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Introduction

The library nat.scm is the one containing all axioms, theorems and definitions on natural numbers. I
will first start by presenting the definition of natural numbers by the function Succ together with the
constant Zero. After that I will present the so-called program-constant, those will be the definitions
necessary to use natural numbers as we are used to in mathematical practice.

add-algs

(add-algs "nat" ’("Zero" "nat") ’("Succ" "nat=>nat"))

(add-var-name "n" "m" "l" (py "nat"))

;l instead of k, which will be an int

We start the program with the already familiar (tutor: 6.4) command (add-algs "nat" ’("Zero"

"nat") ’("Succ" "nat=>nat")) which creates an algebra with constructors Zero and Succ. The
algebra will then be closed under the successor function and have zero as its starting element. The
second line adds the default variables n, m and l as natural numbers.

Program constants

As announced we then proceed by adding program constants to the library, those will be the functions,
predicates and relations we are already familiar with, I will analyse those signed by ;;* at the end of
the line.

;; Program constants.

(add-program-constant "NatPlus" (py "nat=>nat=>nat")) ;;*

(add-program-constant "NatTimes" (py "nat=>nat=>nat"))

(add-program-constant "NatLt" (py "nat=>nat=>boole"))

(add-program-constant "NatLe" (py "nat=>nat=>boole")) ;;*

(add-program-constant "Pred" (py "nat=>nat"))

(add-program-constant "NatMinus" (py "nat=>nat=>nat"))

(add-program-constant "NatMax" (py "nat=>nat=>nat"))

(add-program-constant "NatMin" (py "nat=>nat=>nat"))

(add-program-constant "AllBNat" (py "nat=>(nat=>boole)=>boole")) ;;*

(add-program-constant "ExBNat" (py "nat=>(nat=>boole)=>boole"))

(add-program-constant "NatLeast" (py "nat=>(nat=>boole)=>nat")) ;;*

(add-program-constant "NatLeastUp" (py "nat=>nat=>(nat=>boole)=>nat"))

The command add-program-constant (or for short, apc, also in tutor 6.4) is the one that introduces
the program constant by defining its type (both domain and codomain. As we know, in order to
define a function, predicate or relation, it is not enough to define its domain and codomain, instead
one should give some computational rules, what follows contains the computational rules for all of the
marked functions and relations. Those will be sometimes followed by brief and simple lemmas which
we are already very familiar with in mathematical practice.

1



NatPlus

I use this program constant as an example of what stated above, therefore I will shortly repeat the
essential passages together with the corresponding instances.

add-program-constant

Here we first introduce the domain and codomain of the function, we notice that, as expected, + is a
function that takes two objects of type nat and returns a third object of type nat.

(add-program-constant "NatPlus" (py "nat=>nat=>nat"))

add-display

In order to have a notation looking more familiar, we can modify the notation of NatPlus to +. In
order to do so, we may simply use the following command:

(add-display (py "nat") (dc "NatPlus" "+" ’add-op))

add-computation-rules

The following are the computation rules that we expect for +, in fact they precisely correspond to the
two familiar axioms of Peano Arithmetic concerning +: (i) ∀x(x+0 = 0), (ii) ∀x,y(x+S(y) = S(x+y)).

(add-computation-rules

"n+0" "n"

"n+Succ m" "Succ(n+m)")

NatPlusComm

Among the different theorems that we can prove from the definition of + together with the former
definitions, I present the commutativity of +, claiming ∀n,mn+m = m+ n.
First I prove the claim in the familiar mathematical vocabulary one can then compare it with the proof
of the lemma on Minlog.
Claim. ∀n,m∈Nn+m = m+ n.
Proof. Consider a natural number n, then by induction we wish to prove that the statement above
holds for all m, in order to do so, we have two claims: n + 0 = 0 + n and that n + m = m + n →
n + m + 1 = m + 1 + n. In order to prove the induction start we use the computation rule stating
that both sides are equal n. In order to prove the induction step, we first take one m and assume the
induction hypothesis, then notice that by the second computation rule we conclude the proof.

