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1 Grundlegendes

Definition 1 (Quasiordnung). Eine Quasiordnung ist eine reflexive und transitive Re-
lation. Eine quasigeordnete Menge ist ein Paar I = (I,<;) mit Menge I und Qua-
siordnung <; auf I. Wir schreiben weiter hom(/,I”) fiir die Menge der monotonen
Funktionen von I zu I’.

Definition 2 (Gerichtete Menge). Eine quasigeordnete Menge I heifit gerichtet, falls I
nicht leer ist und eine Schrankenfunktion ub; € hom(I x I, I) existiert, sodass x,y € I,
x <;ubj(z,y) und y <; ub (z,y).

Definition 3 (Halbordnung). Eine Halbordnung ist eine reflexive, antisymmetrische
und transitive Relation.

Definition 4 (Halbverband). Ein Halbverband ist ein Setoid X zusammen mit einer
Setoidfunktion
XxX =X, (z,y) >z Vy,

Join, sodass
zV(yVz)=x(@xVy)Vz, (yVz)=xaxVy rVr=xuz
fir alle z,y, z € X. Wir definieren weiter die kanonische Halbordnung auf X durch
r<xyysrsVy=xy.

Definition 5 (Uniformer Raum). Eine uniforme Struktur auf einem Setoid X =
(X,=x) ist ein Tripel bestehend aus einer gerichteten quasigeordneten Menge I, =
(I,,=<;.), einer Funktion py € hom(Iy,I,) und einer Relation Iy zwischen X x X

=x Yy x
und [X sodass

L. Vm,yeg(iﬁ =x Y <= vaeIX (z,y) Fx a),

2. Vaelxvx,y,x’,y’€X$ =v2' =>y=xvy = (r,y) Fxa= (2',y) IFx a,
3. Vaelwi,yeg(%y) Fy a= (y,z) Fx a,

4. Va,belxvx,yexa <1y b= (z,y) Fx b= (z,y) Fx a,

5. VaGlXVw,y,zGX(aj:y) H_X pX(a’) = (y,Z) “_X pX(a) = (l’,Z) H_X a.

Ein Uniformer Raum ist ein Setoid mit zugehoriger uniformer Struktur.



Definition 6 (Netz). Sei X ein Setoid und J ein gerichte quasigeordnete Menge. Dann
nennen wir eine Funktion = : j = z,, J — X ein Netz von J in X und notieren es als

(7;)jes- Wir schreiben weiter X7 fiir die Menge der Netze auf X von J.

Definition 7 (Konvergenz von Netzen). Sei X ein uniformer Raum. Dann konvergiert
ein Netz (z;),c; € X7 zu einem Element z € X falls ein Modul 8 € hom(I,, J) existiert,
sodass fiir alle a € I, und j € J mit B(a) <, j

(z;2) Fx a
gilt. Wir schreiben dann weiter (z;),c; — = und nennen z den Grenzwert von () e ;-

Definition 8 (Cauchynetz). Ein Netz (7)., € X 7 ist ein Cauchynetz in X, falls ein
Modul a € hom(Iy, J) existiert, sodass

Vaelxvjvjlela<a) <IJ j’j/ = (I]’x]/) ”_X a
gilt.

Theorem 1 (Vervollsténdigung). Fir jeden uniformen Raum X existiert ein uniformer
Unterraum bzw. Untersetoid )~(, die sogenannte Vervollstindigung von X, als auch eine
uniform stetige Setoidenfunktion ny : X — X. Dabei konvergiert jedes Cauchynetz in
X und ng ist ein uniformer Isomorphismus.

Definition 9 (Vollstdndiger uniformer Raum). Ein uniformer Raum X ist vollstandig,
falls ny : X — X ein uniformer Isomorphismus ist.

Definition 10 (Uniforme Stetigkeit). Eine Funktion X — Y zwischen uniformen Réiu-

men ist uniform stetig, falls ein Modul v € hom(Iy, I, ) existiert, sodass

Vbelyvm,yeg(a% y) IFx y(b) = (f(z), f(y)) IFy b
Lemma 1. Jede uniform stetige Funktion ist eine Setoidfunktion.

