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1 Grundlegendes
Definition 1 (Quasiordnung). Eine Quasiordnung ist eine reflexive und transitive Re-
lation. Eine quasigeordnete Menge ist ein Paar 𝐼 = (𝐼, ≺𝐼) mit Menge 𝐼 und Qua-
siordnung ≺𝐼 auf 𝐼. Wir schreiben weiter hom(𝐼, 𝐼 ′) für die Menge der monotonen
Funktionen von 𝐼 zu 𝐼′.

Definition 2 (Gerichtete Menge). Eine quasigeordnete Menge 𝐼 heißt gerichtet, falls 𝐼
nicht leer ist und eine Schrankenfunktion ub𝐼 ∈ hom(𝐼 × 𝐼, 𝐼) existiert, sodass 𝑥, 𝑦 ∈ 𝐼,
𝑥 ≺𝐼 ub𝐼(𝑥, 𝑦) und 𝑦 ≺𝐼 ub𝐼(𝑥, 𝑦).

Definition 3 (Halbordnung). Eine Halbordnung ist eine reflexive, antisymmetrische
und transitive Relation.

Definition 4 (Halbverband). Ein Halbverband ist ein Setoid 𝑋 zusammen mit einer
Setoidfunktion

𝑋 × 𝑋 → 𝑋, (𝑥, 𝑦) ↦ 𝑥 ∨ 𝑦,

Join, sodass

𝑥 ∨ (𝑦 ∨ 𝑧) =𝑋 (𝑥 ∨ 𝑦) ∨ 𝑧, (𝑦 ∨ 𝑥) =𝑋 𝑥 ∨ 𝑦 𝑥 ∨ 𝑥 =𝑋 𝑥

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋. Wir definieren weiter die kanonische Halbordnung auf 𝑋 durch

𝑥 ≤𝑋 𝑦 ⇔ 𝑥 ∨ 𝑦 =𝑋 𝑦.

Definition 5 (Uniformer Raum). Eine uniforme Struktur auf einem Setoid 𝑋 =
(𝑋, =𝑋) ist ein Tripel bestehend aus einer gerichteten quasigeordneten Menge 𝐼𝑥 =
(𝐼𝑋, ≼𝐼𝑋

), einer Funktion 𝜌𝑋 ∈ hom(𝐼𝑋, 𝐼𝑥) und einer Relation ⊩𝑋 zwischen 𝑋 × 𝑋
und 𝐼𝑋 sodass

1. ∀𝑥,𝑦∈𝑋(𝑥 =𝑋 𝑦 ⇔ ∀𝑎∈𝐼𝑋
(𝑥, 𝑦) ⊩𝑋 𝑎),

2. ∀𝑎∈𝐼𝑋
∀𝑥,𝑦,𝑥′,𝑦′∈𝑋𝑥 =𝑋 𝑥′ ⇒ 𝑦 =𝑋 𝑦′ ⇒ (𝑥, 𝑦) ⊩𝑋 𝑎 ⇒ (𝑥′, 𝑦′) ⊩𝑋 𝑎,

3. ∀𝑎∈𝐼𝑋
∀𝑥,𝑦∈𝑋(𝑥, 𝑦) ⊩𝑋 𝑎 ⇒ (𝑦, 𝑥) ⊩𝑋 𝑎,

4. ∀𝑎,𝑏∈𝐼𝑋
∀𝑥,𝑦∈𝑋𝑎 ≼𝐼𝑋

𝑏 ⇒ (𝑥, 𝑦) ⊩𝑋 𝑏 ⇒ (𝑥, 𝑦) ⊩𝑋 𝑎,

5. ∀𝑎∈𝐼𝑋
∀𝑥,𝑦,𝑧∈𝑋(𝑥, 𝑦) ⊩𝑋 𝜌𝑋(𝑎) ⇒ (𝑦, 𝑧) ⊩𝑋 𝜌𝑋(𝑎) ⇒ (𝑥, 𝑧) ⊩𝑋 𝑎.

Ein Uniformer Raum ist ein Setoid mit zugehöriger uniformer Struktur.

1



Definition 6 (Netz). Sei 𝑋 ein Setoid und 𝐽 ein gerichte quasigeordnete Menge. Dann
nennen wir eine Funktion 𝑥 ∶ 𝑗 ↦ 𝑥𝑗, 𝐽 → 𝑋 ein Netz von 𝐽 in 𝑋 und notieren es als
(𝑥𝑗)𝑗∈𝐽. Wir schreiben weiter 𝑋𝐽 für die Menge der Netze auf 𝑋 von 𝐽.

Definition 7 (Konvergenz von Netzen). Sei 𝑋 ein uniformer Raum. Dann konvergiert
ein Netz (𝑥𝑗)𝑗∈𝐽 ∈ 𝑋𝐽 zu einem Element 𝑥 ∈ 𝑋 falls ein Modul 𝛽 ∈ hom(𝐼𝑥, 𝐽) existiert,
sodass für alle 𝑎 ∈ 𝐼𝑋 und 𝑗 ∈ 𝐽 mit 𝛽(𝑎) ≼𝐼𝐽

𝑗

(𝑥𝑗, 𝑥) ⊩𝑋 𝑎

gilt. Wir schreiben dann weiter (𝑥𝑗)𝑗∈𝐽 → 𝑥 und nennen 𝑥 den Grenzwert von (𝑥𝑗)𝑗∈𝐽.

Definition 8 (Cauchynetz). Ein Netz (𝑥𝑗)𝑗∈𝐽 ∈ 𝑋𝐽 ist ein Cauchynetz in 𝑋, falls ein
Modul 𝛼 ∈ hom(𝐼𝑋, 𝐽) existiert, sodass

∀𝑎∈𝐼𝑋
∀𝑗,𝑗′∈𝐽𝛼(𝑎) ≼𝐼𝐽

𝑗, 𝑗′ ⇒ (𝑥𝑗, 𝑥𝑗′) ⊩𝑋 𝑎

gilt.

Theorem 1 (Vervollständigung). Für jeden uniformen Raum 𝑋 existiert ein uniformer
Unterraum bzw. Untersetoid 𝑋̃, die sogenannte Vervollständigung von 𝑋, als auch eine
uniform stetige Setoidenfunktion 𝜂𝑋 ∶ 𝑋 → 𝑋̃. Dabei konvergiert jedes Cauchynetz in
𝑋̃ und 𝜂𝑋̃ ist ein uniformer Isomorphismus.

Definition 9 (Vollständiger uniformer Raum). Ein uniformer Raum 𝑋 ist vollständig,
falls 𝜂𝑋 ∶ 𝑋 → 𝑋̃ ein uniformer Isomorphismus ist.

Definition 10 (Uniforme Stetigkeit). Eine Funktion 𝑋 → 𝑌 zwischen uniformen Räu-
men ist uniform stetig, falls ein Modul 𝛾 ∈ hom(𝐼𝑌, 𝐼𝑥) existiert, sodass

∀𝑏∈𝐼𝑌
∀𝑥,𝑦∈𝑋(𝑥, 𝑦) ⊩𝑋 𝛾(𝑏) ⇒ (𝑓(𝑥), 𝑓(𝑦)) ⊩𝑌 𝑏.

Lemma 1. Jede uniform stetige Funktion ist eine Setoidfunktion.

