► Therefore an analysis of computational aspects of such proofs must be based on a theory of computation in higher types.
- ► Such a theory has been provided by Scott (1970) and Ershov (1977). Basic concept: partial continuous functional *F*.
- Since F can be seen as a limit of its finite approximations U we get for free the notion of a computable functional: it is given by a recursive enumeration of finite approximations.
- ► The price to pay for this simplicity is that functionals are now partial, in stark contrast to the view of Gödel (1958).
- However, the total functionals can be defined as a dense subset of the partial ones, w.r.t. the Scott topology.

TCF, a "theory of computable functionals"

- The partial continuous functionals are the intended range of its (typed) variables.
- ▶ Terms: T⁺, an extension of Gödel's T and Plotkin's PCF.
- ▶ (Co)inductively defined predicates (with param.); only \rightarrow , \forall .
- ▶ $\mathrm{Eq}(r,s)$ (Leibniz), \exists , \land , \lor inductively defined. $\mathbf{F} := \mathrm{Eq}(\mathrm{ff},\mathrm{tt})$.
- ▶ Natural deduction style (rules \rightarrow^{\pm} , \forall^{\pm}). **F** \rightarrow A provable.

Properties

- ➤ TCF can reflect on the computational content of proofs, along the lines of the Brouwer-Heyting-Kolmogorov interpretation.
- Main difference to Martin-Löf type theory (or Coq, Agda): Partial continuous functionals are first class citizens.

Finitary algebras as non-flat Scott information systems

- ▶ An algebra ι is given by its constructors.
- Examples:

$$0^{f N}, S^{f N o f N}$$
 for $f N$ (unary natural numbers), $1^{f P}, S_0^{f P o f P}, S_1^{f P o f P}$ for $f P$ (Cantor algebra), $0^{f D}$ (axiom) and $C^{f D o f D o f D}$ (rule) for $f D$ (derivations).

► Examples of "tokens" (*: special symbol; no information):

$$S^{n}0 \ (n \ge 0), \ S^{2}* \ (in \ \mathbf{N}),$$

 $S_{0}S_{1}S_{0}S_{0}1, \ S_{0}S_{1}S_{0}S_{0}* \ (in \ \mathbf{P}),$
 $C(C0*)(C*0) \ (in \ \mathbf{D}).$

- ► A token is total if it contains no *.
- ▶ In **D**: total token \sim finite (well-founded) derivation.

Finitary algebras: consistency, entailment, ideals

By example. For **D** (derivations):

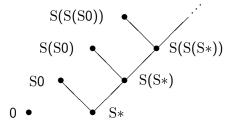
- $\{C0*, C*0\}$ is "consistent", written $C0* \uparrow C*0$.
- ▶ $\{C0*, C*0\} \vdash C00 \text{ ("entails")}.$
- ▶ Ideals: consistent and "deductively closed" sets of tokens.

Examples of ideals:

- ► {C0*, C**}.
- ► {C00, C0*, C*0, C**}, and generally the deductive closure of a finite (well-founded) derivation.
- $ightharpoonup \{C**, C(C**)*, C**(C**), C(C**), \ldots\}$ ("cototal").
- ► Locally correct, but possibly non well-founded derivations (Mints 1978).

An ideal x is cototal if every constructor tree $P(*) \in x$ has a "predecessor" $P(C\vec{*}) \in x$.

Tokens and entailment for N



Why non-flat?

- ▶ Continuous maps $f: |\mathbf{N}| \to |\mathbf{N}|$ (see below) are monotone: $x \subseteq y \to fx \subseteq fy$.
- ▶ Easy: every constructor gives rise to a continuous function.
- Want: constructors have disjoint ranges and are injective (cf. the Peano axioms $Sx \neq 0$ and $Sx = Sy \rightarrow x = y$).
- This holds for non-flat algebras, but not for flat ones:

There constructors must be strict (i.e., $C\vec{x}\emptyset\vec{y} = \emptyset$), hence

In P:
$$S_1\emptyset = \emptyset = S_2\emptyset$$
,
In D: $C\emptyset\{0\} = \emptyset = C\{0\}\emptyset$.