Definition 11 (Lokale uniforme Stetigkeit). Eine Funktion f : X — Y zwischen
Uniformen Raumen X, Y heifit lokal uniform stetig, falls eine Funktion z + -,
X — hom([ly, Iy) existiert, sodass aus

(2, nx () IF 5 7.(b) (z,nx() Ik 7.(b)
die Aussage (f(z), f(y)) IFy bfirallebe I, z € X sowie z,y € X folgt.
Lemma 2. Uniform stetige Funktionen sind lokal uniform stetig.

Theorem 2. Seien X,Y uniforme Rdume. Dann existiert zu jeder uniform stetigen
(bzw. lokal uniform stetigen) Funktion f: X — Y eine eindeutige uniform stetige (bzw.
lokal uniform stetige) Funktion f: X — Y, sodass fonx ~ nyo f.

2 Topologische Vektorraume und Verbiande

2.1 Relle Zahlen

Proposition 1 (Uniforme Struktur auf Q). Seien pg : N x N und IFg: (Q x Q) x N
definiert durch

(p,q) IFqn < |p—q <q 27



Dann ist (N, pg,IFq) eine uniforme Struktur auf dem Setoid Q, sodass die Addition
Q x Q — Q, die Negation Q — Q und das Maximum Q x Q — Q uniform stetig sind und
sodass die Multiplikation Q x Q — Q lokal uniform stetig ist.

Definition 12 (Die reellen Zahlen). The uniforme Raum R the reellen Zahlen ist die

Vervollstandigung @ des uniformen Raums Q.

2.2 Topologische Vektorraume

Definition 13 (Vektorraum). Ein Vektorraum (iiber R) ist ein Setoid X = (X, =)
zusammen mit Setoidfunktionen

o Addition X x X — X, (z,y) — x + y,
e Negation X — X, z +— —z,
o Skalarmultiplikation R x X — X, (s,z) > s,

sowie zusammen mit dem Nullelement 0 € X. Dabei soll (X, +,—,0) eine abelsche
Gruppe definieren und die Skalarmultiplikation so gewéhlt sein, sodass R — Homg (X, X)
einen Ringhomomorphismus definiert. Es miissen also die Gleichungen

(x4+y)+z=xz+(y+2), T+y=xy+u,
r+0=xz, r+ (—z) =x0,
s(z+y) =x s+ sy, (s+t)x =y sz +tx,
s(tr) =x (st)x, le=x =z

fir alle z,y,z € X und s,t € R gelten.

Example 1. Sei F[0,1] die Menge der Setoidfunktionen [0,1] — R. Dann kénnen
wir den Setoiden (F|0,1],~) definieren und eine Vektorraumstruktur durch Aktion im
Zielraum definieren,

(f+9)(x) = f(x) +9(z), (=f)(x) = —f(z)
(sf)(x) = sf(x), 0(z) =0

fir f,g € F|0,1], s € R und z € [0,1].

Definition 14 (Lineare Funktion). Eine lineare Funktion f : X — Y zwischen Vektor-
rdumen X, Y ist eine Setoidfunktion, sodass

fle+y) =y f(z)+ f(y) f(sz) =y sf(z)
fiir alle z,y € X und s € R gilt.

Definition 15 (Lineares Funktional). Ein lineares Funktional auf einem Vektorraum
X ist eine lineare Funktion von Art X — R.

Definition 16 (Topologischer Vektorraum). Ein topologischer Vektorraum ist ein Vek-
torraum X zusammen mit uniformer Struktur (I, px,IFy), sodass

1. die Addition + : X x X — X uniform stetig ist,



2. eine Funktion &% : I, x X — N existiert, sodass fir jedes a € I
(0,s2) IFx a
fiir alle # € X und s € R mit |s| < 27¢ (@:2),

3. fiir jedes a € I,
(0,2)IFy a=(0,s2) IFy a

fir alle z € X und s € R mit |s| <g 1.

