
1 Approximation of square roots
... same as in the script ...

2 Cauchy sequences
As we saw in the last section, we can define a Cauchy sequence of rational numbers that
does not converge to a rational number. Therefore, we shall view a real as a Cauchy
sequence of rationals with a separately given modulus. This modulus witnesses that
the points of the sequence become arbitrarily close, thus giving rise to a constructive
notion of reals.

Definition 2.1. A real number 𝑥 is a pair ((𝑎𝑛)𝑛∈N, 𝑀) with 𝑎𝑛 ∈ Q and 𝑀 : Z+ → N
such that (𝑎𝑛)𝑛 is a Cauchy sequence with modulus 𝑀 , that is

|𝑎𝑛 − 𝑎𝑚 | ≤
1

2𝑝
for 𝑛, 𝑚 ≥ 𝑀 (𝑝)

and 𝑀 is weakly increasing, meaning 𝑀 (𝑝) ≤ 𝑀 (𝑞) for 𝑝 ≤ 𝑞. 𝑀 is called the Cauchy
modulus of 𝑥.

We shall loosely speak of a real (𝑎𝑛)𝑛 if the Cauchy modulus 𝑀 is clear from the
context or inessential. Every rational 𝑎 is tacitly understood as the real represented by
the constant sequence 𝑎𝑛 = 𝑎 with the constant modulus 𝑀 (𝑝) = 0.

It is certainly possible to find multiple Cauchy sequences and moduli describing the
same real number. Hence, it is important to define an equivalence of reals capturing
this intuitive notion. For technical reasons we will do so by first defining the order
relations and then deriving equivalence from them. This way, many properties of this
equivalence will be a consequence of the same properties of the ≤ relation, simplifying
the proofs.

3 Nonnegative and positive reals
Firstly, we define what it means for a real 𝑥 to be positive (𝑥 > 0) and to be nonnegative
(𝑥 ≥ 0). Note that being positive carries a computational value, as it should be possible
to fit a small ball between zero and the number, which will be part of our definition.

Definition 3.1. A real 𝑥 B ((𝑎𝑛)𝑛, 𝑀) is called nonnegative (written 𝑥 ∈ R0+) if

− 1
2𝑝

≤ 𝑎𝑀 (𝑝) for all 𝑝 ∈ Z+.

It is 𝑝-positive (written 𝑥 ∈𝑝 R+, or 𝑥 ∈ R+ if 𝑝 is not needed) if

1
2𝑝

≤ 𝑎𝑀 (𝑝+1) .

The following description of a real being 𝑝-positive makes the geometric intuition
of fitting a ball between zero and the number explicit.
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Lemma 3.1 (RealPosChar). For a real 𝑥 B ((𝑎𝑛)𝑛, 𝑀) with 𝑥 ∈𝑝 R+ we have

1
2𝑝+1 ≤ 𝑎𝑛 for 𝑛 ≥ 𝑀 (𝑝 + 1).

Conversely, from ∃𝑛0 ∀𝑛≥𝑛0 ( 1
2𝑞 ≤ 𝑎𝑛) we can infer 𝑥 ∈𝑞+1 R

+.

Proof. We shall first assume that 𝑥 ∈𝑝 R+, that is 1
2𝑝 ≤ 𝑎𝑀 (𝑝+1) . Let 𝑛0 B 𝑀 (𝑝 + 1)

and 𝑛 ≥ 𝑛0. We have to show 1
2𝑝+1 ≤ 𝑎𝑛. Using the assumption of 𝑥 being 𝑝-positive,

we get
1

2𝑝+1 =
1

2𝑝
− 1

2𝑝+1

≤ − 1
2𝑝+1 + 𝑎𝑀 (𝑝+1)

= − 1
2𝑝+1 + (𝑎𝑀 (𝑝+1) − 𝑎𝑛) + 𝑎𝑛

Note that 𝑛 ≥ 𝑀 (𝑝+1), thus by the defining property of (𝑥𝑛)𝑛 being a Cauchy sequences
we get