Definition 11 (Lokale uniforme Stetigkeit). Eine Funktion 𝑓 ∶ 𝑋 → 𝑌 zwischen
Uniformen Räumen 𝑋, 𝑌 heißt lokal uniform stetig, falls eine Funktion 𝑧 ↦ 𝛾𝑧,
𝑋̃ → hom(𝐼𝑌, 𝐼𝑋) existiert, sodass aus

(𝑧, 𝜂𝑋(𝑥)) ⊩𝑋̃ 𝛾𝑧(𝑏) (𝑧, 𝜂𝑋(𝑦)) ⊩𝑋̃ 𝛾𝑧(𝑏)

die Aussage (𝑓(𝑥), 𝑓(𝑦)) ⊩𝑌 𝑏 für alle 𝑏 ∈ 𝐼𝑌, 𝑧 ∈ 𝑋̃ sowie 𝑥, 𝑦 ∈ 𝑋 folgt.

Lemma 2. Uniform stetige Funktionen sind lokal uniform stetig.

Theorem 2. Seien 𝑋, 𝑌 uniforme Räume. Dann existiert zu jeder uniform stetigen
(bzw. lokal uniform stetigen) Funktion 𝑓 ∶ 𝑋 → 𝑌 eine eindeutige uniform stetige (bzw.
lokal uniform stetige) Funktion ̃𝑓 ∶ 𝑋̃ → ̃𝑌, sodass ̃𝑓 ∘ 𝜂𝑋 ∼ 𝜂𝑌 ∘ 𝑓.

2 Topologische Vektorräume und Verbände

2.1 Relle Zahlen

Proposition 1 (Uniforme Struktur auf ℚ). Seien 𝜌ℚ ∶ ℕ × ℕ und ⊩ℚ∶ (ℚ × ℚ) × ℕ
definiert durch

𝜌ℚ(𝑛) = 𝑛 + 1,
(𝑝, 𝑞) ⊩ℚ 𝑛 ⇔ |𝑝 − 𝑞| ≤ℚ 2−𝑛.

2



Dann ist (ℕ, 𝜌ℚ, ⊩ℚ) eine uniforme Struktur auf dem Setoid ℚ, sodass die Addition
ℚ × ℚ → ℚ, die Negation ℚ → ℚ und das Maximum ℚ × ℚ → ℚ uniform stetig sind und
sodass die Multiplikation ℚ × ℚ → ℚ lokal uniform stetig ist.

Definition 12 (Die reellen Zahlen). The uniforme Raum ℝ the reellen Zahlen ist die
Vervollständigung ℚ̃ des uniformen Raums ℚ.

2.2 Topologische Vektorräume

Definition 13 (Vektorraum). Ein Vektorraum (über ℝ) ist ein Setoid 𝑋 = (𝑋, =𝑋)
zusammen mit Setoidfunktionen

• Addition 𝑋 × 𝑋 → 𝑋, (𝑥, 𝑦) ↦ 𝑥 + 𝑦,

• Negation 𝑋 → 𝑋, 𝑥 ↦ −𝑥,

• Skalarmultiplikation ℝ × 𝑋 → 𝑋, (𝑠, 𝑥) ↦ 𝑠𝑥,

sowie zusammen mit dem Nullelement 0 ∈ 𝑋. Dabei soll (𝑋, +, −, 0) eine abelsche
Gruppe definieren und die Skalarmultiplikation so gewählt sein, sodass ℝ → Homℝ(𝑋, 𝑋)
einen Ringhomomorphismus definiert. Es müssen also die Gleichungen

(𝑥 + 𝑦) + 𝑧 =𝑋 𝑥 + (𝑦 + 𝑧), 𝑥 + 𝑦 =𝑋 𝑦 + 𝑥,
𝑥 + 0 =𝑋 𝑥, 𝑥 + (−𝑥) =𝑋 0,

𝑠(𝑥 + 𝑦) =𝑋 𝑠𝑥 + 𝑠𝑦, (𝑠 + 𝑡)𝑥 =𝑋 𝑠𝑥 + 𝑡𝑥,
𝑠(𝑡𝑥) =𝑋 (𝑠𝑡)𝑥, 1𝑥 =𝑋 𝑥

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋 und 𝑠, 𝑡 ∈ ℝ gelten.

Example 1. Sei 𝐹[0, 1] die Menge der Setoidfunktionen [0, 1] → ℝ. Dann können
wir den Setoiden (𝐹 [0, 1], ∼) definieren und eine Vektorraumstruktur durch Aktion im
Zielraum definieren,

(𝑓 + 𝑔)(𝑥) = 𝑓(𝑥) + 𝑔(𝑥), (−𝑓)(𝑥) = −𝑓(𝑥)
(𝑠𝑓)(𝑥) = 𝑠𝑓(𝑥), 0(𝑥) = 0

für 𝑓, 𝑔 ∈ 𝐹[0, 1], 𝑠 ∈ ℝ und 𝑥 ∈ [0, 1].

Definition 14 (Lineare Funktion). Eine lineare Funktion 𝑓 ∶ 𝑋 → 𝑌 zwischen Vektor-
räumen 𝑋, 𝑌 ist eine Setoidfunktion, sodass

𝑓(𝑥 + 𝑦) =𝑌 𝑓(𝑥) + 𝑓(𝑦) 𝑓(𝑠𝑥) =𝑌 𝑠𝑓(𝑥)

für alle 𝑥, 𝑦 ∈ 𝑋 und 𝑠 ∈ ℝ gilt.

Definition 15 (Lineares Funktional). Ein lineares Funktional auf einem Vektorraum
𝑋 ist eine lineare Funktion von Art 𝑋 → ℝ.

Definition 16 (Topologischer Vektorraum). Ein topologischer Vektorraum ist ein Vek-
torraum 𝑋 zusammen mit uniformer Struktur (𝐼𝑋, 𝜌𝑋, ⊩𝑋), sodass

1. die Addition + ∶ 𝑋 × 𝑋 → 𝑋 uniform stetig ist,
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2. eine Funktion 𝜉𝑋 ∶ 𝐼𝑋 × 𝑋 → ℕ existiert, sodass für jedes 𝑎 ∈ 𝐼𝑋

(0, 𝑠𝑥) ⊩𝑋 𝑎

für alle 𝑥 ∈ 𝑋 und 𝑠 ∈ ℝ mit |𝑠| ≤ℝ 2−𝜉𝑋(𝑎,𝑥),

3. für jedes 𝑎 ∈ 𝐼𝑋
(0, 𝑥) ⊩𝑋 𝑎 ⇒ (0, 𝑠𝑥) ⊩𝑋 𝑎

für alle 𝑥 ∈ 𝑋 und 𝑠 ∈ ℝ mit |𝑠| ≤ℝ 1.

Lemma 3. Ist 𝑋 ein topologischer Vektorraum, so sind auch das Inverse uniform stetig
und die Skalarmultiplikation ist lokal uniform stetig.

Theorem 3 (Vervollständigung von topologischen Vektorräumen). Die Vervollständi-
gung eines topologischen Vektorraums ist auch ein topologischer Vektorraum.

Definition 17 (Vektorverband). Ein Vektorverband ist ein Vektorraum 𝑋 sodass 𝑋
ein Halbverband ist, und weiter

1. (𝑥 + 𝑧) ∨ (𝑦 + 𝑧) =𝑋 (𝑥 ∨ 𝑦) + 𝑧

2. 0 ≤ℝ 𝑠 ⇒ 𝑠(𝑥 ∨ 𝑦) =𝑋 (𝑠𝑥) ∨ (𝑠𝑦)

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋 und 𝑠 ∈ ℝ.