Lemma 3. Ist X ein topologischer Vektorraum, so sind auch das Inverse uniform stetig
und die Skalarmultiplikation ist lokal uniform stetig.

Theorem 3 (Vervollstandigung von topologischen Vektorrdumen). Die Vervollstindi-
gung eines topologischen Vektorraums ist auch ein topologischer Vektorraum.

Definition 17 (Vektorverband). Ein Vektorverband ist ein Vektorraum X sodass X
ein Halbverband ist, und weiter

L (z+2)V(y+z)=x@@Vy +=z
2. 0<gs=s(xVy) =x (sx)V (sy)
fir alle z,y,z € X und s € R.

Example 2. Auch hierfir ist F]0, 1] ein Beispiel zusammen mit punktweisem Mazimum
fVg =maxgo(f,g). Weiter konnen wir auch gewisse Teilmengen von F]0, 1] betrachten,
beispielsweise C[0,1], die Menge der uniform stetigen Funktionen [0,1] — R.

Lemma 4. Sei X ein Vektorverband. Dann
1. fallsx <y y, sox+2z<yxy-+z
2. falls x <x y und 0 <g s, so sx <x sy
fiir alle x,y,z € X und s € R.

Proposition 2 (Vektorverbénde sind Verbénde). Sei X ein Vektorverband und (z,y)
x Ay definiert durch

r ANy =x —(—zV—y)
fir alle z,y € X. Dann ist N\ assoziativ, kommutativ und weiter

rAhrx=xz, zV(@Ay)=xz zA(xVy =x2x

fiir alle x,y,z € X. Des Weiteren x <x y < x ANy =x x und x Ay ist der grofite untere
Bund von {z,y} fir x,y € X.

Lemma 5. Sei X ein Vektorverband. Dann gilt
I.z+y=xxzVy+zAy,
2. (x+2) Ny +2)=x (xAy)+2
3. falls 0 <g s, so s(x Ny) =x sz A sy

fiir alle x,y,z € X und s € R.



Proposition 3 (Vektorverbande sind distributiv). Jeder Vektorverband X ist ein dis-
tributiver Verband, d.h.

1.zV(ynz)=x (xVy AxzVz),
2.xN(yVz)=x(xAy) V(zAz)
fir alle z,y,z € X.

Definition 18 (Positiver Kegel). Sei X ein Vektorverband. Dann nennen wir die
Teilmenge
Oy ={reX|0<yxn)

den positiven Kegel von X.

Definition 19 (Positives lineares Funktional). Wir nennen weiter ein lineares Funk-
tional f auf X positiv, falls V%QXO <g f(z).

Remark 1. Cy = (Cy,<x) mit ubo =V € hom(C, x C,,C, ) ist eine gerichtete
quasigeordnete Menge.

Example 3. Sei R : C[0,1] — R eine Funktion definiert durch

R(fn) = [ 1

wobei [ das Riemannintegral ist. Dann ist R bekanntlich ein positives lineares Funk-
tional.

Lemma 6. Jedes positive lineare Funktional ist monoton.
Proof. Seien x,y € X mit v <y y gegeben. Dann ist

0=xz+(—z)<xy+ (-7
also auch

f(@) =g f(x) + f(0) <g f(x) + [y + (=) = f(x) + f(y) = f(x) = fy).

O
Definition 20 ((—xz)*, (—z)~, |—| und kegeldisjsunkte Werte). Sei X ein Vektorver-
band. Wir definieren (—)" : X — X, (=)™ : X — X sowie |—| : X — X durch
zt=xzV0, = = (—z) V0, lz] =2V (—x).