(𝑎𝑀 (𝑝+1) − 𝑎𝑛) ≤ |𝑎𝑀 (𝑝+1) − 𝑎𝑛 | ≤
1

𝑝 + 1
Putting it all together one has 1

2𝑝+1 ≤ 𝑎𝑛.
Conversely, assume that there is a natural number 𝑛0 such that 1

2𝑞 ≤ 𝑎𝑛 for 𝑛 ≥ 𝑛0.
We aim to show 𝑥 ∈𝑞+1 R

+, that is 1
2𝑞+1 ≤ 𝑎𝑀 (𝑞+2) . Let 𝑛 ≥ max(𝑀 (𝑞 + 2), 𝑛0),

1
2𝑞+1 < − 1

2𝑞+2 + 1
2𝑞

≤ − 1
2𝑞+2 + 𝑎𝑛

As before, 𝑎𝑛 − 𝑎𝑀 (𝑞+2) ≤ |𝑎𝑀 (𝑞+2) − 𝑎𝑛 | ≤ 1
2𝑞+2 . Multiplying by −1 yields − 1

2𝑞+2 ≤
𝑎𝑀 (𝑞+2) − 𝑎𝑛.

− 1
2𝑞+2 + 𝑎𝑛 ≤ (𝑎𝑀 (𝑞+2) − 𝑎𝑛) + 𝑎𝑛 = 𝑎𝑛

This shows 𝑥 ∈𝑞+1 R, finishing the proof. □

Lemma 3.2 (RealNNegChar). For a real 𝑥 B ((𝑎𝑛)𝑛, 𝑀) the following are equivalent:

(a) 𝑥 ∈ R0+

(b) ∀𝑝 ∃𝑛0 ∀𝑛≥𝑛0 (− 1
2𝑝 ≤ 𝑎𝑛)

Proof. To show that (𝑎) implies (𝑏), assume 𝑥 ∈ R0+ and let 𝑝 ∈ Z+. We will show that
𝑛0 B 𝑀 (𝑝 + 1) satisfies the condition. Let 𝑛 ≥ 𝑛0. By assumption − 1

2𝑝+1 ≤ 𝑎𝑀 (𝑝+1) ,
hence

− 1
2𝑝

= − 1
2𝑝+1 − 1

2𝑝+1

≤ − 1
2𝑝+1 + 𝑎𝑀 (𝑝+1)

= − 1
2𝑝+1 + (𝑎𝑀 (𝑝+1) − 𝑎𝑛) + 𝑎𝑛
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Again, using that (𝑥𝑛)𝑛 is a Cauchy sequence and 𝑛 ≥ 𝑀 (𝑝 + 1), it holds that

− 1
2𝑝+1 + (𝑎𝑀 (𝑝+1) − 𝑎𝑛) + 𝑎𝑛 ≤ − 1

2𝑝+1 + 1
2𝑝+1 + 𝑎𝑛 = 𝑎𝑛

We now proceed to show that (𝑏) implies (𝑎). For this we use a characterization of
the ≤ relation on rational number, which states, given 𝑝, 𝑝′ ∈ Q, 𝑝 ≤ 𝑝′ is equivalent
to 𝑝 ≤ 𝑝′ + 1

2𝑞 for all 𝑞 ∈ Z+ (RatLeAllPlusToLe). Now assume (𝑏), let 𝑝, 𝑞 ∈ Z+ and
𝑛 ≥ max(𝑛0, 𝑀 (𝑝)) with 𝑛0 provided by (𝑏) for 𝑞. Then

− 1
2𝑝

− 1
2𝑞

≤ − 1
2𝑝

+ 𝑎𝑛

= − 1
2𝑝

+ (𝑎𝑛 − 𝑎𝑀 (𝑝) ) + 𝑎𝑀 (𝑝)

≤ − 1
2𝑝

+ 1
2𝑝

+ 𝑎𝑀 (𝑝) = 𝑎𝑀 (𝑝)

Again, the first step follows from our assumption and the last step uses that (𝑎𝑛)𝑛 is a
Cauchy sequence and 𝑛 ≥ 𝑀 (𝑝). Since 𝑞 was arbitrary, this inequality holds for all
𝑞 ∈ Z+. Thus, − 1

2𝑝 ≤ 𝑎𝑀 (𝑝) for all 𝑝 ∈ Z+ by RatLeAllPlusToLe, which is precisely
the definition of 𝑥 ∈ R0+. □

4 Addition, Negation and Absolute Value
We want to define 𝑥 < 𝑦 for reals 𝑥, 𝑦 if and only if 𝑦 − 𝑥 ∈ R+ and analogously for ≤.
In order to do so, we will need to define the addition of two reals and the negation a
real.

