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Def 1:

An abstract integration space (IS) is a pair (L, F) with:

(1) (L, V) is a vector lattice

(2) E: L — Ris a positive, linear functional, i.e. Vz,y € L,a € R:
(a) E(ar+vy) =aE(z)+ E(y)
(b) 0<z=0< E(x)

Remark:

The axiom 2b is equivalent to:
(b) <= Vz,ye L:x2<y= E(z) < E(y)

Konvention:

FOr the following, we fix an integration space (L, F).

Example:

Consider the space of step functions on R S(R) with the usual integral [,. Then
(S(R), [) is an integration space.

Def 2:

We define the following maps:

(W) -1 L = R with [lz]| := E(||)

(2) ds : L x L — R with ds(z,y) := ||z — y||



Lemma 1:

The map || - || is a pseudonorm on L and dy is a pseudometric on L.

Proof:

For all z,y € L and a € R we have:

(1) ol = E(|o]) = E(0) =0

(2) llaz|| = E(laz|) = E(|al|z]) = [a| E(|z]) = |al[l]|

@) llz+yl = E(I\{i_%l) < E(jz] + lyl) = E(l=]) + E(ly]) = ll=ll + [yl
<lz|+]yl

Thus | - || is a pseudonorm, inducing the pseudometric ds. O

Lemma 2:
The following inequalities holds:
Vo,y,a’,y € L:Vo € {+,V,A} tds(zoy,a’ oy) <dy(w,2) +ds(y,y/)

Proof:
Let z,y,2',y" € L be arbitrary.
(1) For o = + we have:
ds(x+y, 2" +y) =z +y—2' ¢/ =z —2" +y -]
Sl —a'll 4+ lly — o)l = dule ) + du(u. )
(2) For o € {V,A} we have:
ds(@oy,z’oy’) = |zoy —a’ oy
=|lzoy—a ocy+aoy—a oy
(L1) < flzoy—a' oyl + ]z’ oy — 2" oy
=E(zoy—a'oy|) + E(jz' oy — 2" 0y])

(s.0)<|z—a| <ly-vy'l|

(Def. 1) < E(|lz — 2'|) + E(ly — ¢'|) = ds(z,2") + ds(y,y")

Def 3:
We turn (L, ds) into a metric space by defining:
Ve,ye L:x=py:<= ds(z,y) =0

Then let (L',JS) be the metric space completion of (L,ds). This induces the
canonical embedding ¢y : L — L.



Lemma 3:

(1) The following maps are uniformly continuous:

(teo4),(teoV),(tgoN): LXL— L
(2) The following map is locally uniformly continuous:
teo(—-=):RxL—=L

Proof:

(1) We consider (L,ds) to be a uniform space (L, D) index by the singleton
set: Dy :={d; | i € {s}}. Then our module must be of the form:

a:N— {s}+{s})”

We denote the elements of {s} + {s} as sy for the s of the left singleton and
s1 for the s of the right singleton. Then we define:
a(n) == spt 51

Now take (zf,2%) € L x L for i = 0,1. Then by definition we have:

ooy (26,23, (33,01) = maxdy(a,al) A Ja(n)] = n+2

Now fix a n € N and the (z¥,z}) € L x L such that:
da(n)((xga 1‘(1)), (xtl)a Z‘%)) < 2_|a(n)|
Thus we get the following inequality:

79 K3
= dy (20, 28) + ds(2,27) < 2~ (n42) 4 9=(n+2) - 9—n
Finally, by the above inequality, we get:
Yo € {+,V,A}: Js(Lg(xg oxY),te(xf o xy)) = ds(x) 0 2V, 28 0 27)
L2

< ds(xg,x(l)) + ds(x?,m%) <2 n

Hence the maps are uniformly continuous with module a.



(2) We also consider (R,d,) to be a uniform space index by {r}, where:
Va,b € R : d.(a,b) :=|a — b
Now let € be a regular net in (R, d,.) X (L,ds) such that:
§=((cor20))petritish N P= rtxst e ({ry+{s})"

Here we omit the subscripts rg, sg for the sake of brevity. Now fix some
N e N such that max {|c,|, ||z,]|} < 2N _ 1. Then we define:

B:N—= ({r}t+{s})", n s PN gl
Now we fix some n € N and (a,z), (b,y) € U (§). By definition we have:
V(e 2) € Ugmy(§) : ds(tmxr(c, 2),€) < 27191 = = (Nn+2)
A first estimation yields (x):

duve(az), a(by)) = dy(az,by) = B(jaz — by])
< E(|lax — ay| + ay — by|) = |alds(z,y) + [[ylldr(a, b)
We now individually estimate the parts of the above term:
(a) We have the following inequality:
dgny((a,2), (b,y)) < dpn) (trxr(a, 7), tzxr (b, y))
< Jﬁ(n) (trxr(a,z),§) + dﬁ(n) (& trxr(b,y))
< 9~ (N+nt2) | 9= (N+n+2) _ 9= (N+n+1)
= du(z,).dr(a,) < dguy((a,2), (b,y)) < 27V
(b) We have the following inequality:
azp(L]RxL(cp,zp),f) + Jp(f,LRxL(a,x)) <9 lPl po-lpl = 9=2 4 9=2
Using this we get:
lc, —al = (i(07r)(LRXL(Cp, Zp)s tRx (@ T))
< do,m (trxL(Cp, 2),€) + d(0,r) (& trxL (@, 7))
< dp(trxn(Cps 2p), €) + dy(&, trxr(a, 7)) < 1
I2p = yll = de1,s) (trxL(Cps 2p), tRx L0, T))
< dp(rxr(Cp 2p),€) + do(&, trx1(a,7)) < 1
Thus we finally get:
lal = lep +a—co| <le, —a| +e,| <1 +2V —1=2"
Iyl = 25 +y = 2oll < ll2p =yl + |25l < 1+2Y =1 =27
Substituting (a) and (b) into () yields:
ds(te(ax), 1e(by)) < 2N . 2= (NAntl) 4 oN o= (N4ntl) _ 9—n