Wir nennen weiter Werte z,y € X kegeldisjunkt, falls |z| A |y| =x= 0.
Lemma 7 (Eigenschaften von (—xz)%, (—x)~, |—| und Kegeldisjunktheit). Sei X ein
Vektorverband. Dann gilt

1.x=yat —a,

2. xt und x~ sind kegeldisjunkt,

3. fir jedes Paar an kegeldisjunkten Elementen u,v € C,., folgt u =x xt und

V=x T QUST=x U—U,



bt =x ol =2+ + o € C,,
5. fir alle s € R mit 0 <g s gilt (sx)" =y sx™, (sx)” =y sz~ und |sz| =y s|z|,
6. x und y sind kegeldisjunkt genau dann wenn |z|V |y| = |z| + |yl,

7. sind x und y kegeldisjunkt, so folgt (x+y)" =z" +y", (r+y)” =2~ +y und
[z +yl =x |z| + [y|

fir alle z,y,z € X.

Lemma 8 (Weitere eigenschaften von |—|). Sei X ein Vektorverband. Dann gilt
Loz +y <x [a| +lyl,

|sx] <x |sllx],

[V z—y V2 <xlr—yl

e Az—y Az <xl|r—yl

(lzl +lyh) A <x [zl A+ [yl Aw,

sz Au <x (Is| + 1)(|z] Aw),

NS v o e

[z Ayl — 2 A JR|| <x [y —2[ A 2]
fir allez,y,z€ X, se Rundu € C,,.

Definition 21 (Topologischer Vektorverband). Ein topologischer Vektorverband ist
ein Vektorverband X mit uniformer Struktur (I, py,IFy) sodass

1. X ein topologischer Vektorraum ist,
2. V: X x X — X uniform stetig ist,

3. furallea €I, und z,y € C, mit z <y y

0,9) Fx a= (0,2) IFx a.

Theorem 4. Die Vervollstindigung eines topologischen Vektorverbands X ist wieder
ein topologischer Vektorverband. Insbesondere ist nyx : X — X vertauschbar mit den
Operationen eines topologischen Vektorverbandes.

3 Integrationstheorie

Definition 22 (Abstrakter Integrationsraum). Ein abstrakter Integrationsraum ist ein
Vektorverband X zusammen mit einem positiven linearen Funktional F auf X.

Sei im folgenden ein abstrakter Integrationsraum (X, F) fest gewéhlt.



3.1 Integrierbare Funktionen
Lemma 9. Das Paar L = (X,=;) mit

T=pye Vpal(lz—yl) <g 27"
ist ein Setoid.

Proof. Reflexivitdt und Symmetrie sind Trivial. Zur Transitivitédt: Seien z =; y und
y =; z sowie n € N gegeben. Dann ist E(|z —y|), E(Jy — z|) <g 27! und daher

Ejz—2)) < E(le— gl +ly—2) <271 4271 =97,
wobei wir die Positivitdt von E benutzen. O

Proposition 4 (Uniforme Struktur L). Das Tupel (N, py,IF;) mit

pL(”) =n-+ ]-7
(z,y) by n < E(lz —y|) <g 27"

ist eine uniforme Struktur auf L.

Proof. 1. Zu zeigen ist x =1, y < V,cn(2,y) Ik n. Dies folgt direkt durch Entfalten
der Definitionen.

2. Sein € Nund z,y,2",y € X, sodass ¢ =; z’, y =; ¥ und (z,y) IF; n. Dann
folgt fiir alle m € N

E(lz" —y') < E(|2" —2|) + E(lz —y|) + E(ly — ¥'])
£27m71 +27n+27m71
<27 427

Also gilt (z/,y") Ik, n.
3. Zu zeigen ist (x,y) Ik, n < (y,z) Ik, n. Dies folgt direkt aus |x — y| = |y — z|.
4. Seien n,m € N und z,y € X mit n < m und (x,y) I, m. Dann folgt
E(z—y) <27m <2,
also (z,y) Ik, n.
5. Seien n € N und z,y, z € X, sowie (z,y), (y,z) IF; n+ 1. Dann folgt
Blw— ) < B(le —yl) + By — o) 271 4271 = 2n,

also (z, z) Ik n.

