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This work treats the convergence of series as it is embedded in the file "rseq.scm" .
After some recap of the convergence in R and the definition of Series, this work will cover
some criteria for the convergence of series, namely the comparison test as well as the
ratio test. After that the Cauchy product for absolute convergent series shall be proven.
As said, all of the things done are also realized in minlog in the file "rseq.scm" and it
will be frequently referred to the Lemmas and the proof in minlog. The work follows in
some parts the Chapters 2.3 and 2.6 of the lecture script of "Constructive analysis with
witnesses" by Helmut Schwichtenberg in WiSe 23/24.

1 Convergence of sequences in R
On R all the Cauchy and Convergence predicates are formulated in two ways in Minlog,
one as RConv... and one as RealConv.... The former one stands just for the basic
conditions of the convergence, the ladder demands for the modulus to be monotone and
the sequence to be Real in every element.

Definition 1.1 ("RealCauchy") A sequence xs in R is a Cauchy sequence with a mo-
dulus M : P → N, if and only if ∀p ∈ P and ∀n, m ≥ M(p) it holds:

|xsn − xsm| ≤ 2−p

In minlog this is written as RCauchy xs M resp. RealCauchy xs M .

The limit ("RealLim") of a sequence of real numbers in minlog is defined by a pro-
gramm constant:

(add − program − constant ”RealLim” (py”(N => R) => (P => N) => R”))
(add − computation − rules

”RealLim xs M”
”RealConstr([n](xs n)seq((xs n)mod(cNatPos n)))

([p]M(PosS p)max PosS(PosS p))”)

or in its deanimated Form: cRLim.
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In the Lemma ”RealLimReal” it is shown, that assuming xs is a Cauchy sequence
with modulus M , then cRLim xs M is again a real number. Also the Completeness of
the real numbers have already been shown in this Seminar, so will be here left out.

Definition 1.2 ("RealConvLim") A sequence in the real numbers xs is called to con-
verge to a x ∈ R with modulus M , if ∀p ∈ P and ∀n ≥ M(p) it holds:

|xsn − x| ≤ 2−p

In minog this is written as RConvLim xs x M resp. RealConvLim xs x M .

There are many characteristics of this predicate proven in minlog, mainly the uni-
queness of the limit: "RealConvLimUniq" and that every Sequence converging to a real
number is also a Cauchy sequence: "RealConvLimToCauchy".

There are especially also the following limit theorems on two sequences xs, ys with
the limits x, y ∈ R in with the moduli: xs

M−→ x and ys
N−→ y, from which the last one

will be useful in the proof of the Cauchy product:

1. RealConvLimLe: ∀n ∈ N : xsn ≤ ysn =⇒ x ≤ y

2. RealConvLimPlus: (xsn + ysn) [p] max{M(p+1),N(p+1)}−−−−−−−−−−−−−−→ x + y

3. RealConvLimUMinus: (−xsn) M−→ −x

4. RealConvLimTimes: If furthermore ∀n ∈ N : |xsn| ≤ 2p and |y| ≤ 2q it follows:

(xsn · ysn)n
[r] max{M(q+r+1),N(p+r+1)}−−−−−−−−−−−−−−−−−→ x · y



2 Convergence of Series
In this chapter the main notions of the convergence of series are refreshed.

Definition 2.1 Let (xn)n∈N be a sequence of reals, and define

sn :=
n∑

m=0
xm.

We call sn a partial sum of the sequence (xn). Recall that in minlog the sums of real
numbers are defined by giving the sequence xs the starting point 0 as well as the number
of summands n: (RealSum xs 0 n).

The sequence

(sn)n∈N =
(

n∑
m=0

xm

)
n∈N

=:
∞∑

m=0
xm

is called the series determined by the sequence (xn)n∈N.
We say that the series ∑∞

m=0 xm converges if and only if the sequence (sn) converges.
For the convergence of series in minlog there exists the predicate (RealSerConv, resp.
RSerConv) dependent on a real sequence xs together with a modulus of the convergence
M , that in this case is required to be monotone.

