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» Goal: a type theory allowing infinite data.

» Reason: real numbers are best represented as streams (i.e.,
possibly infinite lists) of signed digits, or else using Gray code
(U. Berger, Di Gianantonio, Miyamoto, Tsuiki, Wiesnet).

> New: treatment of extensionality, similar to Gandy “On the
axiom of extensionality — part I, JSL 1956.
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Constructor types k have the form
a— (§)i<n — 5

with all type variables «; distinct from each other and from £. We
call

L= R

an algebra form
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Examples
Algebra forms without parameter type variables are

U= pef (unit),

B = ue(&,6) (booleans),

N = pe(§,6 =€) (natural numbers, unary),

Pi=pe(§,6 =66 —E) (positive numbers, binary),

Di=pue(§,6 = €—§) (binary trees, or derivations).
Algebra forms with type parameters are

() = pe(a = §) (identity),

L(a) —%@aﬁiﬁﬁ (lists),

S(«) = pe(a = £ —=§) (streams),

L™ (a, ) =pela—=&8—=E6—=8) (non-empty lists)

axf =pla—pF—=E) (product),

a+p —ug(a—>£,ﬁ—>§) (sum).
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Types are
p,o,7u=alp) | p— o,

where ¢ is an algebra form with & its parameter type variables, and
(7)) the result of substituting the (already generated) types 7.
Types of the form (') are algebras. Let [¢(7)| :== 1 + max|p].
The level of a type is defined by

lev(a) := 0,
lev(y(p)) := max(lev(p)),
lev(p — o) := max(lev(c), 1+ lev(p)).
Base types are types of level 0, and a higher type has level > 1.

Examples. 1. L(«), L(L(«)), a x /3 are algebras.
2. L(L(N)), Z:=P+U+P, Q:=2Z x P are closed base types.
3. R:=(N—= Q) x (P — N) is a closed algebra of level 1.
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Semantics
By x” we denote “objects” of type p. They are “ideals” in the
Scott-Ershov model of partial continuous functionals. Such objects
can be infinite, already in closed base types.

This xP is the "deductive closure” of the “tokens” t, where
t; = Cuxx, tht1 := Ctpty.
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Syntax

Terms of T are built from (typed) variables, constructors C or
defined constants D by abstraction and application:

M, N == x? | CP | DP | (Axe M7)P7 | (MPT7NP).
Defined constants D come with a system of computation rules
DPi(y)=M; (i=1,....n)
Examples. 1. R{;: N—7—= (N — 7 — 7) — 7, with rules
noaf = a, N(Sm)af = fn(R{naf).
2. “RL:7—= (1= U+(N+7)) = N, with rules

0 if ix = DummyLU+(N+T)
CORLXF =< Sn if fx = Inr(InLN=N*7p)
S(ORLX'F) if i = Inr(InR7™"NT7x)
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Clauses and Predicate Forms

Assume an infinite supply of predicate variables, each of its own
arity (a list of types). Distinguish “computationally relevant” ones
X ... and “non-computational” ones X™°.... By X or X™® we
denote the result of applying X or X" to a I|st of terms of fitting
types, and by X or X" lists of those.

Clauses K have the form
V;(Y/ — 7" (V}-,'I.(VVI-HC — Xi))i<n - )_<)

with all predicate variables Y;, Zj*°, W occuring exactly once
and distinct from each other and from X. Predicate forms are

= (/W)xK, 1= (" ")xK
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Predicates and Formulas

Definition (Predicates and formulas)
P, Q=X | X™ [ {X| A} I(7,P,Q) | I"(7, P),

A B:=Pt |A— B| VA

with / and /"¢ predicate forms.
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Totality and Cototality

For closed base types ¢(p') define (co)totality predicates T, z,

T,z of arity (¢(p)) by induction on [¢(p’)| := 1 + max|g|. Here s
is an algebra form (e.g. L). p are closed base types.

Examples. (I) TN = ,ux(Ko, Kl) and ©° Ty = Vx(K(), Kl) with

Ko Z:(OEX)
Ki:=Vs(ne X — Sne X)

(II) T|_7N = Mx(Ko, Kl) and COT|_7N = Vx(Ko, Kl) with clauses

Ko := ([] € X)
Ki=Vo(neTn—=1eX—=n:leX)

(iii). TL,L(N) = HX(KO) Kl) and TL,L(N) = Vx(Ko, Kl) with

Ko := ([] € X)
Ki ::V/#(/E TL,N—>UEX—>/::U€X)
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For every algebra form ¢ with parameters @ we define two predicate
forms: similarity ~, and bisimilarity =, with parameters &, Y
(where Y; has arity («j, «;) for each «;).

Let & — (£)j<n — € be a constructor type. Take (u/v)z(K),
where the clause corresponding to the constructor type above is

Yindy = ... Ypoupt, = Zyvivy = ... ZpvmVv. — Z(Civ,Ci'v’
1 n 1 m )

with C the corresponding constructor of ¢.
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Example: The constructor types of L(«) are { and o — £ — &,
and the corresponding clauses are

Ko: Z([la> lla),
Ki: Vet uw (Yo — Zud' — Z(x :: u,x" 2 d')).