The Scott-Ershov model of partial continuous functionals

▶ Let $\mathbf{A} = (A, \operatorname{Con}_A, \vdash_A)$, $\mathbf{B} = (B, \operatorname{Con}_B, \vdash_B)$ be information systems (Scott). Function space: $\mathbf{A} \to \mathbf{B} := (C, \operatorname{Con}, \vdash)$, with

$$\begin{split} C &:= \operatorname{Con}_A \times B, \\ &\{(U_i, b_i)\}_{i \in I} \in \operatorname{Con} := \forall_{J \subseteq I} (\bigcup_{j \in J} U_j \in \operatorname{Con}_A \to \{b_j\}_{j \in J} \in \operatorname{Con}_B), \\ &\{(U_i, b_i)\}_{i \in I} \vdash (U, b) := (\{b_i \mid U \vdash_A U_i\} \vdash_B b). \end{split}$$

▶ Partial continuous functionals of type ρ : the ideals in \mathbf{C}_{ρ} .

$$\mathbf{C}_{\iota} := (\mathrm{Tok}_{\iota}, \mathrm{Con}_{\iota}, \vdash_{\iota}), \qquad \mathbf{C}_{\rho \to \sigma} := \mathbf{C}_{\rho} \to \mathbf{C}_{\sigma}.$$

- $|\mathbf{C}_{\rho}|$ is defined to be the set of ideals in \mathbf{C}_{ρ} .
- ▶ $f \in |\mathbf{C}_{\rho}|$: limit of formal neighborhoods $U \in \operatorname{Con}_{\rho \to \sigma}$.
- $f \in |\mathbf{C}_{\rho}|$ computable: r.e. limit.

A common extension T^+ of Gödel's T and Plotkin's PCF

▶ Terms of T⁺ are built from (typed) variables and constants:

$$M, N ::= x^{\rho} \mid \mathrm{C}^{\rho} \mid D^{\rho} \mid (\lambda_{x^{\rho}} M^{\sigma})^{\rho \to \sigma} \mid (M^{\rho \to \sigma} N^{\rho})^{\sigma}.$$

(constructors C or defined constants D, see below)

- Every defined constant D comes with a system of computation rules $D\vec{P}_i(\vec{v}_i) = M_i$ with $FV(M_i) \subset \vec{v}_i$.
- $\vec{P}_i(\vec{y}_i)$: "constructor patterns", i.e., lists of applicative terms built from constructors and distinct variables, with each constructor C occurring in a context \overrightarrow{CP} (of base type). We assume that \vec{P}_i and \vec{P}_i for $i \neq j$ are non-unifiable.

Examples:

- ▶ Predecessor P: $\mathbf{N} \to \mathbf{N}$, defined by P0 = 0, P(Sn) = n,
- Gödel's primitive recursion operators $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ with computation rules $\mathcal{R}0fg = f$, $\mathcal{R}(Sn)fg = gn(\mathcal{R}nfg)$, and
- ▶ the least-fixed-point operators Y_{ρ} of type $(\rho \to \rho) \to \rho$ defined by the computation rule $Y_{\rho}f = f(Y_{\rho}f)$

Corecursion operators

Recall $\mathcal{R}_{\mathbf{N}}^{\tau} \colon \mathbf{N} \to \tau \to (\mathbf{N} \to \tau \to \tau) \to \tau$ with computation rules $\mathcal{R}0fg = f$, $\mathcal{R}(\mathbf{S}n)fg = gn(\mathcal{R}nfg)$. Corecursion operators:

$$\overset{\text{co}}{\mathcal{R}}_{\mathbf{N}}^{\tau} \colon \tau \to (\tau \to \mathbf{U} + (\mathbf{N} + \tau)) \to \mathbf{N},
\overset{\text{co}}{\mathcal{R}}_{\mathbf{P}}^{\tau} \colon \tau \to (\tau \to \mathbf{U} + (\mathbf{P} + \tau) + (\mathbf{P} + \tau)) \to \mathbf{P},
\overset{\text{co}}{\mathcal{R}}_{\mathbf{D}}^{\tau} \colon \tau \to (\tau \to \mathbf{U} + (\mathbf{D} + \tau) \times (\mathbf{D} + \tau)) \to \mathbf{D},$$

Conversion: For $f: \rho \to \tau$ and $g: \sigma \to \tau$ we denote $\lambda_x(\mathcal{R}^{\tau}_{\rho+\sigma}xfg)$ of type $\rho + \sigma \to \tau$ by [f,g].