(add − ids (list (list ”RSerConv” (make − arity (py ”N => R”) (py ”P => N”))))
(” ∀ xs, M(∀p, n, m(Mp <= n → abs(RealSum n m xs) <<= (1#2∗∗p)) →

RSerConv xs M)” ”RSerConvIntro”))

It is shown in minlog ("RealSerConvLimToRealConvLimSum"), that the convergence
of a series with this predicate coincides with the convergence of the sequence formed by
the partial sums ([n] RealSum xs 0 n).

In a previous speech we have also already treated the Cauchy criterion, which follows
directly from the definition of the predicate:

A series ∑∞
m=0 xn converges if and only if for all p ∈ Z there exists a N ∈ N such that

for all n, m ∈ N:

n ≥ m ≥ N =⇒
∣∣∣∣∣

n∑
ν=m

xν

∣∣∣∣∣ ≤ 1
2p

.

Definition 2.2 A Series is called absolutely convergent, if:
∞∑

m=0
|xn|

In minlog there is no extra predicate for the absolute convergence, it is rather referred
as:

RealSerConv([n]abs(xs n)) M.

In the Lemma ”RealSerAbsConvToConv” there is shown, that absolute convergence
implies the convergence in its original sense.



3 Criteria of convergence
By the following theorem, we can show the convergence of Series by comparing each
sequence member to a bigger one of another convergent series.

Theorem 3.1 ("RealComparisonTestMax") Let ∑∞
n=0 yn be a convergent series and and

xn another sequence, with |xn| ≤ yn for all n ≥ m for a m ∈ N. The sequence yn is ≥ 0
for all n ∈ N. It follows, that ∑∞

n=0 xn is absolutely convergent.

Proof. To show that ∑∞
n=0 |xn| converges, take a p ∈ P. Since ∑∞

n=0 yn converges, we
have by the Cauchy criterion a N ∈ N such that for all l ≥ n ≥ max{N, m},

l∑
j=n

yj ≤ 1
2p

.

But then, since n ≥ m, also the following holds:

l∑
j=n

|xj| ≤
l∑

j=n

yj ≤ 1
2p

.
■

In minlog the Theorem gets firstly proofed is for a strictly non-negative real sequence
xs and is then generalized for the absolute value of any sequence in R, like in the theo-
rem above. The first one, namely ”RComparisonTestMax”, is then used for the proof
of the actual one: ”RealComparisonTestMax”.

We furthermore proof the Lemma ("RealSerConvTimesConstR")in minlog, that will
allow us to pull constant, bounded Factors out of a series.

Also there are Lemmata to shift the indices of series up or down and still have a
convergent series.

From the comparison of series to the geometric series, we get furthermore the following
test:

Theorem 3.2 ("RealRatioTestZero") Let (xn)n∈N be a sequence of real numbers and

|xn+1| ≤ q|xn| for all n ≥ 0

with 0 ≤ q < 1. Then the series ∑∞
n=n0 xn is absolutely convergent.

Proof. By assumption, we have for all n the equation |xn+1| ≤ q|xn| and by induction it
quickly follows:

|xn| ≤ qn|x0|,

The geometric series ∑∞
n=0 qn converges (because 0 ≤ q < 1), hence also ∑∞

n=0 qn|x0|.
From the comparison test, we can conclude the absolute convergence of ∑∞

n=0 xn. ■



For the same proof in minlog ("RealRatioTestZero"), we first need the convergence
of the geometric series, which is stated in the Theorem: "RealCauchyExpToRealSer-
ConvExp", saying: If a real number 0 ≤ x <p 1 and we have am modulus M for
RCauchy ([n] xn)M it follows:

∞∑
j=0

xn converges with module q 7→ M(PosS(q + p))

A modulus for (RCauchy ([n]xn) M) is derived in the proof of "GeomSeqRealConvLim",
which states that the geometric sequence converges and hence by earlier proofs is a
Cauchy sequence.