Example 2. Auch hierfür ist 𝐹[0, 1] ein Beispiel zusammen mit punktweisem Maximum
𝑓∨𝑔 = maxℝ ∘(𝑓, 𝑔). Weiter können wir auch gewisse Teilmengen von 𝐹[0, 1] betrachten,
beispielsweise 𝐶[0, 1], die Menge der uniform stetigen Funktionen [0, 1] → ℝ.

Lemma 4. Sei 𝑋 ein Vektorverband. Dann

1. falls 𝑥 ≤𝑋 𝑦, so 𝑥 + 𝑧 ≤𝑋 𝑦 + 𝑧,

2. falls 𝑥 ≤𝑋 𝑦 und 0 ≤ℝ 𝑠, so 𝑠𝑥 ≤𝑋 𝑠𝑦

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋 und 𝑠 ∈ ℝ.

Proposition 2 (Vektorverbände sind Verbände). Sei 𝑋 ein Vektorverband und (𝑥, 𝑦) ↦
𝑥 ∧ 𝑦 definiert durch

𝑥 ∧ 𝑦 =𝑋 −(−𝑥 ∨ −𝑦)

für alle 𝑥, 𝑦 ∈ 𝑋. Dann ist ∧ assoziativ, kommutativ und weiter

𝑥 ∧ 𝑥 =𝑋 𝑥, 𝑥 ∨ (𝑥 ∧ 𝑦) =𝑋 𝑥 𝑥 ∧ (𝑥 ∨ 𝑦) =𝑋 𝑥

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋. Des Weiteren 𝑥 ≤𝑋 𝑦 ⇔ 𝑥 ∧ 𝑦 =𝑋 𝑥 und 𝑥 ∧ 𝑦 ist der größte untere
Bund von {𝑥, 𝑦} für 𝑥, 𝑦 ∈ 𝑋.

Lemma 5. Sei 𝑋 ein Vektorverband. Dann gilt

1. 𝑥 + 𝑦 =𝑋 𝑥 ∨ 𝑦 + 𝑥 ∧ 𝑦,

2. (𝑥 + 𝑧) ∧ (𝑦 + 𝑧) =𝑋 (𝑥 ∧ 𝑦) + 𝑧,

3. falls 0 ≤ℝ 𝑠, so 𝑠(𝑥 ∧ 𝑦) =𝑋 𝑠𝑥 ∧ 𝑠𝑦

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋 und 𝑠 ∈ ℝ.
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Proposition 3 (Vektorverbände sind distributiv). Jeder Vektorverband 𝑋 ist ein dis-
tributiver Verband, d.h.

1. 𝑥 ∨ (𝑦 ∧ 𝑧) =𝑋 (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧),

2. 𝑥 ∧ (𝑦 ∨ 𝑧) =𝑋 (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧)

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Definition 18 (Positiver Kegel). Sei 𝑋 ein Vektorverband. Dann nennen wir die
Teilmenge

𝐶𝑋 = {𝑥 ∈ 𝑋 ∣ 0 ≤𝑋 𝑥}

den positiven Kegel von 𝑋.

Definition 19 (Positives lineares Funktional). Wir nennen weiter ein lineares Funk-
tional 𝑓 auf 𝑋 positiv, falls ∀𝑥∈𝐶𝑋

0 ≤ℝ 𝑓(𝑥).

Remark 1. 𝐶𝑋 = (𝐶𝑋, ≤𝑋) mit ub𝐶𝑥
= ∨ ∈ hom(𝐶𝑋 × 𝐶𝑋, 𝐶𝑋) ist eine gerichtete

quasigeordnete Menge.

Example 3. Sei 𝑅 ∶ 𝐶[0, 1] → ℝ eine Funktion definiert durch

𝑅(𝑓, 𝛾) = ∫ 𝑓

wobei ∫ das Riemannintegral ist. Dann ist 𝑅 bekanntlich ein positives lineares Funk-
tional.

Lemma 6. Jedes positive lineare Funktional ist monoton.

Proof. Seien 𝑥, 𝑦 ∈ 𝑋 mit 𝑥 ≤𝑋 𝑦 gegeben. Dann ist

0 =𝑋 𝑥 + (−𝑥) ≤𝑋 𝑦 + (−𝑥)

also auch

𝑓(𝑥) =ℝ 𝑓(𝑥) + 𝑓(0) ≤ℝ 𝑓(𝑥) + 𝑓(𝑦 + (−𝑥)) = 𝑓(𝑥) + 𝑓(𝑦) − 𝑓(𝑥) = 𝑓(𝑦).

Definition 20 ((−𝑥)+, (−𝑥)−, |−| und kegeldisjsunkte Werte). Sei 𝑋 ein Vektorver-
band. Wir definieren (−)+ ∶ 𝑋 → 𝑋, (−)− ∶ 𝑋 → 𝑋 sowie |−| ∶ 𝑋 → 𝑋 durch

𝑥+ = 𝑥 ∨ 0, 𝑥− = (−𝑥) ∨ 0, |𝑥| = 𝑥 ∨ (−𝑥).

Wir nennen weiter Werte 𝑥, 𝑦 ∈ 𝑋 kegeldisjunkt, falls |𝑥| ∧ |𝑦| =𝑋= 0.

Lemma 7 (Eigenschaften von (−𝑥)+, (−𝑥)−, |−| und Kegeldisjunktheit). Sei 𝑋 ein
Vektorverband. Dann gilt

1. 𝑥 =𝑋 𝑥+ − 𝑥−,

2. 𝑥+ und 𝑥− sind kegeldisjunkt,

3. für jedes Paar an kegeldisjunkten Elementen 𝑢, 𝑣 ∈ 𝐶𝑋, folgt 𝑢 =𝑋 𝑥+ und
𝑣 =𝑋 𝑥− aus 𝑥 =𝑋 𝑢 − 𝑣,
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4. |−𝑥| =𝑋 |𝑥| = 𝑥+ + 𝑥− ∈ 𝐶𝑋,

5. für alle 𝑠 ∈ ℝ mit 0 ≤ℝ 𝑠 gilt (𝑠𝑥)+ =𝑋 𝑠𝑥+, (𝑠𝑥)− =𝑋 𝑠𝑥− und |𝑠𝑥| =𝑋 𝑠|𝑥|,

6. 𝑥 und 𝑦 sind kegeldisjunkt genau dann wenn |𝑥| ∨ |𝑦| =𝑋 |𝑥| + |𝑦|,

7. sind 𝑥 und 𝑦 kegeldisjunkt, so folgt (𝑥 + 𝑦)+ = 𝑥+ + 𝑦+, (𝑥 + 𝑦)− = 𝑥− + 𝑦− und
|𝑥 + 𝑦| =𝑋 |𝑥| + |𝑦|

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Lemma 8 (Weitere eigenschaften von |−|). Sei 𝑋 ein Vektorverband. Dann gilt

1. |𝑥 + 𝑦| ≤𝑋 |𝑥| + |𝑦|,

2. |𝑠𝑥| ≤𝑋 |𝑠||𝑥|,

3. |𝑥 ∨ 𝑧 − 𝑦 ∨ 𝑧| ≤𝑋 |𝑥 − 𝑦|,

4. |𝑥 ∧ 𝑧 − 𝑦 ∧ 𝑧| ≤𝑋 |𝑥 − 𝑦|,

5. (|𝑥| + |𝑦|) ∧ 𝑢 ≤𝑋 |𝑥| ∧ 𝑢 + |𝑦| ∧ 𝑢,

6. |𝑠𝑥| ∧ 𝑢 ≤𝑋 (|𝑠| + 1)(|𝑥| ∧ 𝑢),

7. |𝑥 ∧ |𝑦| − 𝑥 ∧ |𝑧|| ≤𝑋 |𝑦 − 𝑧| ∧ |𝑥|

für alle 𝑥, 𝑦, 𝑧 ∈ 𝑋, 𝑠 ∈ ℝ und 𝑢 ∈ 𝐶𝑋.

