
Proofs and Computations

Helmut Schwichtenberg

Mathematisches Institut, LMU, München

22. August 2010

Helmut Schwichtenberg Proofs and Computations

Computing with partial continuous functionals

I Proofs in mathematics: on abstract, “higher type” objects.

I Therefore an analysis of computational aspects of such proofs
must be based on a theory of computation in higher types.

I Such a theory has been provided by Scott (1970) and Ershov
(1977). Basic concept: partial continuous functional F .

I Since F can be seen as a limit of its finite approximations U
we get for free the notion of a computable functional: it is
given by a recursive enumeration of finite approximations.

I The price to pay for this simplicity is that functionals are now
partial, in stark contrast to the view of Gödel (1958).

I However, the total functionals can be defined as a dense
subset of the partial ones, w.r.t. the Scott topology.

Helmut Schwichtenberg Proofs and Computations

TCF, a “theory of computable functionals”

I The partial continuous functionals are the intended range of
its (typed) variables.

I Terms: T+, an extension of Gödel’s T and Plotkin’s PCF.

I (Co)inductively defined predicates (with param.); only →,∀.

I Eq(r , s) (Leibniz), ∃, ∧, ∨ inductively defined. F := Eq(ff, tt).

I Natural deduction style (rules →±, ∀±). F→ A provable.

Properties

I TCF can reflect on the computational content of proofs, along
the lines of the Brouwer-Heyting-Kolmogorov interpretation.

I Main difference to Martin-Löf type theory (or Coq, Agda):
Partial continuous functionals are first class citizens.

Helmut Schwichtenberg Proofs and Computations

Finitary algebras as non-flat Scott information systems

I An algebra ι is given by its constructors.

I Examples:

0N,SN→N for N (unary natural numbers),

1P, SP→P
0 , SP→P

1 for P (Cantor algebra),

0D (axiom) and CD→D→D (rule) for D (derivations).

I Examples of “tokens” (∗: special symbol; no information):

Sn0 (n ≥ 0), S2∗ (in N),

S0S1S0S01, S0S1S0S0∗ (in P),

C(C0∗)(C∗0) (in D).

I A token is total if it contains no ∗.
I In D: total token ∼ finite (well-founded) derivation.

Helmut Schwichtenberg Proofs and Computations

Finitary algebras: consistency, entailment, ideals

By example. For D (derivations):

I {C0∗,C∗0} is “consistent”, written C0∗ ↑ C∗0.

I {C0∗,C∗0} ` C00 (“entails”).

I Ideals: consistent and “deductively closed” sets of tokens.

Examples of ideals:

I {C0∗,C∗∗}.
I {C00,C0∗,C∗0,C∗∗}, and generally the deductive closure of

a finite (well-founded) derivation.

I {C∗∗,C(C∗∗)∗,C∗(C∗∗),C(C∗∗)(C∗∗), . . . } (“cototal”).

I Locally correct, but possibly non well-founded derivations
(Mints 1978).

An ideal x is cototal if every constructor tree P(∗) ∈ x has a
“predecessor” P(C~∗) ∈ x .

Helmut Schwichtenberg Proofs and Computations

Tokens and entailment for N

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

..
.

Helmut Schwichtenberg Proofs and Computations

Why non-flat?

I Continuous maps f : |N| → |N| (see below) are monotone:
x ⊆ y → fx ⊆ fy .

I Easy: every constructor gives rise to a continuous function.

I Want: constructors have disjoint ranges and are injective
(cf. the Peano axioms Sx 6= 0 and Sx = Sy → x = y).

I This holds for non-flat algebras, but not for flat ones:

•
0

•
S0

•
S(S0)

. . .

There constructors must be strict (i.e., C~x∅~y = ∅), hence

In P: S1∅ = ∅ = S2∅,
In D: C∅{0} = ∅ = C{0}∅.

Helmut Schwichtenberg Proofs and Computations

The Scott-Ershov model of partial continuous functionals

I Let A = (A,ConA,`A), B = (B,ConB ,`B) be information
systems (Scott). Function space: A→ B := (C ,Con,`), with

C := ConA × B,

{(Ui , bi)}i∈I ∈ Con := ∀J⊆I (
⋃
j∈J

Uj ∈ ConA → {bj}j∈J ∈ ConB),

{(Ui , bi)}i∈I ` (U, b) := ({ bi | U `A Ui } `B b).

I Partial continuous functionals of type ρ: the ideals in Cρ.

Cι := (Tokι,Conι,`ι), Cρ→σ := Cρ → Cσ.

|Cρ| is defined to be the set of ideals in Cρ.

I f ∈ |Cρ|: limit of formal neighborhoods U ∈ Conρ→σ.

I f ∈ |Cρ| computable: r.e. limit.

Helmut Schwichtenberg Proofs and Computations

A common extension T+ of Gödel’s T and Plotkin’s PCF
I Terms of T+ are built from (typed) variables and constants:

M,N ::= xρ | Cρ | Dρ | (λxρM
σ)ρ→σ | (Mρ→σNρ)σ.