4 Cauchy Product of series
Our goal in this final section is the Cauchy product theorem. In non constructive Ana-
lysis, this is the following Theorem:

Theorem 4.1 If ∑∞
i=0 xi and ∑∞

j=0 yj are two absolutely convergent series, then the
product of those can be written as:( ∞∑

i=0
xi

)
·

 ∞∑
j=0

yj

 =
∞∑

n=0

 ∑
i+j=n

xi · yj


The Theorem we want to prove is the following:

Theorem 4.2 ("RealCauchyProdLim") We assume the following assumptions:

• Let xs and ys be sequences N → R

Let ∑∞
i=0 xsi

M−→ x ∈ R and ∑∞
j=0 ysj

N−→ y ∈ R
For all n ∈ N: |∑n

i=0 xsi| ≤ 2p and |∑n
j=0 ysj| ≤ 2q

• K(r) = max{N(p+r+1), M(q+r+1)}

• Let xs0n = ∑n
i=0 |xsi| and ys0n = ∑n

j=0 |ysj|
The sequences xs0 and ys0 are Cauchy sequences with moduli M0 resp. N0
For all n ∈ N: xs0n ≤ 2p0 and ys0n ≤ 2q0

• K0(r) = max{ N0(p0+r+1), M0(q0+r+1)}

Then for all n ≥ max{2 · K0(r + 1), K(r + 1)} it holds:

|
∑

i+j<n

xsi · ysi − x · y| ≤ 2−r

The variables with the same name as in the Theorem "RealCauchyProdLim" shall
have the same type in all the lemmas below, even if its left out at some points.



Lemma 4.3 ("RealSumMinusSquareMod") For a real valued double sum xss and m ≤ n
we have:

∑
i,j<n

xssi,j −
∑

i,j<m

xssi,j =
∑

i,j<n

xssi,j · 1{m≤max{i,j}} =
i,j<n∑

m≤max{i,j}
xssi,j

Lemma 4.4 ("RealConvLimZStar") Let xs, x, M , ys, y, N , p, q and K be like in
the first part of the assumptions of Theorem "RealCauchyProdLim". I.e. ∑∞

i=0 xsi
M−→ x

and ∑n
i=0 xsi ≤ 2−p for all natural n, vice versa for ys and K(r) = max{N(p+r+1),

M(q+r+1)}. Then for all r ∈ P and n ≥ K(r):

|
∑

i,j<n

xi · yj − x · y| ≤ 2−r

Lemma 4.5 ("RealUpperTriangLimZeroAux") Let xs, xs0, M0, p0, ys, ys0, q0, N0
and K0 like in the second part of the assumptions of "RealCauchyProdLim". Then for
all r ∈ P and n ≥ K0(r):

|x0n · y0n − x0K0(r) · y0K0(r)| ≤ 2−r

Lemma 4.6 ("RealLeAbsMinusZStarZMinusPStar) For real valued sequences xs and ys
we have:

|
∑

i,j<n

xi · yj −
∑

i+j<n

xi · yj| ≤
i,j<n∑
i+j≥n

|xi| · |yj|

Lemma 4.7 ("RealUpperTriangleMinusSquare") For real valued sequences xs and ys,
and m + m ≤ n we have:

i,j<n∑
n≤i+j

|xsi| · |ysj| ≤
i,j<n∑

m≤max{i,j}
|xsi| · |ysj|

An lastly the main Lemma to proof the Cauchy product formula, depending on 4 of
the five upper Lemma:

Lemma 4.8 ("RealUpperTriangLimZero") Let xs, xs0, M0, p0, ys, ys0, q0, N0 and
K0 like in the second part of the assumptions of "RealCauchyProdLim". Then for all
r ∈ P and n ≥ 2 · K0(r):

|
∑

i,j<n

xiyj −
∑

i+j<n

xiyj| ≤ 2−r


