Embedding classical in minimal implicational logic

Hajime Ishihara and Helmut Schwichtenberg

Schoole of Information Science, Jaist, Japan and Mathematisches Institut, LMU, München

University of Bern, 19. June 2014

Context and notation

- ▶ A, B, ... formulas of implicational (propositional) logic, built from propositional variables P, Q, ... by implication \rightarrow .
- $ightharpoonup
 eg A := A \rightarrow \bot \text{ and } \neg_* A := A \rightarrow *.$
- $ightharpoonup \vdash_c$ and \vdash_i denote classical and intuitionistic derivability.
- ▶ $\vdash_c A$ means $\operatorname{Stab}_{\mathcal{V}(A)} \vdash A$ and $\vdash_i A$ means $\operatorname{Efq}_{\mathcal{V}(A)} \vdash A$, where \vdash denotes derivability in minimal logic,

$$\begin{split} \operatorname{Stab}_{V} &:= \{\, \neg \neg P \to P \mid P \in V \,\}, \\ \operatorname{Efq}_{V} &:= \, \{\, \bot \to P \mid P \in V \,\}. \end{split}$$

Assume $\vdash_c A$.

- Which assumptions on the propositional variables P in A are needed for ⊢_i A?
- ▶ Ishihara 2014: $\Delta \vdash_i A$ for Δ a set of disjunctions $P \vee \neg P$.
- ▶ Here: Instead of $P \lor \neg P$ we take

$$\operatorname{Stab}_P: \neg \neg P \to P$$

 $\operatorname{Peirce}_{Q,P}: ((Q \to P) \to Q) \to Q$

Results

- $ightharpoonup \vdash_{c} A \text{ implies } \operatorname{Stab}_{P} \vdash_{i} A \text{ for } P \text{ the final conclusion of } A.$
- ▶ $\vdash_c A$ implies $\Pi_A \vdash A$ for

$$\begin{split} \Pi_A := \{ & \operatorname{Peirce}_{*,P} \mid \\ & P \text{ final conclusion of a positive subformula of } A \} \\ & \cup \{ \bot \to * \} \end{split}$$

with * a new prop. variable and $\bot \to *$ present only if \bot in A.

- ► Intuitionistic logic and stability
- ▶ Minimal logic and Peirce formulas
- Examples

Work in Gentzen's natural deduction calculus.

Proposition.

- (a) $\Gamma \vdash_c A$ implies $\operatorname{Stab}_*, \neg_* \neg \Gamma \vdash_i \neg_* \neg_* A$.
- (b) $\Gamma \vdash_c A$ implies $\operatorname{Stab}_*, \Gamma \vdash_i \lnot_* \lnot_* A$.

Proof of (b) from (a).

Note that $\vdash (\bot \to *) \to A \to \lnot_* \lnot A$. But $\bot \to *$ is a consequence of Stab_* .

Proof of (a) $\Gamma \vdash_c A$ implies $\operatorname{Stab}_*, \neg_* \neg \Gamma \vdash_i \neg_* \neg_* A$

By induction on $\Gamma \vdash_{c} A$.

Case Ax. Since our only axiom is stability $\neg \neg A \to A$ we must prove $\operatorname{Stab}_* \vdash_i \neg_* \neg_* (\neg \neg A \to A)$.

It is easiest to find such a proof with the help of a proof assistant (http://www.minlog-system.de, writing F for \bot and S for *):

```
\operatorname{Stab}_* \vdash_i \lnot_* \lnot_* (\lnot \lnot A \to A)
    u: F -> A
    u0: ((S -> F) -> F) -> S
    u1: (((A \rightarrow F) \rightarrow F) \rightarrow A) \rightarrow S
    u2: S -> F
    u3: (A -> F) -> F
    114: S -> F
    115: A
    u6: (A -> F) -> F
    (lambda (u)
      (lambda (u0)
       (lambda (u1)
        (u0 (lambda (u2)
               (u2 (u1 (lambda (u3)
                           (u (u2 (u0 (lambda (u4)
                                          (u3 (lambda (u5)
                                                 (u2 (u1 (lambda (u6)
                                                             u5))...)
```

Proof of (a) $\Gamma \vdash_c A$ implies $\operatorname{Stab}_*, \neg_* \neg \Gamma \vdash_i \neg_* \neg_* A$

Use

$$\vdash (\neg \neg * \to *) \to \neg_* \neg A \to \neg_* \neg_* A, \tag{1}$$

$$\vdash (\bot \to B) \to (\lnot_* \lnot A \to \lnot_* \lnot_* B) \to \lnot_* \lnot_* (A \to B). \tag{2}$$

Case Assumption. Goal: $\operatorname{Stab}_*, \neg_* \neg A \vdash_i \neg_* \neg_* A$. Follows from $(\ref{eq:condition})$. Case \rightarrow^+ .

$$[u:A] | M$$

$$B \rightarrow B \rightarrow u$$

By induction hypothesis

$$\operatorname{Stab}_*, \neg_* \neg \Gamma, \neg_* \neg A \vdash_i \neg_* \neg_* B.$$

The claim $\operatorname{Stab}_*, \neg_* \neg \Gamma \vdash_i \neg_* \neg_* (A \to B)$ follows from (??).