Definition 4.1. Given real number 𝑥 B ((𝑎𝑛)𝑛, 𝑀) and 𝑦 B ((𝑏𝑛)𝑛, 𝑁), we define
𝑥 + 𝑦, −𝑦 and |𝑥 | as represented by the respective sequence (𝑐𝑛)𝑛 of rational number
with modulus 𝐾:

𝑐𝑛 𝐾 (𝑝)
𝑥 + 𝑦 𝑎𝑛 + 𝑏𝑛 max(𝑀 (𝑝 + 1), 𝑁 (𝑝 + 1))
−𝑥 −𝑎𝑛 𝑀 (𝑝)
|𝑥 | |𝑎𝑛 | 𝑀 (𝑝)

Lemma 4.1. For reals 𝑥, 𝑦 also 𝑥 + 𝑦 (RealPlusReal), −𝑥 (RealUMinusReal) and |𝑥 |
(RealAbsReal) are reals.

Proof. The fact −𝑥 is a real clearly follow from 𝑥 being a real. In the case of |𝑥 | use
the inequality | |𝑎 | − |𝑏 | | ≤ |𝑎 − 𝑏 | for all 𝑎, 𝑏 ∈ Q. For 𝑥 + 𝑦 let 𝑛, 𝑚 ≥ 𝐾 (𝑝) =

max(𝑀 (𝑝 + 1), 𝑁 (𝑝 + 1)).

|𝑐𝑛 − 𝑐𝑚 | = |𝑥𝑛 + 𝑦𝑛 − (𝑥𝑚 + 𝑦𝑚) |
≤ |𝑥𝑛 − 𝑥𝑚 | + |𝑦𝑛 − 𝑦𝑚 |

≤ 1
𝑝 + 1

+ 1
𝑝 + 1

=
1
𝑝

□
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Note that in the definition of the modulus of 𝑥 + 𝑦 one has to increase 𝑝 by one.
This stems from the observation, that, in general, the ”errors” of the sequences add up,
as seen in the proof.

5 Comparison of reals
Definition 5.1. Let 𝑥, 𝑦 be reals, we write 𝑥 ≤ 𝑦 for 𝑦−𝑥 ∈ R0+ and 𝑥 < 𝑦 for 𝑦−𝑥 ∈ R+.

Unwinding the definitions yields that 𝑥 ≤ 𝑦 is to say that for every 𝑝 ∈ Z+ we have
𝑎𝐾 (𝑝) ≤ 𝑏𝐾 (𝑝) + 1

2𝑝 with 𝐾 (𝑝) B max(𝑀 (𝑝 + 1), 𝑁 (𝑝 + 1)). Furthermore, 𝑥 < 𝑦 is
a shorthand for the presence of 𝑝 with 𝑎𝐾 (𝑝+1) + 1

2𝑝 ≤ 𝑏𝐾 (𝑝+1) with 𝐾 as before; we
then write 𝑥 <𝑝 𝑦 whenever we want to call these witnesses.

Lemma 5.1 (RealApprox). ∀𝑥,𝑝∃𝑎 ( |𝑥 − 𝑎 | ≤ 1
2𝑝 )

Proof. ... same as in the script ... □

Lemma 5.2 (RealLeChar). For reals 𝑥 B ((𝑎𝑛)𝑛, 𝑀), 𝑦 B ((𝑏𝑛)𝑛, 𝑁) the following
are equivalent:

(a) 𝑥 ≤ 𝑦

(b) ∀𝑝∃𝑛0∀𝑛≥𝑛0 (𝑎𝑛 ≤ 𝑏𝑛 + 1
2𝑝 )

Proof. This is an immediate consequence from RealNNegChar. □

Lemma 5.3 (RealLtChar). For reals 𝑥 B ((𝑎𝑛)𝑛, 𝑀), 𝑦 B ((𝑏𝑛)𝑛, 𝑁) with 𝑥 <𝑝 𝑦 we
have

𝑎𝑛 +
1

2𝑝+1 ≤ 𝑏𝑛 for 𝑛 ≥ max(𝑀 (𝑝 + 2), 𝑁 (𝑝 + 2))

Conversely, from ∃𝑛0∀𝑛≥𝑛0 (𝑎𝑛 + 1
2𝑞 ≤ 𝑏𝑛) we can infer 𝑥 <𝑞+1 𝑦.