$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{N}}^{\tau}NM \mapsto [\lambda_{-}0, \lambda_{x}(\mathrm{S}([\mathrm{id}^{\mathbf{N} \to \mathbf{N}}, \lambda_{y}({}^{\mathrm{co}}\mathcal{R}_{\mathbf{N}}^{\tau}yM)]x))](MN),$$

$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{P}}^{\tau}NM \mapsto [\lambda_{-}1, \lambda_{x}(S_{0}([\mathrm{id}, P_{\mathbf{P}}]x)), \lambda_{x}(S_{1}([\mathrm{id}, P_{\mathbf{P}}]x))](MN),$$

$${}^{\mathrm{co}}\mathcal{R}_{\mathbf{D}}^{\tau}NM \mapsto [\lambda_{-}0, \lambda_{x}(\mathrm{C}([\mathrm{id}, P_{\mathbf{D}}]x_{1})([\mathrm{id}, P_{\mathbf{D}}]x_{2}))](MN).$$

Denotational semantics

For every closed term $\lambda_{\vec{x}} M$ of type $\vec{\rho} \to \sigma$ we inductively define a set $[\![\lambda_{\vec{x}} M]\!]$ of tokens of type $\vec{\rho} \to \sigma$.

$$\frac{U_i \vdash b}{(\vec{U}, b) \in \llbracket \lambda_{\vec{X}} x_i \rrbracket}(V), \qquad \frac{(\vec{U}, V, c) \in \llbracket \lambda_{\vec{X}} M \rrbracket \quad (\vec{U}, V) \subseteq \llbracket \lambda_{\vec{X}} M \rrbracket}{(\vec{U}, c) \in \llbracket \lambda_{\vec{X}} (MN) \rrbracket}(A).$$

For every constructor C and defined constant *D*:

$$\frac{\vec{V} \vdash \vec{b^*}}{(\vec{U}, \vec{V}, C\vec{b^*}) \in \llbracket \lambda_{\vec{X}} C \rrbracket} (C), \qquad \frac{(\vec{U}, \vec{V}, b) \in \llbracket \lambda_{\vec{X}, \vec{y}} M \rrbracket \quad \vec{W} \vdash \vec{P}(\vec{V})}{(\vec{U}, \vec{W}, b) \in \llbracket \lambda_{\vec{X}} D \rrbracket} (D),$$

with one rule (D) for every computation rule $D\vec{P}(\vec{y}) = M$. Note:

$$(\vec{U},b)$$
 denotes $(U_1,\ldots(U_n,b)\ldots),$ $(\vec{U},V)\subseteq \llbracket \lambda_{\vec{X}}M \rrbracket$ means $(\vec{U},b)\in \llbracket \lambda_{\vec{X}}M \rrbracket$ for all $b\in V.$

Denotational semantics (continued)

Theorem

- For every term M, $[\![\lambda_{\vec{x}}M]\!]$ is an ideal.
- ▶ If a term M converts to M' by $\beta\eta$ -conversion or application of a computation rule, then $\llbracket M \rrbracket = \llbracket M' \rrbracket$.

Let

$$\llbracket M \rrbracket_{\vec{\mathsf{X}}}^{\vec{\mathsf{U}}} := \bigcup_{\vec{\mathsf{U}} \subset \vec{\mathsf{U}}} \llbracket M \rrbracket_{\vec{\mathsf{X}}}^{\vec{\mathsf{U}}} \quad \text{with} \quad \llbracket M \rrbracket_{\vec{\mathsf{X}}}^{\vec{\mathsf{U}}} := \{ \ b \mid (\vec{\mathsf{U}}, b) \in \llbracket \lambda_{\vec{\mathsf{X}}} M \rrbracket \}.$$

A consequence of (A) is continuity of application:

$$c \in \llbracket \mathit{MN} \rrbracket_{\vec{x}}^{\vec{u}} \leftrightarrow \exists_{V \subseteq \llbracket \mathit{N} \rrbracket_{\vec{x}}^{\vec{u}}} ((V,c) \in \llbracket \mathit{M} \rrbracket_{\vec{x}}^{\vec{u}}).$$

Inductive and coinductive definitions

- ► Computational content of *Ir*, with *I* inductively defined: what was needed to put *r* into *I*.
- ► Example: Even is inductively defined by the clauses

Even(0),
$$\forall_n (\text{Even}(n) \to \text{Even}(S(Sn))).$$

A generation tree for Even(6) consists of a single branch with nodes Even(0), Even(2), Even(4) and Even(6).

