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Context and notation

» A, B,... formulas of implicational (propositional) logic, built
from propositional variables P, Q, ... by implication —.

» “A=A— 1 and " ,A:= A — *.
» k. and F; denote classical and intuitionistic derivability.

> ¢ A means Staby(4) - A and F; A means Efqy,4) F A,
where - denotes derivability in minimal logic,

Staby :={-—-P = P|PecV}
Efqy = {L—=P|PecV}
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Assume . A.

» Which assumptions on the propositional variables P in A are
needed for I; A?

> Ishihara 2014: A F; A for A a set of disjunctions PV =P.
> Here: Instead of PV =P we take

Stabp: -—P = P
Peircegp: (R = P) = Q) = Q
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Results

» . A implies Stabp t=; A for P the final conclusion of A.
> . A implies M4 = A for

Ma := { Peirce, p |
P final conclusion of a positive subformula of A}
U{L — %}

with % a new prop. variable and 1. — x present only if L in A.
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» Intuitionistic logic and stability
» Minimal logic and Peirce formulas

» Examples
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Work in Gentzen's natural deduction calculus.

Proposition.
(a) T ¢ Aimplies Stab,, ==l F; .- A,
(b) T ¢ Aimplies Stab,, I - .-, A.

Proof of (b) from (a).

Note that - (L — %) - A — —,—A. But L — x is a consequence

of Stab,.

O
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Proof of (a) I ¢ A implies Stab,, ==l F; =,—,A

By induction on I . A.

Case Ax. Since our only axiom is stability =——A — A we must
prove Stab, F; =, —.(—-—A — A).

It is easiest to find such a proof with the help of a proof assistant
(http://www.minlog-system.de, writing F for L and S for x):
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Stab, Fj =, (A = A)

u: F > A
u0: ((S -> F) ->F) -> 8
ul: (((A -=> F) ->F) -> A) > S

u2: s -> F

u3d: (A ->F) > F
u4é: S > F

ub: A

u6: (A -> F) -> F
(lambda (u)

(lambda (u0)
(lambda (ul)
(u0 (lambda (u2)
(u2 (u1l (lambda (u3)
(u (u2 (0 (lambda (u4)
(u3 (lambda (ub)
(u2 (u1 (lambda (u6)

ub))...)
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Proof of (a) I ¢ A implies Stab,, ==l F; =,—,A
Use

= (—\—|>I< — *) — ,mA = —|*—|*A, (1)
F(L—B)—= (A — —B)— (A= B). (2)

Case Assumption. Goal: Stab,, —,—AF; —,—,A. Follows from
(?7?). Case —™.
[u: Al
| M
A i g 'y
By induction hypothesis

Staby, 7, " A = B.
The claim Stab,, == F; =.—.(A — B) follows from (77).
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One instance of stability suffices

Theorem
Fc A implies Stabp =; A for P the final conclusion of A.

Proof.
Let A=T — P. Recall
(b) T ¢ P implies Stab,, I ; =,—,P.
Hence
Staby, I, 7P *

with * new. Substituting * by P gives Stabp,[,P — P+; P. [
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Glivenko's theorem

says that every negation proved classically can also be proved
intuitionistically.

Corollary (Glivenko).
MFc L implies ;L.

Proof. In the theorem let A=T — 1:
¢ L implies Stab, [ F; L.

But Stab is ((L — L) — L) — L and hence easy to prove.
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» Intuitionistic logic and stability
» Minimal logic and Peirce formulas

» Examples
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Use

» Peirce suffices for the final atom:
t Peirce, g — Peirce, o—sB.
» Double negation shift for — (DNS_,)

F Peirce, g — (A = = B) = —.—(A — B).
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» Work in Gentzen's G3cp.
» Let I', A denote multisets of implicational formulas.

By induction on derivations D: I = A in G3cp we define MN(D).

M(D) will be a set of formulas Peirce, p for P the final conclusion
of a positive subformula of I = A, plus possibly (depending on
which axioms appear in D) the formula L — .
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» Cases Ax: P, = A,Pand LL: 1, = A. We can assume
that I and A are atomic. If TN A =0 let (D) := {L — x},
and := () otherwise.

» Case L—. Then D ends with

| Dy | D2
r=AA BTl=A
ASBT=A

Let (D) := N(D1) UN(Dy).
» Case R—. Then D ends with

| D1
AT = A, B
= AA-B N7

Let MN(D) := MN(D1) U {Peirce, p} (P final conclusion of B).
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Proposition.
(a) Let D: T = A in G3cp. Then F N(D), I, A = .

(b) Let D: T = % in G3cp. Then F MN(D),I = .

Proof. (a). By induction on the derivation D.
Case LL. Then D: L, T = A with ', A atomic. If (L,T)NA =10

then MN(D) = {L — %} and hence - MN(D), L, I, 7. A = x.
Case R—. Then D ends with

| Dy
AT=AB
r=AA-B V7
F (D), T, A = A — =, B by IH
by DNS_,

F Peirce, g, M(D1),T, ~A = == (A — B)
F (D), I, —.A,—(A— B) = *.
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Theorem.
Fc A implies M4 = A for
Ma := { Peirce, p |
P final conclusion of a positive subformula of A}

U{L — *}

with 1 — x present only if L in A.

Proof. G3cp is cut free, hence has the subformula property.
Therefore a derivation in G3cp of a sequent without L cannot
involve LL. In this case (D) consists of Peirce formulas only.
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» Intuitionistic logic and stability
» Minimal logic and Peirce formulas

» Examples
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Generalized Peirce formulas

Ao = (x— Py) — *
Ant1 :=(Ap = Ppi1) — x

GP,:=A, — %
For example

GPo = ((x = Py) — *) — *
GP1 = ((((* = Po) = *) = P1) — %) — %
GP2 = (((((+ = Po) = ) = P1) = %) = P2) = x) = %
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Proposition.
(a) (Peirce, p,)i<n F GP,
(b) (Peirce*7pi),-§n’,-¢j |7/ GP,,

Proof of (b). Assume (Peirce, p,)i<n,i+j F GPn. Substitute all P;
(i # j) by *. Then all Peirce, p, (i # j) become provable and GP,
becomes equivalent to Peirce, p;. Contradiction.

Example (n =2, j =1):
GP2 = ((((((x = Po) = ) = P1) = %) = P2) = %) — =
is turned into

(G = %) = %) = P1) = %) = %) = %) = .
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Examples where one Peirce formula suffices

Nagata formulas: another generalization of Peirce formulas.

No(A) := A

Nk+1(*, Ao, . .. ,Ak) = ((* — Nk(Ao, ce ,Ak)) — *) — k.

For instance
Ni(x,A) = ((x = A) = %) —

No(x, A, B) = ((x = Ni(A, B)) — %) — x
=((x—=> (A= B)—=>A) = A) — %) = *.
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Examples where one Peirce formula suffices (continued)

Bull ((A— B)— B) = %) — ((A— B) = %) —
Hosoi ((B = A) = %) = (((A— B) = A) = A) — %) —
Tarski (A— %) = ((A— B) — %) —
Minari ((x = A) = B) — (B — %) — %
Mints ((((A— B) = A) = A) = %) — x

(

Glivenko (((B— A) = ((B— C) = A) = A) = %) = %
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