Proposition 5. Die kanonische Funktion w; : X — L ist eine Setoidfunktion.

Proof. Sei x =y y. Dann ist t —y =y * —x =y 0 und daher V. (z,y) IF; n, also
T =Y. O

Proposition 6. L ist ein topologischer Vektorverband.



Proof. Fur die Halbverbandstruktur und Vektorraumstruktur auf L tibernehmen wir
die von X gegebene. Dabei niitzen wir aus, dass 7, eine Setoidfunktion ist, d.h. die
Gleichungen in der Definition des Vektorraums fiir X gelten auch in L. Gleiches gilt fiir
die definierenden Gleichungen eines Vektorverbands. Wir miissen weiter zeigen, dass L
ein topologischer Vektorraum ist:

1. Die Addition + : L x L — L ist uniform stetig: Wir wéhlen den Modulus y*(n) =
(n+1,n+1). Ist nun

((-T,y), (xlvy/» ”_L><L ’}/+(TL)
gegeben, so gilt (xz,2") Ik, n+ 1 und (y,y") Ik, n+ 1. Damit folgt
E(l(z+y)— @ +y)) <E((z—2") + (y—y)])

< E(lz—2') + E(I(y —y)])
<2

2. Sei e : R — N so definiert sodass 27¢"r < 1 (R ist archimedisch), dann kénnen
wir £L(n,x) = n + e(E(|z])) definieren. Sind nun n € N sowie z € X, s € R mit
|s| < 27¢" (%) gegeben, so folgt

E(|sz|) = |s|E(|z]) < 27D B(jz]) < 277,
also (0, sz) Ik, n.
3. Sei (0,2) IFx n. Zu zeigen ist (0, sz) Ik, n fur |s| < 1. Trivial.
Damit verbleibt nur zu zeigen, dass L ein topologischer Vektorverband ist.

1. V: Lx L — L ist uniform stetig: Wir wihlen den Modulus 7Y (n) = (n+1,n+1).
Sei wieder

((@,9), (@, y") Fp.p 7" (n)
gegeben, so gilt (z,2") Ik, n+ 1 und (y,y") Ik, n+ 1. Damit folgt

E(|(zVy) — (" Vy))

E([(xVvy—2'Vy)+ (@' Vy—2'vVy)|)
(lzvy—a'Vy)+ E(la" Vy—2' V)

(|Jz —2"]) + E(ly — Vy'])

2771

E
E

VANVANYAN

2. Sei n € N gegeben zusammen mit 0 <, x,y, * <, y und (0,y) I, n. Zu zeigen
ist (0,2) Ik n:

E(z]) = E(z)



Wir schreiben £ fiir die Vervollsténdigung L des topologischen Vektorverbands L
und nennen die Elemente von £ integrierbare Funktionen {iber dem abstrakten Inte-
grationsraum (X, F).

Proposition 7. Es existiert eine uniform stetige Funktion [ : £ — R sodass
1. [np(z) =g E(z),
2 J(f+a) == ]I+ ]9
8. [(sf)=gs [
4. ist 0 <, f, dann 0 <g [ f
fir allex € L, f,g € £ und s € R. Fir f € £ nennen wir [ f das Integral von f.

Proof. Wir zeigen zunéchst, dass E : L — R uniform stetig ist: Sei (x,y) IF; n. Dann
[E(z) = E(y)| < E(lz —y[) <277

und daher (E(z), E(y)) g n (E(x) = E(y), E(y) — E(z) < E(jlz —y|), daz—y,y—z <
|z —y|). Also ist E : L — R uniform stetig womit ein £ : £ — R mit gy o B = E oy
existiert. Da R vollstandig ist, ist 7z ein Isomorphismus und ein e mit e o np = idg
existiert. Wir definieren [ = ep o E. Dann gilt direkt

/%szeﬂémaman@»

Linearitat folgt fur Werte 1, (z), € L unmittelbar. Da die Erweiterung auf die
Vervollstdndigungen eindeutig ist, folgt Linearitit auch allgemein, vgl. bspw. [(sf)

mit s [ f.
Sei zuletzt f = (z,)pen € £ mit 0 <, f. Da (—)" uniform stetig ist und da
(np(z,)),, — f, erhalten wir

N () =g np(x,)" = fF=,f.

