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1 Completion of uniform spaces
As a generalization of the completion of metric spaces, this work will focus on the
completion of uniform spaces. The study is primarily based on the work "Yet Another
Predicative Completion of a Uniform Space" by Hajime Ishihara (July 1, 2020), in which
he constructively develops this completion on the axioms of Elementary Constructive
Set Theory (ECST ) along with the exponentiation axiom (Exp). The steps for the
completion of uniform spaces are designed closely parallel to those for the completion
of metric spaces. However, instead of sequences, a strictly more general structure of
nets will be introduced. The space of nets on the underlying set D will then represent
a completion. Unlike the completion of metric spaces, it will become evident that the
completion of uniform spaces does not involve all Cauchy nets but rather a selected
subset of regular nets.

Definition 1.1 A pseudo-metric d in a Set X is a mapping d : X × X → R, which
fulfills the following clauses for all x, y, z ∈ X:

1. d(x, x) = 0

2. d(x, y) = d(y, x)

3. d(x, y) ≤ d(x, z) + d(z, y)

The pseudo-metrics defined here (also referred to as semi-metrics) do not differ in their
clauses from the metrics on metric spaces previously defined in the seminar. However, it
should be noted that in this case, equality in the underlying set X does not necessarily
require that d(x, y) = 0 implies x = y. There will most likely be elements that are not
equal yet have a distance of 0.

Definition 1.2 A uniform space is a pair (X, D), consisting of a set X together with a
set D = {di | i ∈ I} of pseudo-metrics di indexed by an index set I ̸= ∅, such that:

∀i ∈ I (di(x, y) = 0) =⇒ x = y

for all x, y ∈ X.

Uniform spaces form a strict generalization of metric spaces. These are obtained for
I = {∗}.

For the construction of nets on a uniform space afterwards, one will need the following
construction of finite sequences as a quasi ordered set.

Definition 1.3 For a set S, we write S∗ = {⟨s0, ..., sn⟩ | n ∈ N, si ∈ S} for the set of
finite sequences of S with the following notations:



1. |σ| denotes the length of σ ∈ S∗;

2. ε denotes the empty sequence with |ε| = 0;

3. σ(l) denotes the l-th element of σ ∈ S∗, where l < |σ|;

4. s ∈ σ denotes that s = σ(l) for some l < |σ|;

5. σ ∗ τ denotes the concatenation of σ ∈ S∗ and τ ∈ S∗;

6. sn denotes the constant sequence ⟨s, . . . , s⟩ of length n.

Now we define a relation ⪯S on S∗ by

σ ⪯S τ ⇐⇒ |σ| ≤ |τ | ∧ ∀s ∈ S (s ∈ σ → s ∈ τ)

for each σ, τ ∈ S∗.
For any s0 ∈ S and n ∈ N, we write σ+n for the sequence σ∗sn

0 ; note that σ+n ⪯S τ+n

whenever σ ⪯S τ .

Lemma 1.4 For any set S ̸= ∅ the pair (S∗, ⪯S) is a directed preordered set, which
means, that the relation ⪯S is transitive and reflexive.

Proof. To show the directionality, for any σ, τ ∈ S∗ it is obvious, that σ ⪯S σ ∗ τ and
τ ⪯S σ ∗τ , as their individual length is smaller than the length of the concatenation and
all of the Elements of σ and τ do also appear in σ ∗ τ . The reflexivity follows, because
the length and the objects of the same Element always coincide. For transitivity, assume
σ ⪯S τ, τ ⪯S ν ∈ S∗. As |τ | is larger than |σ|, so is |ν| and vice versa with the elements
of σ ■

One observes, that this structure is not actually a partially ordered set, as the anti
symmetry doesn’t hold in general. One can for example just rearrange a finite set σ.

Definition 1.5 Let (X, D) be a uniform space with D = {di | i ∈ I}, and for each
σ ∈ I∗, let dσ be a pseudo-metric on X given by

dσ(x, y) = max{di(x, y) | i ∈ σ}

for each x, y ∈ X; if σ = ∅, then let dσ(x, y) = 0.

Definition 1.6 (Net) Let (Λ, ⪯) be a directed, partially ordered set and (X, D) a uni-
form space. A net (or Moore-Smith sequence) on Λ in X is a mapping Λ → X, λ 7→ xλ.
Like sequences it can be denoted by (xλ)λ∈Λ.

The nets are intended to take the role of sequences in uniform spaces. They are, in
particular, a strict generalization of sequences, as can be seen when considering S = {∗}.
The sequences on this specific set are determined precisely by their length, just as the
quasi-order on it corresponds to the less-than relation on the natural numbers. As quasi-
ordered sets, they are therefore equivalent to the natural numbers. Nets over this set
thus correspond exactly to sequences N → X.