~ = puz(Ko, K1) is the least fixed point of these two clauses.
= vz(Ko, K1) is the greatest fixed point of the closure axiom

Q

(umd)—= (U=EllaANd =a)V

/ / _ A /
T, (YX AN mup Au=xciu Ad =X ).
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Definition (Pattern |C| of a predicate or formula C)
For C n.c. let |C| := 0. Assume C is c.r.

(1715, P, @)l == (1/°°1)(|PI)

|PE] — |P
Al = |B| for Ac.r.
|A = B| _ JIAI= 1Bl for cr
I1B] otherwise
%Al = 1Al

Definition (Type 7(U) of a c.r. predicate pattern U)

7((1/°N)(0)) = (r(U))
(U—=V) = {T(U) — (V) for U cr
(V) otherwise

Here ¢ is the name of the algebra associated to (//°/).
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Equality and Extensionality

Definition (Predicates = and Exty)

(x i(//co/)(a) y) =Kx(~/=), = y)

=g
(x € Bxt(y o)) = (€ (T/PT)uxty)

Vae(T o), (X =V 8X) if U=(1/<1)(0),

f : =
(F=v-ve) 7(U) given by ¢, pf

Vay(x =uy = fx =v gy)
(f € EXtU%\/) = (f =Usv f)
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Definition (C" for predicates and formulas C)

For n.c. Clet C":=C. If Cisc.r. C"is a predicate of arity
(¢, 7(C)) with & the arity of C. Write zr C for C'z if Cis a c.r.
formula. For c.r. predicates let X" be an n.c. predicate variable, and

{X|A}Y ={Xz|zr A}.
For a c.r. predicate form
= (u/V)x(Vz (Vi = 2P — (Vy,-y(Wirf = Xiv))v<n = Xi))i<k
we define the n.c. witnessing predicate form

"= (1/v)xe (Vx0T v Vi = 28— (5, (Wi = viu v Xiv)) ), —
Citivi v X))i<k

Here C; is the i-th constructor of the algebra form ¢; with

constructor types 7(Kj), K; the i-th clause of /. For a c.r. inductive

predicate /(7, P, Q) we define I(7, P, Q)" to be I'(5, P", Q).
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C" for predicates and formulas C (continued)

For c.r. formulas let
zr Pt:= P'tz,
zr(A— B) = {

zr YV A =V (zr A).

Vw(wrA—zwr B) if Aisc.r.
A—zrB if Aisn.c.
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» According to Kolmogorov (1932) a c.r. formula A should be
viewed as a “computational problem”, asking for a solution.

» This solution should be a functional of type 7(A) which is
“mathematically reasonable”, i.e. extensional w.r.t. A.

We express this view in the form of invariance axioms:

Inva: A Jcux, (2 1 A).
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Extracted term et(M) of a derivation MA with A c.r.

et(u™) =27 (21™ uniquely associated to u*),

7(A) e A
et(A\ ,aMBYAZB) = {)‘Zu et(M) if Aiscur.

et(M) if Ais n.c.
ct(MAENAYE) . J CHM)et(N) if Als cr.
 |et(m) if Ais n.c.

et((AMMA)A) = et(M),

et((MPA )AC)) = et(M).
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Extracted term et(M) of a derivation M* (ctd.)

It remains to define extracted terms for the axioms. Consider a
(c.r.) inductively defined predicate /. For its introduction and
elimination axioms define

et(I7):=C; and et(/7):=R,

where both the constructor C; and the recursion operator R refer
to the algebra ¢; associated with /. For the closure and
greatest-fixed-point axioms of “°/ define

et(“I) :==°R and et(“/”):=D,

where both the corecursion operator ““R and the destructor D
refer again to the algebra ¢; associated with /. For the invariance
axioms we take the respective identities.
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Lemma (Extensionality of axiom-free proof terms)

For every proof M: A without axioms and with free assumptions
among ii: C we have

Zg(c) € EXtE — et(M)T(A) € Exta.

Lemma (Extensionality of the recursion operator)

Let | be an inductive predicate and v; its associated algebra. Then
the extracted term et(/~) := R], of its least-fixed-point (or
elimination) axiom |~ is extensional w.r.t. |~

Lemma (Extensionality of the corecursion operator)

Let “°l be a coinductive predicate and v, its associated algebra.
Then the extracted term et(“I") := “°R] of its
greatest-fixed-point (or coinduction) axiom “°l s extensional
w.r.t. T,
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Theorem (Soundness)

Let M be a derivation of a formula A from assumptions u;: C;
(i < n). Then we can derive

et(M) € Exta, et(M)rA ifAiscr.
A if Ais n.c.

from assumptions

z,; € Extc,, z,, v C; ifCiiscr.
G if C; is n.c.
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