Proof. As before, this follows from RealPosChar. □

Lemma 5.4. For reals 𝑥, 𝑦, 𝑧,

𝑥 ≤ 𝑥 𝑥 ≮ 𝑥
𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧 𝑥 < 𝑦 → 𝑦 < 𝑧 → 𝑥 < 𝑧

𝑥 ≤ 𝑦 → 𝑥 + 𝑧 ≤ 𝑦 + 𝑧 𝑥 < 𝑦 → 𝑥 + 𝑧 < 𝑦 + 𝑧

Proof. These properties can easily be seen using the characterizations from above. For
example, to prove transitivity of <, note that for reals 𝑥, 𝑦, 𝑧 with 𝑥 <𝑝 𝑦 and 𝑦 <𝑞 𝑧,
there is 𝑛0 ∈ N such that for all 𝑛 ≥ 𝑛0 one has 𝑎𝑛 + 1

2𝑝+1 + 1
2𝑞+1 ≤ 𝑏𝑛 + 1

2𝑞+1 ≤ 𝑐𝑛. □

Here we have left out ... (same as in the script till Chapter 7.)
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6 Equality of reals
Definition 6.1. Two reals 𝑥, 𝑦 are called equivalent (or equal and written 𝑥 = 𝑦, if the
context makes clear what is meant), if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥.

Remark. Using this definition of equality, it immediately follows that being nonngeative
is compatible with equality. Compatibility with < and being positive follows from ...
script Lemma 6.4 ...

Lemma 6.1 (RealEqChar). For reals 𝑥 B ((𝑎𝑛)𝑛, 𝑀), 𝑦 B ((𝑏𝑛)𝑛, 𝑁) the following
are equivalent:

(a) 𝑥 = 𝑦

(b) ∀𝑝∃𝑛0∀𝑛≥𝑛0 ( |𝑎𝑛 − 𝑏𝑛 | ≤ 1
2𝑝 )

Proof. First assume (𝑎). This by definition means 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. Let 𝑝 ∈ Z+ using
RealLeChar we get 𝑛0, 𝑛

′
0 ∈ N such that for all 𝑛 ≥ max(𝑛0, 𝑛

′
0) one has 𝑎𝑛 ≤ 𝑏𝑛 + 1

2𝑝

and 𝑏𝑛 ≤ 𝑎𝑛 + 1
2𝑝 . This shows |𝑎𝑛 − 𝑏𝑛 | ≤ 1

2𝑝 . In fact, we only used equivalences,
concluding the proof. □

Remark (RealSeqEqToEq). ... same as in the script ...

Lemma 6.2 (RealEqTrans). Equality between reals is transitive.

Proof. Follows from the transitivity of the ≤ relation. □

7 The Archimedian property
For every function on the reals we certainly want compatibility with equality. This
however is not always the case; here is an important example.

Lemma 7.1 (RealBound). For every real 𝑥 B ((𝑎𝑛)𝑛, 𝑀) we can find 𝑝𝑥 such that
|𝑎𝑛 | ≤ 2𝑝𝑥 for all 𝑛.

Proof. Let 𝑛0 B 𝑀 (1) and 𝑝𝑥 be such that max{ |𝑎𝑛 | | 𝑛 ≤ 𝑛0 } + 1
2 ≤ 2𝑝𝑥 . If 𝑛 ≤ 𝑛0,

then by choice of 𝑝𝑥 it holds that |𝑎𝑛 | ≤ 2𝑝𝑥 . Now if 𝑛 > 𝑛0 = 𝑀 (1) then by (𝑎𝑛)𝑛
being a Cauchy sequence we have

|𝑎𝑛 | = | (𝑎𝑛 − 𝑎𝑛0 ) + 𝑎𝑛0 | ≤ |𝑎𝑛 − 𝑎𝑛0 | + |𝑎𝑛0 | ≤
1
2
+ |𝑎𝑛0 | ≤ 2𝑝𝑥

□

Clearly this assignment of 𝑝𝑥 to 𝑥 is not compatible with equality.
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8 Multiplication and inverse
Using the Archimedian property we are able to define multiplication of reals.

Definition 8.1. Given real number 𝑥 B ((𝑎𝑛)𝑛, 𝑀) and 𝑦 B ((𝑏𝑛)𝑛, 𝑁), we define
𝑥 · 𝑦 and provided |𝑥 | > 0 also 1

𝑥
as represented by the respective sequence (𝑐𝑛)𝑛 of

rational number with modulus 𝐾:
𝑐𝑛 𝐾 (𝑝)

𝑥 · 𝑦 𝑎𝑛 · 𝑏𝑛 max(𝑀 (𝑝 + 1 + 𝑝𝑦), 𝑁 (𝑝 + 1 + 𝑝𝑥))
1
𝑥

for |𝑥 | ∈𝑞 R+
{

1
𝑎𝑛

if 𝑎𝑛 ≠ 0
0 if 𝑎𝑛 = 0

𝑀 (2(𝑞 + 1) + 𝑝)

where 𝑝𝑥 and 𝑝𝑦 are provided by RealBound.