One instance of stability suffices

Theorem

 $\vdash_{c} A \text{ implies } \operatorname{Stab}_{P} \vdash_{i} A \text{ for } P \text{ the final conclusion of } A.$

Proof.

Let $A = \Gamma \rightarrow P$. Recall

(b) $\Gamma \vdash_{c} P$ implies $\operatorname{Stab}_{*}, \Gamma \vdash_{i} \neg_{*} \neg_{*} P$.

Hence

$$\operatorname{Stab}_*, \Gamma, \neg_* P \vdash_i *$$

with * new. Substituting * by P gives Stab_{P} , Γ , $P \to P \vdash_{i} P$. \square

Glivenko's theorem

says that every negation proved classically can also be proved intuitionistically.

Corollary (Glivenko).

 $\Gamma \vdash_c \bot \text{ implies } \Gamma \vdash_i \bot.$

Proof. In the theorem let $A = \Gamma \rightarrow \bot$:

 $\Gamma \vdash_c \bot \text{ implies } \operatorname{Stab}_{\bot}, \Gamma \vdash_i \bot.$

But $\operatorname{Stab}_{\perp}$ is $((\bot \to \bot) \to \bot) \to \bot$ and hence easy to prove.

- Intuitionistic logic and stability
- Minimal logic and Peirce formulas
- Examples

Use

▶ Peirce suffices for the final atom:

$$\vdash \text{Peirce}_{*,B} \rightarrow \text{Peirce}_{*,A\rightarrow B}$$
.

▶ Double negation shift for \rightarrow (DNS $_{\rightarrow}$)

$$\vdash \operatorname{Peirce}_{*,B} \to (A \to \neg_* \neg_* B) \to \neg_* \neg_* (A \to B).$$

- Work in Gentzen's G3cp.
- Let Γ , Δ denote multisets of implicational formulas.

By induction on derivations $\mathcal{D} \colon \Gamma \Rightarrow \Delta$ in **G3cp** we define $\Pi(\mathcal{D})$.

 $\Pi(\mathcal{D})$ will be a set of formulas $\mathrm{Peirce}_{*,P}$ for P the final conclusion of a positive subformula of $\Gamma\Rightarrow\Delta$, plus possibly (depending on which axioms appear in \mathcal{D}) the formula $\bot\to*$.

- ▶ Cases $Ax: P, \Gamma \Rightarrow \Delta, P$ and $L\bot: \bot, \Gamma \Rightarrow \Delta$. We can assume that Γ and Δ are atomic. If $\Gamma \cap \Delta = \emptyset$ let $\Pi(\mathcal{D}) := \{\bot \to *\}$, and $:= \emptyset$ otherwise.
- ightharpoonup Case L \rightarrow . Then \mathcal{D} ends with

$$\begin{array}{c|c} & |\mathcal{D}_1 & |\mathcal{D}_2 \\ \hline \Gamma \Rightarrow \Delta, A & B, \Gamma \Rightarrow \Delta \\ \hline A \rightarrow B, \Gamma \Rightarrow \Delta \end{array} L \rightarrow$$

Let $\Pi(\mathcal{D}) := \Pi(\mathcal{D}_1) \cup \Pi(\mathcal{D}_2)$.

ightharpoonup Case R
ightharpoonup. Then \mathcal{D} ends with

$$\frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \to B} R \to$$

Let $\Pi(\mathcal{D}) := \Pi(\mathcal{D}_1) \cup \{\text{Peirce}_{*,P}\}\ (P \text{ final conclusion of } B).$

Proposition.

- (a) Let $\mathcal{D}: \Gamma \Rightarrow \Delta$ in **G3cp**. Then $\vdash \Pi(\mathcal{D}), \Gamma, \neg_* \Delta \Rightarrow *$.
- (b) Let $\mathcal{D} \colon \Gamma \Rightarrow *$ in **G3cp**. Then $\vdash \Pi(\mathcal{D}), \Gamma \Rightarrow *$.