Definition 21 (Topologischer Vektorverband). Ein topologischer Vektorverband ist
ein Vektorverband 𝑋 mit uniformer Struktur (𝐼𝑋, 𝜌𝑋, ⊩𝑋) sodass

1. 𝑋 ein topologischer Vektorraum ist,

2. ∨ ∶ 𝑋 × 𝑋 → 𝑋 uniform stetig ist,

3. für alle 𝑎 ∈ 𝐼𝑋 und 𝑥, 𝑦 ∈ 𝐶𝑋 mit 𝑥 ≤𝑋 𝑦

(0, 𝑦) ⊩𝑋 𝑎 ⇒ (0, 𝑥) ⊩𝑋 𝑎.

Theorem 4. Die Vervollständigung eines topologischen Vektorverbands 𝑋 ist wieder
ein topologischer Vektorverband. Insbesondere ist 𝜂𝑋 ∶ 𝑋 → 𝑋̃ vertauschbar mit den
Operationen eines topologischen Vektorverbandes.

3 Integrationstheorie
Definition 22 (Abstrakter Integrationsraum). Ein abstrakter Integrationsraum ist ein
Vektorverband 𝑋 zusammen mit einem positiven linearen Funktional 𝐸 auf 𝑋.

Sei im folgenden ein abstrakter Integrationsraum (𝑋, 𝐸) fest gewählt.
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3.1 Integrierbare Funktionen

Lemma 9. Das Paar 𝐿 = (𝑋, =𝐿) mit

𝑥 =𝐿 𝑦 ⇔ ∀𝑛∈ℕ𝐸(|𝑥 − 𝑦|) ≤ℝ 2−𝑛

ist ein Setoid.

Proof. Reflexivität und Symmetrie sind Trivial. Zur Transitivität: Seien 𝑥 =𝐿 𝑦 und
𝑦 =𝐿 𝑧 sowie 𝑛 ∈ ℕ gegeben. Dann ist 𝐸(|𝑥 − 𝑦|), 𝐸(|𝑦 − 𝑧|) ≤ℝ 2−𝑛−1 und daher

𝐸(|𝑥 − 𝑧|) ≤ 𝐸(|𝑥 − 𝑦| + |𝑦 − 𝑧|) ≤ 2−𝑛−1 + 2−𝑛−1 = 2−𝑛,

wobei wir die Positivität von 𝐸 benutzen.

Proposition 4 (Uniforme Struktur 𝐿). Das Tupel (ℕ, 𝜌𝐿, ⊩𝐿) mit

𝜌𝐿(𝑛) = 𝑛 + 1,
(𝑥, 𝑦) ⊩𝐿 𝑛 ⇔ 𝐸(|𝑥 − 𝑦|) ≤ℝ 2−𝑛

ist eine uniforme Struktur auf 𝐿.

Proof. 1. Zu zeigen ist 𝑥 =𝐿 𝑦 ⇔ ∀𝑛∈ℕ(𝑥, 𝑦) ⊩𝐿 𝑛. Dies folgt direkt durch Entfalten
der Definitionen.

2. Sei 𝑛 ∈ ℕ und 𝑥, 𝑦, 𝑥′, 𝑦′ ∈ 𝑋, sodass 𝑥 =𝐿 𝑥′, 𝑦 =𝐿 𝑦′ und (𝑥, 𝑦) ⊩𝐿 𝑛. Dann
folgt für alle 𝑚 ∈ ℕ

𝐸(|𝑥′ − 𝑦′|) ≤ 𝐸(|𝑥′ − 𝑥|) + 𝐸(|𝑥 − 𝑦|) + 𝐸(|𝑦 − 𝑦′|)
≤ 2−𝑚−1 + 2−𝑛 + 2−𝑚−1

≤ 2−𝑚 + 2−𝑛.

Also gilt (𝑥′, 𝑦′) ⊩𝐿 𝑛.

3. Zu zeigen ist (𝑥, 𝑦) ⊩𝐿 𝑛 ⇔ (𝑦, 𝑥) ⊩𝐿 𝑛. Dies folgt direkt aus |𝑥 − 𝑦| = |𝑦 − 𝑥|.

4. Seien 𝑛, 𝑚 ∈ ℕ und 𝑥, 𝑦 ∈ 𝑋 mit 𝑛 ≤ 𝑚 und (𝑥, 𝑦) ⊩𝐿 𝑚. Dann folgt

𝐸(|𝑥 − 𝑦|) ≤ 2−𝑚 ≤ 2−𝑛,

also (𝑥, 𝑦) ⊩𝐿 𝑛.

5. Seien 𝑛 ∈ ℕ und 𝑥, 𝑦, 𝑧 ∈ 𝑋, sowie (𝑥, 𝑦), (𝑦, 𝑧) ⊩𝐿 𝑛 + 1. Dann folgt

𝐸(|𝑥 − 𝑧|) ≤ 𝐸(|𝑥 − 𝑦|) + 𝐸(|𝑦 − 𝑧|) ≤ 2−𝑛−1 + 2−𝑛−1 = 2𝑛,

also (𝑥, 𝑧) ⊩𝐿 𝑛.

Proposition 5. Die kanonische Funktion 𝜋𝐿 ∶ 𝑋 → 𝐿 ist eine Setoidfunktion.

Proof. Sei 𝑥 =𝑋 𝑦. Dann ist 𝑥 − 𝑦 =𝑋 𝑥 − 𝑥 =𝑋 0 und daher ∀𝑛∈ℕ(𝑥, 𝑦) ⊩𝐿 𝑛, also
𝑥 =𝐿 𝑦.

Proposition 6. 𝐿 ist ein topologischer Vektorverband.
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Proof. Für die Halbverbandstruktur und Vektorraumstruktur auf 𝐿 übernehmen wir
die von 𝑋 gegebene. Dabei nützen wir aus, dass 𝜋𝐿 eine Setoidfunktion ist, d.h. die
Gleichungen in der Definition des Vektorraums für 𝑋 gelten auch in 𝐿. Gleiches gilt für
die definierenden Gleichungen eines Vektorverbands. Wir müssen weiter zeigen, dass 𝐿
ein topologischer Vektorraum ist:

1. Die Addition + ∶ 𝐿×𝐿 → 𝐿 ist uniform stetig: Wir wählen den Modulus 𝛾+(𝑛) =
(𝑛 + 1, 𝑛 + 1). Ist nun

((𝑥, 𝑦), (𝑥′, 𝑦′)) ⊩𝐿×𝐿 𝛾+(𝑛)

gegeben, so gilt (𝑥, 𝑥′) ⊩𝐿 𝑛 + 1 und (𝑦, 𝑦′) ⊩𝐿 𝑛 + 1. Damit folgt

𝐸(|(𝑥 + 𝑦) − (𝑥′ + 𝑦′)|) ≤ 𝐸(|(𝑥 − 𝑥′) + (𝑦 − 𝑦′)|)
≤ 𝐸(|𝑥 − 𝑥′|) + 𝐸(|(𝑦 − 𝑦′)|)
≤ 2−𝑛

2. Sei 𝑒 ∶ ℝ → ℕ so definiert sodass 2−𝑒(𝑟)𝑟 ≤ 1 (ℝ ist archimedisch), dann können
wir 𝜉𝐿(𝑛, 𝑥) = 𝑛 + 𝑒(𝐸(|𝑥|)) definieren. Sind nun 𝑛 ∈ ℕ sowie 𝑥 ∈ 𝑋, 𝑠 ∈ ℝ mit
|𝑠| ≤ℝ 2−𝜉𝐿(𝑛,𝑥) gegeben, so folgt

𝐸(|𝑠𝑥|) = |𝑠|𝐸(|𝑥|) ≤ 2−𝑛−𝑒(𝐸(|𝑥|))𝐸(|𝑥|) ≤ 2−𝑛,

also (0, 𝑠𝑥) ⊩𝐿 𝑛.