Definition 1.7 (convergence of nets and Cauchy-nets) Let (Λ, ⪯) be a directed, parti-
ally ordered set and (X, D) a uniform space. A net (xλ)λ∈Λ on Λ in X converges to a
x ∈ X, in symbols: xλ → x, with a modulus β : I∗ → Λ, if for each σ ∈ I∗ and λ ∈ Λ:

β(σ) ⪯ λ =⇒ dσ(xλ, x) ≤ 2−|σ|

A Cauchy-net (xλ)λ∈Λ is a net on Λ in X together with a modulus α : I∗ → Λ, which
fulfills the following formula for each σ ∈ I∗ and µ, ν ∈ Λ:

α(σ) ⪯ µ, ν =⇒ dσ(xµ, xν) ≤ 2−|σ|

Lemma 1.8 (Uniqueness of limits) Let (X, D) be a uniform space. If a net (xλ) in X
converges to elements x and y of X, then x = y.

Proof. Let D = {di | i ∈ I}, and suppose that a net (xλ) on (Λ, ≺) converges to x ∈ X
and also to y ∈ X with the two moduli: α : I∗ → Λ and β : I∗ → Λ. By the directionality
of (Λ, ⪯) for each i ∈ I and n, there exists λ ∈ Λ such that α(in) ≺ λ and β(in) ≺ λ.
Therefore the definition of the convergence provides:

di(x, y) = din(x, y) ≤ din(x, xλ) + din(xλ, y) ≤ 2−n + 2−n ≤ 2n−1.

As this holds for any n ∈ N the non negative distance di(x, y) is already 0. This is also
independent of the choice of i ∈ I and hence from the definition of a uniform space
x = y. ■

Definition 1.9 (regular net) Let (X, D) be a uniform space and D = {di | i ∈ I} the
associated pseudo-metrics. A regular net in X is a Cauchy-net on (I∗, ⪯I∗) with the
modulus idI∗ : I∗ → I∗.

The space of all regular nets will be referred as X̃.
In the following section, it will be shown that for the completion of uniform spaces,

it is sufficient to use the regular nets. This simplifies the proofs insofar as there is no
need to carry an additional modulus for the Cauchy nets, since in regular nets, this is
the identity on I∗.

For this space X̃ we want to define the structure of a uniform Space in the following
way:

Definition 1.10 Let (X, D) be a uniform space, with D = {di | i ∈ I}. Then for each
i ∈ I we define a map: d̃i : X̃ × X̃ → R by the following construction:

∀x, y ∈ X̃ : d̃i(x, y) = lim
n→∞

di(xin , yin)

This limit in R is well-defined and for each i ∈ I d̃i is a pseudo-metric on X̃.



Proof. Let x = (xρ), y = (yρ) ∈ X̃. Then we show that (di(xin , yin))n is a Cauchy
sequence in R with a modulus n 7→ n + 1. In fact, for each m, m′ ≥ n + 1, since

din+1(xim , xim′ ) ≤ 2−(n+1) and din+1(yim , yim′ ) ≤ 2−(n+1),

we have

di(xim , yim) − di(xim′ , yim′ )
≤ di(xim , xim′ ) + di(xim′ , yim′ ) + di(yim′ , yim) − di(xim′ , yim′ )
= din+1(xim , xim′ ) + din+1(yim′ , yim)
≤ 2−(n+1) + 2−(n+1) = 2−n

We conclude, that (di(xin , yin))n is a Cauchy sequence, and hence it converges in R.
The first two criteria of being a pseudo-metric are obvious, as for each x, y ∈ X̃

d̃i(x, x) = 0 and d̃i(x, y) = d̃i(y, x) follow from the same equalities on di(xin , yin). For
the triangle inequality, we have

d̃i(x, y) = lim
n→∞

di(xin , yin)

≤ lim
n→∞

di(xin , zin) + lim
n→∞

di(zin , yin)

= d̃i(x, z) + d̃i(z, y)

for each x, y, z ∈ X̃. ■

Lemma 1.11 Let (X, D) be a uniform space with D = {di | i ∈ I}. Define the inclusion
map ιX : X → X̃ by

(ιX(x))(σ) = x

for each x ∈ X and σ ∈ I∗. Then

dσ(x, y) = d̃σ(ιX(x), ιX(y))

for each σ ∈ I∗ and x, y ∈ X.

Proof. By plugging in the definition of the just defined pseudo-metric d̃i, one gets for all
i ∈ I and x, y ∈ X:

d̃i(ιX(x), ιX(y)) = lim
n→∞

di(ιX(x)in , ιX(y)in) = lim
n→∞

di(x, y) = di(x, y).