- ► Computational content of *Jr*, with *J* coinductively defined: how to continue after putting *r* into *J*.
- Example: St ("t is a stream") is coinductively defined by the clause

$$St \rightarrow t = \text{nil} \lor St_0 \lor St_1.$$

An abstract theory of sets of nodes

Nodes a,b,c are total ideals in \mathbf{P} , viewed as lists of 0,1. Let t be a variable of an unspecified type α ("set of nodes"). Language:

- ▶ a relation of arity (\mathbf{P}, α) , written $a \in t$,
- ▶ a function of type $\alpha \to \mathbf{P} \to \alpha$, written t_a ("t's subtree at a")
- ▶ a function of type $\mathbf{P} \to \alpha \to \alpha$, written at ("a plus t").

Define

$$\begin{split} \operatorname{Tree}(t) &:= \forall_{a \in t} \forall_{n \leq |a|} \, \overline{a}n \in t \quad \text{``t is upward closed"}\,, \\ \operatorname{Inf}(t) &:= \forall_{n} \exists_{a \in t} \, |a| = n \quad \text{``t is infinite"}\,, \\ \operatorname{UEU}(t) &:= \forall_{n} \exists_{m \geq n} \forall_{a,b \in t} (|a| = |b| = m \to \overline{a}n = \overline{b}n) \\ &\quad \text{``t satisfies the uniform effective uniqueness condition"}\,, \\ C_t a &:= \exists_{n \geq |a|} \forall_{b \in t} (|b| = n \to \overline{b}|a| = a) \quad \text{``a covers the paths in t''}\,. \end{split}$$

Properties

$$b \in t_a \leftrightarrow ab \in t,$$

 $ab \in at \leftrightarrow b \in t,$
 $\exists_t \forall_a (a \in t \leftrightarrow A)$ for $A \Sigma$ -formula.

Covering nodes are in t:

$$\operatorname{Tree}(t) \to \operatorname{Inf}(t) \to C_t a \to a \in t.$$

Covering nodes are "fertile":

$$\operatorname{Tree}(t) \to \operatorname{Inf}(t) \to C_t a \to \operatorname{Inf}(t_a).$$

The uniform effective uniqueness property is inherited to t_a :

$$\mathrm{UEU}(t) \to \mathrm{UEU}(t_a)$$
.

Nodes covering the paths in t can be extended

Lemma (Extension)

$$\operatorname{Tree}(t) o \operatorname{Inf}(t) o \operatorname{UEU}(t) o C_t a o C_t(a0) \lor C_t(a1).$$

Proof.

Let t be an infinite tree. Assume $\mathrm{UEU}(t)$ and $C_t a$. Then we have $n \geq |a|$ such that $\forall_{b \in t} (|b| = n \to a \leq b)$. By $\mathrm{UEU}(t)$ for n+1 we have $m \geq n+1$ such that

$$\forall_{b,c\in t}(|b|=|c|=m\to \overline{b}(n+1)=\overline{c}(n+1)).$$

Since t is infinite we have $b \in t$ such that |b| = m. Then $\overline{b}n \in t$ since t is a tree and $m \geq n+1$, hence $a \leq \overline{b}n$ by assumption. Let $i := (b)_{|a|}$. We show $C_t(ai)$. Take m. Clearly $m \geq |ai|$. Let $c \in t$ with |c| = m. We show $ai \leq c$. Since |b| = |c| = m we have $\overline{b}(|a|+1) = \overline{c}(|a|+1)$. Hence

$$ai = \overline{b}(|a|+1) = \overline{c}(|a|+1) \leq c.$$

Computational content if the Extension lemma

$$\operatorname{Tree}(t) \to \operatorname{Inf}(t) \to \operatorname{UEU}(t) \to C_t a \to C_t(a0) \vee C_t(a1).$$

Relative to realizers for its assumptions on t. Let \inf_t and ueu_t be witnesses for t's infinity and UEU(t), i.e., for all k

$$\inf_t(k) \in t \wedge |\inf_t(k)| = k, \qquad |a| = |b| = ueu_t(k) \to \overline{a}k = \overline{b}k.$$

Given a, let n witness C_ta . Let $m := ueu_t(n+1)$ and $b := \inf_t(m)$. Then $i := (b)_{|a|}$ determines which of the two alternatives is proved. In each case m is the required witness for $C_t(ai)$. Hence

$$h_t(a, \inf_t, \mathrm{ueu}_t, n) = egin{cases} \inf(m) & \text{if } (b)_{|a|} = 0, \\ \inf(m) & \text{if } (b)_{|a|} = 1. \end{cases}$$

Computational and non-computational logical connectives

Idea: fine tune the computational content of proofs, by switching on and off the computational effect of logical connectives.