Wegen uniformer Stetigkeit von [ erhalten wir also

ogEmm:/m@m

fiir alle n € N. Insbesondere erhalten wir also 0 <g f f OJ

Proposition 8. Sei (f,,),cn eine steigende Folge an integrierbaren Funktionen, also
Voentn <o fosr- I8t ([ fr)nen konvergent in R, so konvergiert (f,),cyn in £.

Proof. Da ([ f,,)nen konvergent in R, ist ([ f,,),cy eine Cauchy-Folge mit einem Modul
a € hom(N,N). Gegeben ein n € N, betrachte m,m’ € N sodass a(p%(n) +1) <m <
m’. Wir werden nun zeigen, dass (f,),cy eine Cauchyfolge mit Modul a(pZ%(n) + 1)
ist. Da [ f,, < [ fn wegen f,, < fo, folgt nun [ f,., — [ f,, < 27D Gej
Jm = (@) wen und frr = (yn) ey Dann gilt np(z,) = fo, 10(Yn) = frr- Da
V: £ x £ — £ uniform stetig ist, folgt weiter

nL(xn’ \ yn’) =< nL('xn’) \% nL(yn’> - fm \ fm’ =< fm"



Also folgt E(z,) =g fnL(xn/) — ffm sowie E(x, VY, ) =g fnL(wn/ VY, ) — ffm/
Wahlen wir nun n” € N sodass

(fr> iz (x0)) F 2 p%(n), (o> (@ V yn)) I pp(n),

/f ‘<2ﬂ£ , E(azn,\/yn/)—/fm,

Wir erhalten dann

< 9 P%(n)=2

E(“rn’ vyn/ _xn’D

e e e
e LRy (R

2PL()2_|_2 pZ(n)— 2PL”)2

< 2*04(“) .

Also gilt (z,,, V y,/,2,,) IF. p%(n) und daher auch (n;(z,, V Y, ), n5(2,)) Ik p%(n).
Wir erhalten zusammen mit (f,,,, 7. (x,/)) IF 2 p%(n) und (£, 0 (2 VY, ) k2 pe(n)
also (f,, fmr) IF ¢ n. Also ist (f,,)men €ine Cauchyfolge mit Modul a(p%(n) + 1) und
konvergiert daher in £.

O

3.2 Messbare Funktionen

Ahnlich zu den integrierbaren Funktionen £ konstruieren wir nun die messbaren Funk-
tionen M auf dem abstrakten Integrationsraum (X, F).

Lemma 10. Das Paar M = (X, =,;) mit
T=pY = VnewvueQXEﬂx —ylAu) <g 27"
ist ein Setoid.
Proof. Vgl. oben. O

Proposition 9 (Uniforme Struktur M). Das Tupel (N, py,IFy,) mit

pM((“?”)) = (uvn + 1)7
(@,y) Fp (u,n) < E(lz —y| Au) < 277

ist eine uniforme Struktur auf M.

Proof. Vgl. oben. O
Proposition 10. M ist ein topologischer Vektorverband.

Proof. Vgl. oben. O

10



3.3 Konvergenztheoreme

Lemma 11. Die Funktion v; : L — M, 1 (z) = z, ist eine uniform stetige Setoidin-
jektion.