3. Sei (0, 𝑥) ⊩𝑋 𝑛. Zu zeigen ist (0, 𝑠𝑥) ⊩𝐿 𝑛 für |𝑠| ≤ℝ 1. Trivial.

Damit verbleibt nur zu zeigen, dass 𝐿 ein topologischer Vektorverband ist.

1. ∨ ∶ 𝐿×𝐿 → 𝐿 ist uniform stetig: Wir wählen den Modulus 𝛾∨(𝑛) = (𝑛+1, 𝑛+1).
Sei wieder

((𝑥, 𝑦), (𝑥′, 𝑦′)) ⊩𝐿×𝐿 𝛾∨(𝑛)

gegeben, so gilt (𝑥, 𝑥′) ⊩𝐿 𝑛 + 1 und (𝑦, 𝑦′) ⊩𝐿 𝑛 + 1. Damit folgt

𝐸(|(𝑥 ∨ 𝑦) − (𝑥′ ∨ 𝑦′)|) = 𝐸(|(𝑥 ∨ 𝑦 − 𝑥′ ∨ 𝑦) + (𝑥′ ∨ 𝑦 − 𝑥′ ∨ 𝑦′)|)
≤ 𝐸(|𝑥 ∨ 𝑦 − 𝑥′ ∨ 𝑦|) + 𝐸(|𝑥′ ∨ 𝑦 − 𝑥′ ∨ 𝑦′|)
≤ 𝐸(|𝑥 − 𝑥′|) + 𝐸(|𝑦 − ∨𝑦′|)
≤ 2−𝑛

2. Sei 𝑛 ∈ ℕ gegeben zusammen mit 0 ≤𝐿 𝑥, 𝑦, 𝑥 ≤𝐿 𝑦 und (0, 𝑦) ⊩𝐿 𝑛. Zu zeigen
ist (0, 𝑥) ⊩𝐿 𝑛:

𝐸(|𝑥|) = 𝐸(𝑥)
= 𝐸(𝑦) − 𝐸(𝑦 − 𝑥)
≤ 𝐸(𝑦)
≤ 2−𝑛
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Wir schreiben ℒ für die Vervollständigung 𝐿̃ des topologischen Vektorverbands 𝐿
und nennen die Elemente von ℒ integrierbare Funktionen über dem abstrakten Inte-
grationsraum (𝑋, 𝐸).

Proposition 7. Es existiert eine uniform stetige Funktion ∫ ∶ ℒ → ℝ sodass

1. ∫ 𝜂𝐿(𝑥) =ℝ 𝐸(𝑥),

2. ∫(𝑓 + 𝑔) =ℝ ∫ 𝑓 + ∫ 𝑔,

3. ∫(𝑠𝑓) =ℝ 𝑠 ∫ 𝑓,

4. ist 0 ≤ℒ 𝑓, dann 0 ≤ℝ ∫ 𝑓

für alle 𝑥 ∈ 𝐿, 𝑓, 𝑔 ∈ ℒ und 𝑠 ∈ ℝ. Für 𝑓 ∈ ℒ nennen wir ∫ 𝑓 das Integral von 𝑓.

Proof. Wir zeigen zunächst, dass 𝐸 ∶ 𝐿 → ℝ uniform stetig ist: Sei (𝑥, 𝑦) ⊩𝐿 𝑛. Dann

|𝐸(𝑥) − 𝐸(𝑦)| ≤ 𝐸(|𝑥 − 𝑦|) ≤ 2−𝑛

und daher (𝐸(𝑥), 𝐸(𝑦)) ⊩ℝ 𝑛 (𝐸(𝑥) − 𝐸(𝑦), 𝐸(𝑦) − 𝐸(𝑥) ≤ 𝐸(|𝑥 − 𝑦|), da 𝑥 − 𝑦, 𝑦 − 𝑥 ≤
|𝑥 − 𝑦|). Also ist 𝐸 ∶ 𝐿 → ℝ uniform stetig womit ein ̃𝐸 ∶ ℒ → ℝ̃ mit 𝜂ℝ ∘ 𝐸 = ̃𝐸 ∘ 𝜂𝐿
existiert. Da ℝ vollständig ist, ist 𝜂ℝ ein Isomorphismus und ein 𝜀ℝ mit 𝜀ℝ ∘ 𝜂ℝ = idℝ
existiert. Wir definieren ∫ = 𝜀ℝ ∘ ̃𝐸. Dann gilt direkt

∫ 𝜂𝐿(𝑥) = 𝜀ℝ( ̃𝐸(𝜂𝐿(𝑥))) = 𝐸(𝑥).

Linearität folgt für Werte 𝜂𝐿(𝑥), 𝑥 ∈ 𝐿 unmittelbar. Da die Erweiterung auf die
Vervollständigungen eindeutig ist, folgt Linearität auch allgemein, vgl. bspw. ∫(𝑠𝑓)
mit 𝑠 ∫ 𝑓.

Sei zuletzt 𝑓 = (𝑥𝑛)𝑛∈ℕ ∈ ℒ mit 0 ≤ℒ 𝑓. Da (−)+ uniform stetig ist und da
(𝜂𝐿(𝑥𝑛))𝑛 → 𝑓, erhalten wir

𝜂𝐿(𝑥+
𝑛) =ℒ 𝜂𝐿(𝑥𝑛)+ → 𝑓+ =ℒ 𝑓.

Wegen uniformer Stetigkeit von ∫ erhalten wir also

0 ≤ 𝐸(𝑥+
𝑛) = ∫ 𝜂𝐿(𝑥+

𝑛)

für alle 𝑛 ∈ ℕ. Insbesondere erhalten wir also 0 ≤ℝ ∫ 𝑓.

Proposition 8. Sei (𝑓𝑛)𝑛∈ℕ eine steigende Folge an integrierbaren Funktionen, also
∀𝑛∈ℕ𝑓𝑛 ≤ℒ 𝑓𝑛+1. Ist (∫ 𝑓𝑛)𝑛∈ℕ konvergent in ℝ, so konvergiert (𝑓𝑛)𝑛∈ℕ in ℒ.