- ▶ Example: in $\forall_n(\text{Even}(n) \to \text{Even}(S(Sn)))$ only the premise Even(n) should be computationally relevant, not the \forall_n .
- ► Following Ulrich Berger (1993) we distinguish between a computational \forall ^c and non-computational ("uniform") \forall ^{nc}.
- ▶ Similarly: $\rightarrow^{\mathbf{c}}$ and $\rightarrow^{\mathbf{nc}}$.

Streams

We coinductively define a predicate S of arity (α) by

$$\forall_t^{\text{nc}}(St \to^{\text{c}} \text{Eq}(t, \text{nil}) \vee St_0 \vee St_1).$$

The greatest-fixed-point (or coinduction) axiom for S is

$$\forall_t^{\mathrm{nc}}(Qt \to^{\mathrm{c}} \forall_t^{\mathrm{nc}}(Qt \to^{\mathrm{c}} \mathrm{Eq}(t,\mathrm{nil}) \vee (St_0 \vee Qt_0) \vee (St_0 \vee Qt_1)) \to^{\mathrm{c}} St).$$

The types are, with $\iota := \tau(St) = \mathbf{P}$, $\tau := \tau(Qt)$:

$$\iota \to \mathbf{U} + \iota + \iota$$
 (type of destructor for **P**), $\tau \to (\tau \to \mathbf{U} + (\iota + \tau) + (\iota + \tau)) \to \iota$ (type of ${}^{\mathrm{co}}\mathcal{R}_{\iota}^{\tau}$).

Converting reals into streams

Theorem

$$\forall_t^{\mathrm{nc}}(Rt \to^{\mathrm{c}} St)$$
, where $Rt := \mathrm{Tree}(t) \wedge \mathrm{Inf}(t) \wedge \mathrm{UEU}(t)$.

Proof.

Use coinduction with R for Q. Suffices: $Rt \to Rt_0 \lor Rt_1$. From Rt we obtain $\mathrm{UEU}(t)$. From Rt and $C_t(\mathrm{nil})$ we have C_t0 or C_t1 , by the Extension lemma. Assume C_t0 . Then Rt_0 , since $\mathrm{Tree}(t_0) \land \mathrm{Inf}(t_0) \land \mathrm{UEU}(t_0)$ (cf. "Properties" above).

Extracted term: recall $\tau(Rt) = \rho := (\mathbf{N} \to \iota) \times (\mathbf{N} \to \mathbf{N})$.

$${}^{\text{co}}\mathcal{R}^{\rho}_{\mathbf{p}}(\inf_{t}, \text{ueu}_{t})^{\rho}g_{t}^{\rho \to \mathbf{U} + (\iota + \rho) + (\iota + \rho)},$$

with g_t defined from \inf_t , ueu_t and the content h_t of the Extension lemma.

Conclusion

- ▶ Terms in T^+ (⊃ T, PCF): denotational semantics.
- ▶ TCF, a theory of computable functionals.
- Witnesses of coinductively defined predicates: cototal ideals.
- ▶ Example: abstract real \mapsto stream, from $\vdash \forall_t^{\text{nc}}(Rt \rightarrow^{\text{c}} St)$.

References

- ▶ U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).
- U. Berger, From coinductive proofs to exact real arithmetic.
 CSL 2009.
- J. Berger and H. Ishihara, Brouwer's fan theorem and unique existence in constructive analysis. MLQ 51 (2005).
- ► T. Coquand and P. Schuster, Unique paths as formal points. Submitted, June 2010.
- ▶ D. Ratiu and H.S., Decorating proofs. To appear, Mints volume (S. Feferman and W. Sieg, eds.), 2010.
- H.S., A direct proof of the equivalence between Brouwer's fan theorem and König's lemma with a uniqueness hypothesis.
 JUCS 11 (2005).
- ► H.S. and S.S. Wainer, Proofs and Computations. To appear, Perspectives in Mathematical Logic, 2010.