Proof. Wir zeigen zunéchst uniforme Stetigkeit. Wir wéhlen den Modul v((u,n)) = n.
Ist nun (z,y) IF; v((u,n)), so folgt

By (x) — 1, (9)| Aw) = B(le —y| Au) < B(lw —gl) <277

Also folgt (¢, (%), ¢r(y)) Ik (w,n). Aus der uniformen Stetigkeit folgt nun insbesondere,
dass ¢, eine Setoidfunktion ist.
Nun zur Injektivitat. Sei ¢y (x) =, ¢ (y) fir x,y € L. Wir haben dann

E(lz —y|) = E(jlz —y| Az —y|) <277
fiir alle n € N, also x =, y. Also ist ¢; injektiv. O

Proposition 11. Es existiert eine uniform stetige Einbettung \ : £ — M, sodass
Naotp =Aong.
Proof. Da ¢; uniform stetig ist, konnen wir A als Erweiterung von ¢; auf die Vervoll-

stdndigungen definieren. Dann gilt insbesondere 1,,0¢; = Aon;. Exemplarisch zeigen
wir, dass A die Addition erhélt. Wir haben

A (@) +n01,(y) = Az (z +y))
=nulen(z+y))
= nu(en (@) +nar(er ()
= A (@) + Alnp(y))

fir x,y € L. Aus der Eindeutigkeit der Erweiterung von ¢; folgt nun Gleichheit fiir
arbitriare Elemente in £. Zeigen wir weiter, dass A injektiv ist. Sei f = (z,,)men € £
gegeben mit A(f) =5, mp(0). Weiter gilt A(ng(x,,)) — 13,(0), da n;(x,,) = fin £.
Fiir ein beliebiges n € N existiert ein m € N, sodass fiir alle m” > m die Abschatzung

AL (@), 100 (0)) = (s (e, (@), 10 (0)) g PR (12041, 70 + 1))

gilt. Daraus folgt nun also (¢ (z,,/),0) IFar (|24 1], n+1). Wir erhalten fiir alle m” € N
mit m,n +1 < m’ wegen (x,,/,2,,1) F, n+1

E(|z ) < E(j2n, | Al2,])
S E(jzn + (@ —2p)| Azn])
S E((|zn] + |2m = ) Al )
< E(|2p | Az |+ |20 = 2| Az )
< E(|2p 1] Az |+ |20 — 2044
< E(|zp | Az ) + E([2n = 2014])
<2ttt =
und daher (x,,/,0) I, n. Wir kénnen also f =, 0 schlussfolgern. O

11



Proposition 12. Fir jedes g € £ existiert eine uniform stetige Funktion p, : M — £
sodass

1g(A(S)) =2 g A ]
Alpg(h)) =ac Alg) Al
fir alle f € £ und h € M.

Der Beweis funktioniert leider nicht direkt, da ein Funktionsterm aufgrund der
verschiedenen Herkiinfte von g und h nicht direkt aufgeschrieben werden kann. Des
Weiteren funktioniert keine einfache Konstruktion iiber die Erweiterung einer Funktion
M — L, da im allgemeinen g € £ und nicht nur g € L.

Theorem 5. Sei f eine messbare Funktion. Existiert eine integrierbare Funktion g mit
1fl <ar Alg), so existiert eine integrierbare Funktion f, mit f =, M f,).

Proof. Angenommen |f] <, A(g) fir ein g € £. Da T, f~ <|f| < A(g) folgt

Apg(fR) =Mg) AN =Mg) A fT ="
und
Apg(f) =Mg) A T=XMg) A fm ="
Also kénnen wir f, = p,(f*) — p,(f~) setzen und erhalten
A(fe) = Mug(f7) = Mug(f7) = fF—=f = .
L]

Definition 23. Sei (f,,),cy eine Folge an integrierbaren Funktionen und sei f eine
integrierbare Funktion. Dann sagen wir

1. (f,))nen konvergiert in Norm zu f, falls f,, — fin £,
2. (f,)nen konvergiert fast-iiberall zu f, falls f,, — fin M.