;; NatPlusComm

(set-goal "all n,m n+m=m+n")

(assume "n")

(ind)

(use "Truth")

(assume "m" "IH")

(use "IH")

NatLe

Just like above we implement some more familiar notation for a relation operator:

(add-display (py "boole") (dc "NatLe" "<=" ’rel-op))

Then consider the computation rules, those are again defined inductively, meaning that first the 0 case
gets defined and then the successor case with Succ n.
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;; For NatLe

(add-computation-rules

"0<=n" "True"

"Succ n<=0" "False"

"Succ n<=Succ m" "n<=m")

As expected, we see that the 0 case gives always True if it is on the right of the relation and False if
it is on the left; also we have n + 1 ≤ m + 1 iff n ≤ m which clearly holds for our intuition of ≤ and
defines it in the successor case where nor of the two is 0.
There are now two lemmas on ≤ to prove, I proceed like above.

NatLeTrans

Since there are some commands that might be new to the reader, here I introduce those before starting
to prove the claim.
The command (strip) is equivalent to a repetition of (assume "...") for all you can assume, the
example we are about to see is of how (strip) transforms the goal all m,l(0 <= m -> m <= l ->

0 <= l) in the assumptions 0 <= m, m <= l and the goal 0 <= l. The command (use "Truth") will
then prove the goal, this command concludes trivial arguments like the one above.
The command (cases), as one images, divides the proof into two possible cases, one when an object
is assumed to be 0 and the other when the object is assumed to be a successor.
The assertion "Absurd" allows us to drop those assumptions that are always false, for example the
goal Succ n <= 0 -> 0 <= l -> Succ n <= l can be simplified to 0 <= l -> Succ n <= l since a
false antecedent proves the implication tautologically true.
The assertion EfAtom is just like the familiar Efq but only for atomic formulae, e.g. we’ll use it in the
form F -> Succ n <= l.
Since the proof will be a little more intricate than the previous one, I will state the proof more like in
a Minlog style, so that the Minlog proof can be better understood.
Claim. ∀n,m,l(n ≤ (sm → m ≤ l → n ≤ l)
Proof. We first clearly need to proceed by induction, hence we consider have now the two goals ϕ(0)
and ϕ(n) → ϕ(n+ 1) for ϕ the transitivity of ≤.
First consider ϕ(0) = ∀m,l(0 ≤ m → m ≤ l → 0 ≤ l). First instantiate m and l and then assume bot
0 ≤ m and m ≤ l (all in the command (strip)), finally notice that 0 ≤ l trivially holds, hence the
claim is proved.
Now consider the claim ϕ(n) → ϕ(n+ 1). Instantiate n and assume ϕ(n), then consider the two cases
(i) where m = 0 (ii) where m is a successor.
Consider the case wherem = 0, namely: n+1 ≤ 0 → 0 ≤ l → n+1 ≤ l. Notice that the first antecedent
is always false, hence the material implication is always true, then conclude 0 ≤ l → n+1 ≤ l ((assume
"Absurd"). Then assume the antecedent (0 ≤ l) and in order to prove the consequent, derive it from
the absurd assumption Succ n <= 0 using EfAtom.
Consider now (ii.i), for m a successor (starts from (assume "m"), now again, consider two cases (ii.i)
where l = 0 and (ii.ii) where l is a successor.
Consider the case l = 0, namely n+ 1 ≤ m+ 1 → m+ 1 ≤ 0 → n+ 1 ≤ 0, notice that both m+ 1 ≤ 0
and n + 1 ≤ 0 cannot be the case, hence antecedent and consequent of the last material implication
are always false, hence the implication is true.
Consider the case (ii.ii), namely n+ 1 ≤ m+ 1 → m+ 1 ≤ l+ 1 → n+ 1 ≤ l+ 1 and this corresponds
to ϕ(n) that we assumed, hence the claim is proved.
All four goals (i), (ii), (ii.i) and (ii.ii) are achieved, hence the induction step is also concluded.