Proof. Da (∫ 𝑓𝑛)𝑛∈ℕ konvergent in ℝ, ist (∫ 𝑓𝑛)𝑛∈ℕ eine Cauchy-Folge mit einem Modul
𝛼 ∈ hom(ℕ, ℕ). Gegeben ein 𝑛 ∈ ℕ, betrachte 𝑚, 𝑚′ ∈ ℕ sodass 𝛼(𝜌2

ℒ(𝑛) + 1) ≤ 𝑚 ≤
𝑚′. Wir werden nun zeigen, dass (𝑓𝑛)𝑛∈ℕ eine Cauchyfolge mit Modul 𝛼(𝜌2

ℒ(𝑛) + 1)
ist. Da ∫ 𝑓𝑚 ≤ ∫ 𝑓𝑚′ wegen 𝑓𝑚 ≤ 𝑓𝑚′ , folgt nun ∫ 𝑓𝑚′ − ∫ 𝑓𝑚 ≤ 2−(𝜌ℒ(𝑛)+1). Sei
𝑓𝑚 = (𝑥𝑛′)𝑛′∈ℕ und 𝑓𝑚′ = (𝑦𝑛′)𝑛′∈ℕ. Dann gilt 𝜂𝐿(𝑥𝑛′) → 𝑓𝑚, 𝜂𝐿(𝑦𝑛′) → 𝑓𝑚′ . Da
∨ ∶ ℒ × ℒ → ℒ uniform stetig ist, folgt weiter

𝜂𝐿(𝑥𝑛′ ∨ 𝑦𝑛′) =ℒ 𝜂𝐿(𝑥𝑛′) ∨ 𝜂𝐿(𝑦𝑛′) → 𝑓𝑚 ∨ 𝑓𝑚′ =ℒ 𝑓𝑚′ .
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Also folgt 𝐸(𝑥𝑛′) =ℝ ∫ 𝜂𝐿(𝑥𝑛′) → ∫ 𝑓𝑚 sowie 𝐸(𝑥𝑛′ ∨ 𝑦𝑛′) =ℝ ∫ 𝜂𝐿(𝑥𝑛′ ∨ 𝑦𝑛′) → ∫ 𝑓𝑚′ .
Wählen wir nun 𝑛′ ∈ ℕ sodass

(𝑓𝑚, 𝜂𝐿(𝑥𝑛′)) ⊩ℒ 𝜌2
ℒ(𝑛), (𝑓𝑚′ , 𝜂𝐿(𝑥𝑛′ ∨ 𝑦𝑛′)) ⊩ℒ 𝜌ℒ(𝑛),

∣𝐸(𝑥𝑛′) − ∫ 𝑓𝑚∣ ≤ 2−𝜌2
ℒ(𝑛)−2, ∣𝐸(𝑥𝑛′ ∨ 𝑦𝑛′) − ∫ 𝑓𝑚′ ∣ ≤ 2−𝜌2

ℒ(𝑛)−2.

Wir erhalten dann

𝐸(|𝑥𝑛′ ∨ 𝑦𝑛′ − 𝑥𝑛′ |)
= 𝐸(𝑥𝑛′ ∨ 𝑦𝑛′ − 𝑥𝑛′)
= 𝐸(𝑥𝑛′ ∨ 𝑦𝑛′) − 𝐸(𝑥𝑛′)

= (𝐸(𝑥𝑛′ ∨ 𝑦𝑛′) − ∫ 𝑓𝑚′) + (∫ 𝑓𝑚′ − ∫ 𝑓𝑚) + (∫ 𝑓𝑚 − 𝐸(𝑥𝑛′))

≤ ∣𝐸(𝑥𝑛′ ∨ 𝑦𝑛′) − ∫ 𝑓𝑚′ ∣ + (∫ 𝑓𝑚′ − ∫ 𝑓𝑚) + ∣∫ 𝑓𝑚 − 𝐸(𝑥𝑛′)∣

≤ 2−𝜌2
ℒ(𝑛)−2 + 2−𝜌2

ℒ(𝑛)−1 + 2−𝜌2
ℒ(𝑛)−2

≤ 2−𝜌2
ℒ(𝑛).

Also gilt (𝑥𝑛′ ∨ 𝑦𝑛′ , 𝑥𝑛′) ⊩𝐿 𝜌2
ℒ(𝑛) und daher auch (𝜂𝐿(𝑥𝑛′ ∨ 𝑦𝑛′), 𝜂𝐿(𝑥𝑛′)) ⊩𝐿 𝜌2

ℒ(𝑛).
Wir erhalten zusammen mit (𝑓𝑚, 𝜂𝐿(𝑥𝑛′)) ⊩ℒ 𝜌2

ℒ(𝑛) und (𝑓𝑚′ , 𝜂𝐿(𝑥𝑛′ ∨ 𝑦𝑛′)) ⊩ℒ 𝜌ℒ(𝑛)
also (𝑓𝑚, 𝑓𝑚′) ⊩ℒ 𝑛. Also ist (𝑓𝑚)𝑚∈ℕ eine Cauchyfolge mit Modul 𝛼(𝜌2

ℒ(𝑛) + 1) und
konvergiert daher in ℒ.

3.2 Messbare Funktionen

Ähnlich zu den integrierbaren Funktionen ℒ konstruieren wir nun die messbaren Funk-
tionen ℳ auf dem abstrakten Integrationsraum (𝑋, 𝐸).

Lemma 10. Das Paar 𝑀 = (𝑋, =𝑀) mit

𝑥 =𝑀 𝑦 ⇔ ∀𝑛∈ℕ∀𝑢∈𝐶𝑋
𝐸(|𝑥 − 𝑦| ∧ 𝑢) ≤ℝ 2−𝑛

ist ein Setoid.

Proof. Vgl. oben.

Proposition 9 (Uniforme Struktur 𝑀). Das Tupel (ℕ, 𝜌𝑀, ⊩𝑀) mit

𝜌𝑀((𝑢, 𝑛)) = (𝑢, 𝑛 + 1),
(𝑥, 𝑦) ⊩𝑀 (𝑢, 𝑛) ⇔ 𝐸(|𝑥 − 𝑦| ∧ 𝑢) ≤ℝ 2−𝑛

ist eine uniforme Struktur auf 𝑀.

Proof. Vgl. oben.

Proposition 10. 𝑀 ist ein topologischer Vektorverband.

Proof. Vgl. oben.
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3.3 Konvergenztheoreme

Lemma 11. Die Funktion 𝜄𝐿 ∶ 𝐿 → 𝑀, 𝜄𝐿(𝑥) = 𝑥, ist eine uniform stetige Setoidin-
jektion.

Proof. Wir zeigen zunächst uniforme Stetigkeit. Wir wählen den Modul 𝛾((𝑢, 𝑛)) = 𝑛.
Ist nun (𝑥, 𝑦) ⊩𝐿 𝛾((𝑢, 𝑛)), so folgt

𝐸(|𝜄𝐿(𝑥) − 𝜄𝐿(𝑦)| ∧ 𝑢) = 𝐸(|𝑥 − 𝑦| ∧ 𝑢) ≤ 𝐸(|𝑥 − 𝑦|) ≤ 2−𝑛.

Also folgt (𝜄𝐿(𝑥), 𝜄𝐿(𝑦)) ⊩𝑀 (𝑢, 𝑛). Aus der uniformen Stetigkeit folgt nun insbesondere,
dass 𝜄𝐿 eine Setoidfunktion ist.

Nun zur Injektivität. Sei 𝜄𝐿(𝑥) =𝑀 𝜄𝐿(𝑦) für 𝑥, 𝑦 ∈ 𝐿. Wir haben dann

𝐸(|𝑥 − 𝑦|) = 𝐸(|𝑥 − 𝑦| ∧ |𝑥 − 𝑦|) ≤ 2−𝑛

für alle 𝑛 ∈ ℕ, also 𝑥 =𝐿 𝑦. Also ist 𝜄𝐿 injektiv.