Lemma 12. Sei (f,,),cn €ine ansteigende Folge an integrierbaren Funktionen, welche
fast-tiiberall zu einer integrierbaren Funktion f konvergieren. Dann gilt ¥, .\ f, < [

Proof. Beachte, dass wir f,, A f,, = f,, und weiter (f, A f,,, f,,) Ik n fir alle n,m € N
mit n < m haben. Also konvergiert (f, A f,,,)men 20 f,,. Daraus folgt

ASn) NAm) = A A frn) = A(fn)

in M. Wir haben andererseits auch

Af) NS ) = ML) AAS)

da A(f,,) = A(f) in M. Also gilt A(f,, Af) = A([,,) AX(f) = A(f,,), weshalb f, A f = f,
mit Injektivitdt von X folgt. Also muss Vo f, < f gelten. O

Theorem 6 (Lebesgue’s Theorem tiber Monotone Konvergenz). Sei (f,,),cn €ine
ansteigende Folge von integrierbaren Funktionen. Dann sind die folgenden Bedingungen
dquivalent.

1. (f,)nen konvergiert fast-iberall zu einer integrierbaren Funktion f,
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(fn)nen konvergiert in Norm zu einer integrierbaren Funktion f,

2.
3. ([ fo)nen konvergiert, in welchem Fall

[ ]+

Proof. e (1) = (2): Wir haben soeben gezeigt, dass V, f,, < f. Wir kénnen nun
o.B.d.A. f,, und f durch f,, — f, und f — f, austauschen und koénnen daher von
nun an Y, 0 < f,, sowie 0 < f annehmen. Da A(f,,) — A(f) in M,

Jo =T N =Nl = 0pAF0) = M) = F AL = F
e (2) = (3): Folgt aus Stetigkeit des Integrals.

e (3) = (1): Angenommen ([ f,,),cn konvergiert. Dann konvergiert (f,),cy in £
zu einem f € £ nach fritherer Proposition. Da weiter A : £ — M uniform stetig
ist, folgt A(f,,) — A(f) in M.

O

Theorem 7 (Fatous Lemma). Sei (f,,),en €ine Folge von integrierbaren Funktionen,
welche fast-iberall zu einer integrierbaren Funktion f konvergiert, sodass 0 < f,, und
Voen | fo < B. Dann gilt [ f < B.

Proof. Da A(f,)) — A(f) in M, gilt
FN T =Nl =1 AfR)) = ng(AC)) = F AL = f
in £. Also [(fAf,) = [f Da [(fAf,) < [f,<BfiraleneN,folgt [ f<B. O

Lemma 13. Sei (f,),cn eine Folge von integrierbaren Funktionen, welche fast-iberall
zu einer integrierbaren Funktion f konvergiert, und sei g eine integrierbare Funktion,
sodass ¥ ,enlfnl < g. Dann gilt |f| < g.

Proof. Da A(f,,) = A(f) in M udn |f,| = g A |f,| fur alle n € N,
[ful = g N Fal = 1g(A(F)) = 1g(A(f)) = g A ]
in £. Also gilt [fIA|f,| = |fIA(gA|f]) =g A|f] in £. Andererseits
ANl = 1 AE)) =y A) = AN = 1]
in £. Also g A |f] = |f] und damit |f| < g. O

Theorem 8 (Lebesgues Theorem tiber dominierte Konvergenz). Sei (f,,),,cy €ine Folge
von integrierbaren Funktionen, welche fast-iiberall zu einer integrierbaren Funktion f
konvergieren und lass g eine integrierbare Funktion mit ¥ ,.y|f,| < g sein. Dann
konvergiert |f,| _ zu fin Norm.

Proof. Beachte |f| < g nach soeben bewiesenem Lemma. Da weiter A(f,,) — A(f) in
M, folgt A(f3) = A(L.)F — A = A(fH) in M. Also

9N Fn = g Nl = ngAF2)) = pg M) =g AT =g [T
in £. Da weiter V¥, o fiF < |f,] < gund f+ <|f] < g folgt also
fo = f

in £. Ahnlich folgt f,, — f~ in £. Alsoist f, = fF — f, = f" —f = fin L. O
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