Like so, this equation also holds for all σ ∈ I∗. ■

Lemma 1.12 Let (X, D) be a uniform space with D = {di | i ∈ I}, and let x = (xρ) ∈
X̃. Then

d̃σ(x, ιX(xτ )) ≤ 2−|τ |

for each σ, τ ∈ I∗ with σ ⪯I τ .



Proof. Assume σ, τ ∈ I∗ with σ ⪯I τ and choose i ∈ σ and n ∈ N. As x is regular we
get for every i|τ | ⪯I τ, ρ the inequality: di(xρ, xτ ) ≤ 2−|τ |. As from i ∈ σ ⪯I τ it follows
i ∈ τ , one receives i|τ | ⪯I τ . The statement |τ | ≤ n ∈ N =⇒ i|τ | ⪯I in follows instantly
from definition. This leads to:

∀n ≥ |τ | : di(xin , xτ ) ≤ 2−|τ |

which implies:
d̃i(x, ιX(xτ )) ≤ 2−|τ |.

As this is independent of the choice of i ∈ σ, one reaches the desired: d̃σ(x, ιX(xτ )) ≤
2−|τ |

■

Definition 1.13 (Completion of a uniform space) The completion of a uniform space
(X, D) with D = {di | i ∈ I} is the space (X, D̃) with D̃ = {d̃i | i ∈ I}, which becomes
a uniform space with the equality =X̃ given by

x =X̃ y ⇐⇒ ∀i ∈ I (d̃i(x, y) = 0)

for each x, y ∈ X̃.

We have already seen, that the embedding ιX : X → X̃ is an isometry and its image
lies dense in the Space X̃. To show that the above defined completion of the uniform
space is really a completion in the former sense, it remains to show, that it is actually
complete.

Theorem 1.14 The completion (X̃, D̃) of a uniform space (X, D) is complete.

Proof. Let D = {di | i ∈ I}, and suppose that (xλ)λ∈Λ = ((xλ,ρ)ρ∈I∗)λ∈Λ is a Cauchy net
on (Λ, ⪯) in X̃ with a modulus α : I∗ → Λ. For each σ ∈ I∗, define a net y = (yρ) on
(I∗, ⪯I) in X by

yρ = xα(ρ+2),ρ+2

for each ρ ∈ I∗. We show that y is a regular net. Therefore consider σ, τ, υ ∈ I∗ with
σ ⪯I τ, υ. Then there exists λ ∈ Λ such that α(τ+2) ⪯ λ and α(υ+2) ⪯ λ, and, since
σ ⪯I τ+2, υ+2, we have

dσ(yτ , yυ) = d̃σ(ιX(xα(τ+2),τ+2), ιX(xα(υ+2),υ+2))
≤ d̃σ(ιX(xα(τ+2),τ+2), xα(τ+2)) + d̃σ(xα(τ+2), xλ) + d̃σ(xλ, xα(υ+2))

+ d̃σ(xα(υ+2), ιX(xα(υ+2),υ+2))
≤ 2−|τ+2| + d̃τ+2(xα(τ+2), xλ) + d̃υ+2(xλ, xα(υ+2)) + 2−|υ+2|

≤ 2−|τ+2| + 2−|τ+2| + 2−|υ+2| + 2−|υ+2|

≤ 2−(|τ |+1) + 2−(|υ|+1)

≤ 2−|σ|.



using Lemma 1.12, the Cauchy property of x as well as the fact that d̃σ ≤ d̃ρ if σ ⪯I ρ.
Therefore y is regular. We further have to show, that xλ → y, hence we have to find a
modulus of this convergence. We define β : I∗ → Λ by

β(σ) = α(σ+3)

for each σ ∈ I∗. If β(σ) ⪯ λ, then

d̃σ(xλ, y) ≤ d̃σ(xλ, xα(σ+3)) + d̃σ(xα(σ+3), ιX(xα(σ+3),σ+3)) + d̃σ(ιX(yσ+1), y)
≤ 2−|σ+3| + 2−|σ+3| + 2−|σ+1| < 2−|σ|,

using the Cauchy property of x and two times Lemma 1.12. Therefore, (xλ) converges
to y with the modulus β. ■

The axioms used in Ishihara’s work can all be implemented in Minlog within the
theory of continuous functionals (TCF), which makes it easy to see that this completion
of uniform spaces can indeed be embedded into Minlog. However, from the current
standpoint, several components still need to be added beforehand.

Firstly, the definition of uniform spaces based on the type of pseudo-metrics is still
missing.

Furthermore, the set of finite sequences of a set, together with the quasi-order defined
on it, is not yet available as such. After that, one could incorporate the type of nets on
a uniform space, then define convergence and the Cauchy property, and finally define
regular nets as a specific type of Cauchy nets.

The theorems and lemmas are proven in great detail in the study of Hajime Ishihara
and can also be implemented in Minlog in the manner described above.