Proposition 11. Es existiert eine uniform stetige Einbettung 𝜆 ∶ ℒ → ℳ, sodass
𝜂𝑀 ∘ 𝜄𝐿 = 𝜆 ∘ 𝜂𝐿.

Proof. Da 𝜄𝐿 uniform stetig ist, können wir 𝜆 als Erweiterung von 𝜄𝐿 auf die Vervoll-
ständigungen definieren. Dann gilt insbesondere 𝜂𝑀 ∘ 𝜄𝐿 = 𝜆 ∘ 𝜂𝐿. Exemplarisch zeigen
wir, dass 𝜆 die Addition erhält. Wir haben

𝜆(𝜂𝐿(𝑥) + 𝜂𝐿(𝑦)) = 𝜆(𝜂𝐿(𝑥 + 𝑦))
= 𝜂𝑀(𝜄𝐿(𝑥 + 𝑦))
= 𝜂𝑀(𝜄𝐿(𝑥)) + 𝜂𝑀(𝜄𝐿(𝑦))
= 𝜆(𝜂𝐿(𝑥)) + 𝜆(𝜂𝐿(𝑦))

für 𝑥, 𝑦 ∈ 𝐿. Aus der Eindeutigkeit der Erweiterung von 𝜄𝐿 folgt nun Gleichheit für
arbiträre Elemente in ℒ. Zeigen wir weiter, dass 𝜆 injektiv ist. Sei 𝑓 = (𝑥𝑚)𝑚∈ℕ ∈ ℒ
gegeben mit 𝜆(𝑓) =ℳ 𝜂𝑀(0). Weiter gilt 𝜆(𝜂𝐿(𝑥𝑚)) → 𝜂𝑀(0), da 𝜂𝐿(𝑥𝑚) → 𝑓 in ℒ.
Für ein beliebiges 𝑛 ∈ ℕ existiert ein 𝑚 ∈ ℕ, sodass für alle 𝑚′ ≥ 𝑚 die Abschätzung

(𝜆(𝜂𝐿(𝑥𝑚′)), 𝜂𝑀(0)) = (𝜂𝑀(𝜄𝐿(𝑥𝑚′)), 𝜂𝑀(0)) ⊩ℳ 𝜌2
𝑀((|𝑥𝑛+1|, 𝑛 + 1))

gilt. Daraus folgt nun also (𝜄𝐿(𝑥𝑚′), 0) ⊩ℳ (|𝑥𝑛+1|, 𝑛+1). Wir erhalten für alle 𝑚′ ∈ ℕ
mit 𝑚, 𝑛 + 1 ≤ 𝑚′ wegen (𝑥𝑚′ , 𝑥𝑛+1) ⊩𝐿 𝑛 + 1

𝐸(|𝑥𝑚′ |) ≤ 𝐸(|𝑥𝑚′ | ∧ |𝑥𝑚′ |)
≤ 𝐸(|𝑥𝑛+1 + (𝑥𝑚′ − 𝑥𝑛+1)| ∧ |𝑥𝑚′ |)
≤ 𝐸((|𝑥𝑛+1| + |𝑥𝑚′ − 𝑥𝑛+1|) ∧ |𝑥𝑚′ |)
≤ 𝐸(|𝑥𝑛+1| ∧ |𝑥𝑚′ | + |𝑥𝑚′ − 𝑥𝑛+1| ∧ |𝑥𝑚′ |)
≤ 𝐸(|𝑥𝑛+1| ∧ |𝑥𝑚′ | + |𝑥𝑚′ − 𝑥𝑛+1|)
≤ 𝐸(|𝑥𝑛+1| ∧ |𝑥𝑚′ |) + 𝐸(|𝑥𝑚′ − 𝑥𝑛+1|)
≤ 2−𝑛−1 + 2−𝑛−1 = 2−𝑛

und daher (𝑥𝑚′ , 0) ⊩𝐿 𝑛. Wir können also 𝑓 =ℒ 0 schlussfolgern.
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Proposition 12. Für jedes 𝑔 ∈ ℒ existiert eine uniform stetige Funktion 𝜇𝑔 ∶ ℳ → ℒ
sodass

𝜇𝑔(𝜆(𝑓)) =ℒ 𝑔 ∧ |𝑓|
𝜆(𝜇𝑔(ℎ)) =ℳ 𝜆(𝑔) ∧ |ℎ|

für alle 𝑓 ∈ ℒ und ℎ ∈ ℳ.

Der Beweis funktioniert leider nicht direkt, da ein Funktionsterm aufgrund der
verschiedenen Herkünfte von 𝑔 und ℎ nicht direkt aufgeschrieben werden kann. Des
Weiteren funktioniert keine einfache Konstruktion über die Erweiterung einer Funktion
𝑀 → 𝐿, da im allgemeinen 𝑔 ∈ ℒ und nicht nur 𝑔 ∈ 𝐿.

Theorem 5. Sei 𝑓 eine messbare Funktion. Existiert eine integrierbare Funktion 𝑔 mit
|𝑓| ≤ℳ 𝜆(𝑔), so existiert eine integrierbare Funktion 𝑓ℒ mit 𝑓 =ℳ 𝜆(𝑓ℒ).

Proof. Angenommen |𝑓| ≤ℳ 𝜆(𝑔) für ein 𝑔 ∈ ℒ. Da 𝑓+, 𝑓− ≤ |𝑓| ≤ 𝜆(𝑔) folgt

𝜆(𝜇𝑔(𝑓+)) = 𝜆(𝑔) ∧ |𝑓+| = 𝜆(𝑔) ∧ 𝑓+ = 𝑓+

und
𝜆(𝜇𝑔(𝑓−)) = 𝜆(𝑔) ∧ |𝑓−| = 𝜆(𝑔) ∧ 𝑓− = 𝑓−.

Also können wir 𝑓ℒ = 𝜇𝑔(𝑓+) − 𝜇𝑔(𝑓−) setzen und erhalten

𝜆(𝑓ℒ) = 𝜆(𝜇𝑔(𝑓+)) − 𝜆(𝜇𝑔(𝑓−)) = 𝑓+ − 𝑓− = 𝑓.

Definition 23. Sei (𝑓𝑛)𝑛∈ℕ eine Folge an integrierbaren Funktionen und sei 𝑓 eine
integrierbare Funktion. Dann sagen wir

1. (𝑓𝑛)𝑛∈ℕ konvergiert in Norm zu 𝑓, falls 𝑓𝑛 → 𝑓 in ℒ,

2. (𝑓𝑛)𝑛∈ℕ konvergiert fast-überall zu 𝑓, falls 𝑓𝑛 → 𝑓 in ℳ.

Lemma 12. Sei (𝑓𝑛)𝑛∈ℕ eine ansteigende Folge an integrierbaren Funktionen, welche
fast-überall zu einer integrierbaren Funktion 𝑓 konvergieren. Dann gilt ∀𝑛∈ℕ𝑓𝑛 ≤ℒ 𝑓.