(constructors C or defined constants D, see below)
I Every defined constant D comes with a system of

computation rules D~Pi (~yi) = Mi with FV(Mi) ⊆ ~yi .
I ~Pi (~yi): “constructor patterns”, i.e., lists of applicative terms

built from constructors and distinct variables, with each
constructor C occurring in a context C~P (of base type). We
assume that ~Pi and ~Pj for i 6= j are non-unifiable.

Examples:
I Predecessor P : N→ N, defined by P0 = 0, P(Sn) = n,
I Gödel’s primitive recursion operators
RτN : N→ τ → (N→ τ → τ)→ τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg), and

I the least-fixed-point operators Yρ of type (ρ→ ρ)→ ρ
defined by the computation rule Yρf = f (Yρf).

Helmut Schwichtenberg Proofs and Computations

Corecursion operators

Recall RτN : N→ τ → (N→ τ → τ)→ τ with computation rules
R0fg = f , R(Sn)fg = gn(Rnfg). Corecursion operators:

coRτN : τ → (τ → U + (N + τ))→ N,
coRτP : τ → (τ → U + (P + τ) + (P + τ))→ P,
coRτD : τ → (τ → U + (D + τ)× (D + τ))→ D,

Conversion: For f : ρ→ τ and g : σ → τ we denote λx(Rτρ+σxfg)
of type ρ+ σ → τ by [f , g].

coRτNNM 7→ [λ 0, λx(S([idN→N, λy (coRτNyM)]x))](MN),
coRτPNM 7→ [λ 1, λx(S0([id,PP]x)), λx(S1([id,PP]x))](MN),
coRτDNM 7→ [λ 0, λx(C([id,PD]x1)([id,PD]x2))](MN).

Helmut Schwichtenberg Proofs and Computations

Denotational semantics

For every closed term λ~xM of type ~ρ→ σ we inductively define a
set [[λ~xM]] of tokens of type ~ρ→ σ.

Ui ` b

(~U, b) ∈ [[λ~xxi]]
(V),

(~U,V , c) ∈ [[λ~xM]] (~U,V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D:

~V ` ~b∗

(~U, ~V ,C ~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x ,~yM]] ~W ` ~P(~V)

(~U, ~W , b) ∈ [[λ~xD]]
(D),

with one rule (D) for every computation rule D~P(~y) = M. Note:

(~U, b) denotes (U1, . . . (Un, b) . . .),

(~U,V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all b ∈ V .

Helmut Schwichtenberg Proofs and Computations

Denotational semantics (continued)

Theorem

I For every term M, [[λ~xM]] is an ideal.

I If a term M converts to M ′ by βη-conversion or application of
a computation rule, then [[M]] = [[M ′]].

Let

[[M]]~u~x :=
⋃
~U⊆~u

[[M]]
~U
~x with [[M]]

~U
~x := { b | (~U, b) ∈ [[λ~xM]] }.

A consequence of (A) is continuity of application:

c ∈ [[MN]]~u~x ↔ ∃V⊆[[N]]~u
~x
((V , c) ∈ [[M]]~u~x).

Helmut Schwichtenberg Proofs and Computations

Inductive and coinductive definitions

I Computational content of Ir , with I inductively defined:
what was needed to put r into I .

I Example: Even is inductively defined by the clauses

Even(0), ∀n(Even(n)→ Even(S(Sn))).

A generation tree for Even(6) consists of a single branch with
nodes Even(0), Even(2), Even(4) and Even(6).

I Computational content of Jr , with J coinductively defined:
how to continue after putting r into J.

I Example: St (“t is a stream”) is coinductively defined by the
clause

St → t = nil ∨ St0 ∨ St1.

Helmut Schwichtenberg Proofs and Computations

An abstract theory of sets of nodes

Nodes a, b, c are total ideals in P, viewed as lists of 0, 1.
Let t be a variable of an unspecified type α (“set of nodes”).
Language:

I a relation of arity (P, α), written a ∈ t,

I a function of type α→ P→ α, written ta (“t’s subtree at a”)

I a function of type P→ α→ α, written at (“a plus t”).

Define

Tree(t) := ∀a∈t∀n≤|a| an ∈ t “t is upward closed”,

Inf(t) := ∀n∃a∈t |a| = n “t is infinite”,

UEU(t) := ∀n∃m≥n∀a,b∈t(|a| = |b| = m→ an = bn)

“t satisfies the uniform effective uniqueness condition”,

Cta := ∃n≥|a|∀b∈t(|b| = n→ b|a| = a) “a covers the paths in t”.

Helmut Schwichtenberg Proofs and Computations

Properties

b ∈ ta ↔ ab ∈ t,

ab ∈ at ↔ b ∈ t,

∃t∀a(a ∈ t ↔ A) for A Σ-formula.

Covering nodes are in t:

Tree(t)→ Inf(t)→ Cta→ a ∈ t.

Covering nodes are “fertile”:

Tree(t)→ Inf(t)→ Cta→ Inf(ta).

The uniform effective uniqueness property is inherited to ta:

UEU(t)→ UEU(ta).