Lemma 8.1. For reals 𝑥, 𝑦 also 𝑥 · 𝑦 and provided that 0 <𝑞 |𝑥 | also 1
𝑥

are reals.

Proof. ... same as in the script ... □

9 Compatibility
Lemma 9.1. For reals 𝑥, 𝑦, 𝑧,

𝑥 ≤ 𝑦 → 0 ≤ 𝑧 → 𝑥 · 𝑧 ≤ 𝑦 · 𝑧 𝑥 < 𝑦 → 0 < 𝑧 → 𝑥 · 𝑧 < 𝑦 · 𝑧

Proof. Follows from RealLtChar and RealLeChar. □

Lemma 9.2. For reals 𝑥, 𝑦, 𝑧

𝑥 + (𝑦 + 𝑧) = (𝑥 + 𝑦) + 𝑧
𝑥 + 0 = 0

𝑥 + (−𝑥) = 0
𝑥 + 𝑦 = 𝑥 + 𝑦

𝑥 · (𝑦 · 𝑧) = (𝑥 · 𝑦) · 𝑧
𝑥 · 1 = 𝑥

0 < |𝑥 | → 𝑥 · 1
𝑥
= 1

𝑥 · 𝑦 = 𝑦 · 𝑥

𝑥 · (𝑦 + 𝑧) = 𝑥 · 𝑦 + 𝑥 · 𝑧

Proof. ... same as in the script ... □

Lemma 9.3. The functions 𝑥 + 𝑦,−𝑥, |𝑥 |, 𝑥 · 𝑦 and (provided that |𝑥 | ∈𝑞 R+) also 1
𝑥

are
compatible with equality.

Proof. The compatibility with addition follows from Lemma ??. For the compatibility
with multiplication we unfortunately can’t use Lemma ??, since constructively the
case distinction 0 ≤ 𝑧 or 𝑧 ≤ 0 is not possible as seen before. Nevertheless, using
RealEqChar this can quickly be shown: Assume 𝑥 = 𝑦, we want to show 𝑥 · 𝑧 = 𝑦 · 𝑧.
Pick an arbitrary 𝑝 ∈ Z+ and let 𝑝𝑧 be provided by RealBound for 𝑧. Using RealEqChar
pick 𝑛0 such that 𝑛 ≥ 𝑛0 implies |𝑎𝑛 − 𝑏𝑛 | ≤ 1

2𝑝+𝑝𝑧 . Now,

|𝑎𝑛𝑐𝑛 − 𝑏𝑛𝑐𝑛 | ≤ |𝑎𝑛 − 𝑏𝑛 | · 2𝑝𝑧 ≤ 1
2𝑝+𝑝𝑧

· 2𝑝𝑧 ≤ 1
2𝑝
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This shows 𝑥 · 𝑧 = 𝑦 · 𝑧.
For compatibility with absolute value let 𝑥 = 𝑦 and note that

𝑎𝑛 ≤ 𝑏𝑛 +
1

2𝑝
⇒ |𝑎𝑛 | ≤ |𝑏𝑛 +

1
2𝑝

| ≤ |𝑏𝑛 | +
1

2𝑝

Thus, the statement follows from compatibility with ≤ and RealLeChar using the same
𝑛0. For unary division also use RealEqChar. □

Lemma 9.4. For a real 𝑥 from 0 ≤ 𝑥 and 0 ≤ −𝑥 we can infer 𝑥 = 0.

Proof. ... same as in script (Lemma 5.5 (c)) ... □

Lemma 9.5. For reals 𝑥, 𝑦 from 𝑥 · 𝑦 = 1 we can infer 0 < |𝑥 |.

Proof. Using RealBound Pick 𝑝 such that |𝑏𝑛 | ≤ 2𝑝 for all 𝑛. By RealEqChar we can
choose 𝑛𝑜 such that for all 𝑛 ≥ 𝑛0 we have 1 − 𝑎𝑛𝑏𝑛 ≤ 1

2 , hence 1
2 ≤ 𝑎𝑛𝑏𝑛. Then we

have 1
2 ≤ 𝑎𝑛2𝑝 , and thus 1

2𝑝+1 ≤ |𝑎𝑛 |. □
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