Proof. Beachte, dass wir 𝑓𝑛 ∧ 𝑓𝑚 = 𝑓𝑛 und weiter (𝑓𝑛 ∧ 𝑓𝑚, 𝑓𝑛) ⊩ℒ 𝑛 für alle 𝑛, 𝑚 ∈ ℕ
mit 𝑛 ≤ 𝑚 haben. Also konvergiert (𝑓𝑛 ∧ 𝑓𝑚)𝑚∈ℕ zu 𝑓𝑛. Daraus folgt

𝜆(𝑓𝑛) ∧ 𝜆(𝑓𝑚) = 𝜆(𝑓𝑛 ∧ 𝑓𝑚) → 𝜆(𝑓𝑛)

in ℳ. Wir haben andererseits auch

𝜆(𝑓𝑛) ∧ 𝜆(𝑓𝑚) → 𝜆(𝑓𝑛) ∧ 𝜆(𝑓)

da 𝜆(𝑓𝑚) → 𝜆(𝑓) in ℳ. Also gilt 𝜆(𝑓𝑛 ∧𝑓) = 𝜆(𝑓𝑛)∧𝜆(𝑓) = 𝜆(𝑓𝑛), weshalb 𝑓𝑛 ∧𝑓 = 𝑓𝑛
mit Injektivität von 𝜆 folgt. Also muss ∀𝑛∈ℕ𝑓𝑛 ≤ 𝑓 gelten.

Theorem 6 (Lebesgue’s Theorem über Monotone Konvergenz). Sei (𝑓𝑛)𝑛∈ℕ eine
ansteigende Folge von integrierbaren Funktionen. Dann sind die folgenden Bedingungen
äquivalent.

1. (𝑓𝑛)𝑛∈ℕ konvergiert fast-überall zu einer integrierbaren Funktion 𝑓,
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2. (𝑓𝑛)𝑛∈ℕ konvergiert in Norm zu einer integrierbaren Funktion 𝑓,

3. (∫ 𝑓𝑛)𝑛∈ℕ konvergiert, in welchem Fall

∫ 𝑓𝑛 → ∫ 𝑓.

Proof. • (1) ⇒ (2): Wir haben soeben gezeigt, dass ∀𝑛𝑓𝑛 ≤ 𝑓. Wir können nun
o.B.d.A. 𝑓𝑛 und 𝑓 durch 𝑓𝑛 − 𝑓0 und 𝑓 − 𝑓0 austauschen und können daher von
nun an ∀𝑛∈ℕ0 ≤ 𝑓𝑛 sowie 0 ≤ 𝑓 annehmen. Da 𝜆(𝑓𝑛) → 𝜆(𝑓) in ℳ,

𝑓𝑛 = 𝑓 ∧ 𝑓𝑛 = 𝑓 ∧ |𝑓𝑛| = 𝜇𝑓(𝜆(𝑓𝑛)) → 𝜇𝑓(𝜆(𝑓)) = 𝑓 ∧ |𝑓| = 𝑓

• (2) ⇒ (3): Folgt aus Stetigkeit des Integrals.

• (3) ⇒ (1): Angenommen (∫ 𝑓𝑛)𝑛∈ℕ konvergiert. Dann konvergiert (𝑓𝑛)𝑛∈ℕ in ℒ
zu einem 𝑓 ∈ ℒ nach früherer Proposition. Da weiter 𝜆 ∶ ℒ → ℳ uniform stetig
ist, folgt 𝜆(𝑓𝑛) → 𝜆(𝑓) in ℳ.

Theorem 7 (Fatous Lemma). Sei (𝑓𝑛)𝑛∈ℕ eine Folge von integrierbaren Funktionen,
welche fast-überall zu einer integrierbaren Funktion 𝑓 konvergiert, sodass 0 ≤ 𝑓𝑛 und
∀𝑛∈ℕ ∫ 𝑓𝑛 ≤ 𝐵. Dann gilt ∫ 𝑓 ≤ 𝐵.

Proof. Da 𝜆(𝑓𝑛) → 𝜆(𝑓) in ℳ, gilt

𝑓 ∧ 𝑓𝑛 = 𝑓 ∧ |𝑓𝑛| = 𝜇𝑓(𝜆(𝑓𝑛)) → 𝜇𝑓(𝜆(𝑓)) = 𝑓 ∧ |𝑓| = 𝑓

in ℒ. Also ∫(𝑓 ∧𝑓𝑛) → ∫ 𝑓. Da ∫(𝑓 ∧𝑓𝑛) ≤ ∫ 𝑓𝑛 ≤ 𝐵 für alle 𝑛 ∈ ℕ, folgt ∫ 𝑓 ≤ 𝐵.

Lemma 13. Sei (𝑓𝑛)𝑛∈ℕ eine Folge von integrierbaren Funktionen, welche fast-überall
zu einer integrierbaren Funktion 𝑓 konvergiert, und sei 𝑔 eine integrierbare Funktion,
sodass ∀𝑛∈ℕ|𝑓𝑛| ≤ 𝑔. Dann gilt |𝑓| ≤ 𝑔.

Proof. Da 𝜆(𝑓𝑛) → 𝜆(𝑓) in ℳ udn |𝑓𝑛| = 𝑔 ∧ |𝑓𝑛| für alle 𝑛 ∈ ℕ,

|𝑓𝑛| = 𝑔 ∧ |𝑓𝑛| = 𝜇𝑔(𝜆(𝑓𝑛)) → 𝜇𝑔(𝜆(𝑓)) = 𝑔 ∧ |𝑓|

in ℒ. Also gilt |𝑓| ∧ |𝑓𝑛| → |𝑓| ∧ (𝑔 ∧ |𝑓|) = 𝑔 ∧ |𝑓| in ℒ. Andererseits

|𝑓| ∧ |𝑓𝑛| = 𝜇|𝑓|(𝜆(𝑓𝑛)) → 𝜇|𝑓|(𝜆(𝑓)) = |𝑓| ∧ |𝑓| = |𝑓|

in ℒ. Also 𝑔 ∧ |𝑓| = |𝑓| und damit |𝑓| ≤ 𝑔.

Theorem 8 (Lebesgues Theorem über dominierte Konvergenz). Sei (𝑓𝑛)𝑛∈ℕ eine Folge
von integrierbaren Funktionen, welche fast-überall zu einer integrierbaren Funktion 𝑓
konvergieren und lass 𝑔 eine integrierbare Funktion mit ∀𝑛∈ℕ|𝑓𝑛| ≤ 𝑔 sein. Dann
konvergiert |𝑓𝑛|𝑛∈ℕ zu 𝑓 in Norm.

Proof. Beachte |𝑓| ≤ 𝑔 nach soeben bewiesenem Lemma. Da weiter 𝜆(𝑓𝑛) → 𝜆(𝑓) in
ℳ, folgt 𝜆(𝑓+

𝑛 ) = 𝜆(𝑓𝑛)+ → 𝜆(𝑓)+ = 𝜆(𝑓+) in ℳ. Also

𝑔 ∧ 𝑓+
𝑛 = 𝑔 ∧ |𝑓+

𝑛 | = 𝜇𝑔(𝜆(𝑓+
𝑛 )) → 𝜇𝑔(𝜆(𝑓+)) = 𝑔 ∧ |𝑓+| = 𝑔 ∧ 𝑓+

in ℒ. Da weiter ∀𝑛∈ℕ𝑓+
𝑛 ≤ |𝑓𝑛| ≤ 𝑔 und 𝑓+ ≤ |𝑓| ≤ 𝑔 folgt also

𝑓+
𝑛 → 𝑓+

in ℒ. Ähnlich folgt 𝑓−
𝑛 → 𝑓− in ℒ. Also ist 𝑓𝑛 = 𝑓+

𝑛 − 𝑓−
𝑛 → 𝑓+ − 𝑓− = 𝑓 in ℒ.
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