Helmut Schwichtenberg Proofs and Computations

Nodes covering the paths in t can be extended

Lemma (Extension)

Tree(t)→ Inf(t)→ UEU(t)→ Cta→ Ct(a0) ∨ Ct(a1).

Proof.
Let t be an infinite tree. Assume UEU(t) and Cta. Then we have
n ≥ |a| such that ∀b∈t(|b| = n→ a � b). By UEU(t) for n + 1 we
have m ≥ n + 1 such that

∀b,c∈t(|b| = |c | = m→ b(n + 1) = c(n + 1)).

Since t is infinite we have b ∈ t such that |b| = m. Then bn ∈ t
since t is a tree and m ≥ n + 1, hence a � bn by assumption. Let
i := (b)|a|. We show Ct(ai). Take m. Clearly m ≥ |ai |. Let c ∈ t
with |c | = m. We show ai � c . Since |b| = |c | = m we have
b(|a|+ 1) = c(|a|+ 1). Hence

ai = b(|a|+ 1) = c(|a|+ 1) � c .

Helmut Schwichtenberg Proofs and Computations

Computational content if the Extension lemma

Tree(t)→ Inf(t)→ UEU(t)→ Cta→ Ct(a0) ∨ Ct(a1).

Relative to realizers for its assumptions on t. Let inft and ueut be
witnesses for t’s infinity and UEU(t), i.e., for all k

inft(k) ∈ t ∧ |inft(k)| = k , |a| = |b| = ueut(k)→ ak = bk.

Given a, let n witness Cta. Let m := ueut(n+ 1) and b := inft(m).
Then i := (b)|a| determines which of the two alternatives is proved.
In each case m is the required witness for Ct(ai). Hence

ht(a, inft ,ueut , n) =

{
inl(m) if (b)|a| = 0,

inr(m) if (b)|a| = 1.

Helmut Schwichtenberg Proofs and Computations

Computational and non-computational logical connectives

Idea: fine tune the computational content of proofs, by switching
on and off the computational effect of logical connectives.

I Example: in ∀n(Even(n)→ Even(S(Sn))) only the premise
Even(n) should be computationally relevant, not the ∀n.

I Following Ulrich Berger (1993) we distinguish between a
computational ∀c and non-computational (“uniform”) ∀nc.

I Similarly: →c and →nc.

Helmut Schwichtenberg Proofs and Computations

Streams

We coinductively define a predicate S of arity (α) by

∀nct (St →c Eq(t,nil) ∨ St0 ∨ St1).

The greatest-fixed-point (or coinduction) axiom for S is

∀nct (Qt →c ∀nct (Qt →c Eq(t,nil)∨(St0∨Qt0)∨(St0∨Qt1))→c St).

The types are, with ι := τ(St) = P, τ := τ(Qt):

ι→ U + ι+ ι (type of destructor for P),

τ → (τ → U + (ι+ τ) + (ι+ τ))→ ι (type of coRτι).

Helmut Schwichtenberg Proofs and Computations

Converting reals into streams

Theorem
∀nct (Rt →c St), where Rt := Tree(t) ∧ Inf(t) ∧UEU(t).

Proof.
Use coinduction with R for Q. Suffices: Rt → Rt0 ∨ Rt1. From Rt
we obtain UEU(t). From Rt and Ct(nil) we have Ct0 or Ct1, by
the Extension lemma. Assume Ct0. Then Rt0, since
Tree(t0) ∧ Inf(t0) ∧UEU(t0) (cf. “Properties” above).

Extracted term: recall τ(Rt) = ρ := (N→ ι)× (N→ N).

coRρP(inft , ueut)
ρg

ρ→U+(ι+ρ)+(ι+ρ)
t ,

with gt defined from inft , ueut and the content ht of the
Extension lemma.

Helmut Schwichtenberg Proofs and Computations

Conclusion

I Terms in T+ (⊃ T,PCF): denotational semantics.

I TCF, a theory of computable functionals.

I Witnesses of coinductively defined predicates: cototal ideals.

I Example: abstract real 7→ stream, from ` ∀nct (Rt →c St).

Helmut Schwichtenberg Proofs and Computations

References

I U. Berger, Uniform Heyting arithmetic. APAL 133 (2005).

I U. Berger, From coinductive proofs to exact real arithmetic.
CSL 2009.

I J. Berger and H. Ishihara, Brouwer’s fan theorem and unique
existence in constructive analysis. MLQ 51 (2005).

I T. Coquand and P. Schuster, Unique paths as formal points.
Submitted, June 2010.

I D. Ratiu and H.S., Decorating proofs. To appear, Mints
volume (S. Feferman and W. Sieg, eds.), 2010.

I H.S., A direct proof of the equivalence between Brouwer’s fan
theorem and König’s lemma with a uniqueness hypothesis.
JUCS 11 (2005).

I H.S. and S.S. Wainer, Proofs and Computations. To appear,
Perspectives in Mathematical Logic, 2010.

Helmut Schwichtenberg Proofs and Computations