Hence the map is locally uniformly continuous with module 8. O



Reminder:

We previously proved the following theorem: For some family of uniform spaces
{(X;, D) }icr, a complete unform space (Y, Dy) and a (locally) uniformly con-

tinuous map f : HzE 1 X = Y, there exists a unique (locally) uniformly contin-

uous extension f : I1 ; — Y, ie. the following diagram commutes:

zel

it ~ (loc.) unf. c‘ont. adiad
[Ticr(Xi, Ds) LT (Y, Dy)

Reminder:

The above map f is an extension of f in the following sense. We can canonically
extend f to the map:

i I SV, @)= f(@)

e e

Then f is the unique (locally) uniformly continuous extension of f to Hle I

Henceforth we will simply call f the extension of f.

Lemma 4:

Given a family of uniform spaces {(X;, D;) | i € I'}, a complete uniform space
(v, Dy) and (locally) uniformly continuous maps f,g: [[,o; X: = Y and f,g:

[Lics X; — Y, such that the following holds:

iel

foll=f AN gor=yg
Then the following holds:
f=9 = [f=y
Proof:
?» — : Let f = §. Then:
fol=gor = f=g¢g

? «=": Let f = g. Then f,§ are both (locally) uniformly continuous exten-
sions of f = g. By the uniqueness of the extension, we get:

f=3



Prop 1:
The completion (£,ds) of (L, ds) is a vector lattice.

Proof:

By Lemma 3 the maps ¢z 0+, ¢ 0oV and ¢z o A are uniformly continuous and
teo(—-—) is locally uniformly continuous. By the above theorem, we can extend
these maps. This yields the following commutative diagram:

LxL : L . R x L

+c,Ve, Az

We now have to show that these operations fulfill the axioms of a vector lattice.
This will follow from lemma 4. We will show this for one but omit the rest:

Vi, g,he L:(fH+eh)Ve(g+eh)=¢ fVeg+eh

To use Lemma 4 we define the following maps:

(P(xai%z) = Lg((l‘ + z) N (y + Z)) @(.ﬂga h‘) = (f +e h) Vg (g +e h)

'@/J(x,y,Z) = LL(Z'\/y-f—Z) w(f»gah) ::fv29+£h
Here we have ¢, : L3 — £ and ¢, ¢ : £3 — £. We now have:
P(ee(®),te(y), te(2)) = (Le(@) +2 te(2)) Ve (Le(y) +e te(2))

=ie(z+2)Vetely+2)=te((z+2)V(y+2))
= ¢(,y, 2)

Thus we have ¢ o 123 = . By the same argument we get zﬁ otps = 1. Since L
is a vector lattice we have:

QOZ’L/) Lemma 4 ()5:1[)

Repeating this argument for the other axioms yields the desired result. O



Lemma 5:

The maps E: L — R and || - || : L — R are uniformly continuous.

Proof:
Let z,y € L be arbitrary. Then we have:
(1) From z < |z — y| + y we get:
E(z) < E(lr —yl) + E(y) = [z = yll + E(y) = ds(2,y) + E(y)
Thus E(x) — E(y) < ds(x,y) and by symmetry we get:
[E(x) — E(y)| < ds(z,y)
(2) From [lz]| <[l —yll + llyll we get:
Izl < llz = yll + llyll = ds(2,y) + [y
Thus ||z] — |ly|| < ds(z,y) and by symmetry we get:

izl =1yl < ds(2, )

Def 4:

Let [ : £ — R be the unique extension of E to £. We call [ f the integral of
f € L. Furthermore let || - |z : £ — R be the unique extension of || - || to £. We
call || - ||z the norm on L.



Lemma 6:

For all f,g € £ and a € R the following holds:

(1) J(f+cg=[f+[gand [(acf)=aff
20<f=0<[f

(3) Ifllc = JIf and ds(f,9) = |If — gllc

Proof:

(1) We have the following equalities:
Jtsle) 42 0s) = [ia(o+9) = B )
—B()+ B) = [120)+ [12(0)
(@ 0s@) = [ 1s(ar) = Bar) = aB@) = a [ 15(2)

Lemma 4 then yields the desired result.

(2) For all z € L we have 0 < 2 and thus:

0< B = [ ale))* @max{o, / (bz(x))+} ~ [ tsta)”

By Lemma 4 we then get:

ers:max{o,/ﬁ}:/f*@og/ﬁ

The desired result then follows from:
0§f:>f=f+=>0§/f+=/f
(3) We have the following equalities:
Jes(@)lls = ol = Eel) = [ ualel)) = [ lista)
dy(1e(@),1e(y)) = ds(z,y) = |lz —yl| = E(jz —y|) = /L2(|35 - yl)
— [ (o) = 15()] = lrs(e) = o202

Lemma 4 then yields the desired result.