Proof. (a). By induction on the derivation \mathcal{D} . Case $L\bot$. Then $\mathcal{D}:\bot,\Gamma\Rightarrow\Delta$ with Γ,Δ atomic. If $(\bot,\Gamma)\cap\Delta=\emptyset$ then $\Pi(\mathcal{D})=\{\bot\to*\}$ and hence $\vdash\Pi(\mathcal{D}),\bot,\Gamma,\lnot_*\Delta\Rightarrow*$. Case $R\to$. Then \mathcal{D} ends with

$$\frac{|\mathcal{D}_1|}{A,\Gamma \Rightarrow \Delta, B} \xrightarrow{\Gamma \Rightarrow \Delta, A \to B} R \to$$

$$\vdash \Pi(\mathcal{D}_{1}), \Gamma, \neg_{*}\Delta \Rightarrow A \rightarrow \neg_{*}\neg_{*}B \qquad \text{by IH}$$

$$\vdash \operatorname{Peirce}_{*,B}, \Pi(\mathcal{D}_{1}), \Gamma, \neg_{*}\Delta \Rightarrow \neg_{*}\neg_{*}(A \rightarrow B) \quad \text{by DNS}_{\rightarrow}$$

$$\vdash \Pi(\mathcal{D}), \Gamma, \neg_{*}\Delta, \neg_{*}(A \rightarrow B) \Rightarrow *.$$

Theorem.

 $\vdash_c A$ implies $\Pi_A \vdash A$ for

$$\begin{split} \Pi_A := \{ & \operatorname{Peirce}_{*,P} \mid \\ & P \text{ final conclusion of a positive subformula of } A \} \\ & \cup \{ \bot \to * \} \end{split}$$

with $\bot \to *$ present only if \bot in A.

Proof. **G3cp** is cut free, hence has the subformula property. Therefore a derivation in **G3cp** of a sequent without \bot cannot involve $L\bot$. In this case $\Pi(\mathcal{D})$ consists of Peirce formulas only.

- Intuitionistic logic and stability
- ▶ Minimal logic and Peirce formulas
- Examples

Generalized Peirce formulas

$$A_0 := (* \to P_0) \to *$$

$$A_{n+1} := (A_n \to P_{n+1}) \to *$$

$$GP_n := A_n \to *$$

For example

$$GP_0 = ((* \rightarrow P_0) \rightarrow *) \rightarrow *$$

$$GP_1 = ((((* \rightarrow P_0) \rightarrow *) \rightarrow P_1) \rightarrow *) \rightarrow *$$

$$GP_2 = ((((((* \rightarrow P_0) \rightarrow *) \rightarrow P_1) \rightarrow *) \rightarrow P_2) \rightarrow *) \rightarrow *$$

Proposition.

- (a) $(\text{Peirce}_{*,P_i})_{i\leq n} \vdash GP_n$
- (b) (Peirce_{*, P_i})_{$i \le n, i \ne j$} \forall GP_n.

Proof of (b). Assume $(\operatorname{Peirce}_{*,P_i})_{i\leq n,i\neq j} \vdash \operatorname{GP}_n$. Substitute all P_i $(i\neq j)$ by *. Then all $\operatorname{Peirce}_{*,P_i}$ $(i\neq j)$ become provable and GP_n becomes equivalent to $\operatorname{Peirce}_{*,P_i}$. Contradiction.

Example (n = 2, j = 1):

$$\mathrm{GP}_2 = ((((((*\rightarrow P_0)\rightarrow *)\rightarrow P_1)\rightarrow *)\rightarrow P_2)\rightarrow *)\rightarrow *$$

is turned into

Examples where one Peirce formula suffices

Nagata formulas: another generalization of Peirce formulas.

$$N_0(A) := A$$
 $N_{k+1}(*, A_0, \dots, A_k) := ((* \to N_k(A_0, \dots, A_k)) \to *) \to *.$

For instance

$$N_1(*,A) = ((* \to A) \to *) \to *$$

$$N_2(*,A,B) = ((* \to N_1(A,B)) \to *) \to *$$

$$= ((* \to ((A \to B) \to A) \to A) \to *) \to *.$$

Examples where one Peirce formula suffices (continued)

```
Bull (((A \rightarrow B) \rightarrow B) \rightarrow *) \rightarrow ((A \rightarrow B) \rightarrow *) \rightarrow *
Hosoi ((B \rightarrow A) \rightarrow *) \rightarrow ((((A \rightarrow B) \rightarrow A) \rightarrow A) \rightarrow *) \rightarrow *
Tarski (A \rightarrow *) \rightarrow ((A \rightarrow B) \rightarrow *) \rightarrow *
Minari ((* \rightarrow A) \rightarrow B) \rightarrow (B \rightarrow *) \rightarrow *
Mints ((((A \rightarrow B) \rightarrow A) \rightarrow A) \rightarrow *) \rightarrow *
Glivenko (((B \rightarrow A) \rightarrow ((B \rightarrow C) \rightarrow A) \rightarrow A) \rightarrow *) \rightarrow *
```