;; NatLeTrans

(set-goal "all n,m,l(n<=m -> m<=l -> n<=l)")

(ind)

(strip)

(use "Truth")

(assume "n" "IH")

(cases)

(assume "l" "Absurd" "H1")

(use "EfAtom")
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(use "Absurd")

(assume "m")

(cases)

(assume "H1" "Absurd")

(use "Absurd")

(use "IH")

;; Proof finished.

;; (cdp)

(save "NatLeTrans")

NatLeCases

Two other lemmas of nat.scm will be usefull in the next proof, I present here the claims.
The lemma "NatLeAntiSym" states all n,m(n<=m -> m<=n -> n=m), namely that n ≤ m, m ≤ n ⊢
m = n.
The lemma "NatNotLtToLe" states all n,m((n<m -> F) -> m<=n), namely that ¬n < m ⊢ m ≤ n.
Claim. ∀n,m(n ≤ m → (n < m → φ) → (n = m → φ) → φ)
Proof. First instantiate n and m and assume the antecedent n ≤ m, now consider two cases (i) n < m
and (ii) ¬n < m.
Consider the case where n < m, then we assume the antecedents and get the assumptions n < m → φ
and (n = m → φ and the goal φ which follows from the first assumption directly (use-with "THyp"

"Truth").
Now consider the case ¬n < m, again assume the antecedents and we get the assumptions: m ≤ m
(from before), ¬n < m, n = m → φ and the goal φ, we use the last assumption and get the only goal
n = m. We use then the antisymmetry (with "NatLeAntiSym") of ≤ to prove that m ≤ n together
with n ≤ m (which we have already) would give us the goal (with "NatNotLtToLe"), and we can prove
m ≤ n from the fact that we know ¬n < m, then proof finished.

;; NatLeCases

(set-goal "all n,m(n<=m -> (n<m -> Pvar) -> (n=m -> Pvar) -> Pvar)")

(assume "n" "m" "n<=m")

(cases (pt "n<m"))

;; Case n<m

(assume "n<m" "THyp" "FHyp")

(use-with "THyp" "Truth")

;; Case n<m -> F

(assume "n<m -> F" "THyp" "FHyp")

(use "FHyp")

(use "NatLeAntiSym")

(use "n<=m")

(use "NatNotLtToLe")

(use "n<m -> F")

;; Proof finished.

;; (cdp)

(save "NatLeCases")

NatLeast

This program constant takes as input a natural number n and a property on natural numbers ps,
namely an element of type nat => boole. The output of this function is the least number less than
n such that ps holds. Clearly this function is defined recursively and therefore we analyse the case of
when it is applied to 0 and to a successor Succ n.

;; For NatLeast

(add-computation-rules

"NatLeast 0 ps" "0"

"NatLeast(Succ n)ps"

"[if (ps 0) 0 (Succ(NatLeast n([m]ps (Succ m))))]")
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As we see from the computational rule, this constant is defined such that, if we take n to be 0, then
the result must be 0 (note that this is a non-trivial convention) and if the input is Succ n, then we
have that if ps applies to 0, then the outcome must be 0, else one repeats recursively looking for the
first successor such that ps holds.

Transformation of an Injection to a Permutation

To make use of the program constants and lemmas proved, let’s try to prove the following statement:
Claim. One can always expand an injection f : X → Y s.t. |X| = |Y | to a bijection.
1st Proof. Let f : X → Y be an injection, then define F : X → Y s.t. F (x) = f(x) and for y ̸∈ f(X),
∃x∈X(F (x) = y ∧ ∀y1∈f(X)y ̸= y1).
Notice that this proof does not construct F , instead, I gave conditions that F must respect and only
proved that that family of functions is non-empty. Though, picking one such function in particular
requires the Axiom of Choice and therefore the proof is to be labelled as non-constructive. Hence,
such a proof could not be inserted in Minlog. The following proof will now be closer to what we saw
up to now in Minlog, it will then be both constructive and regard natural numbers.
2nd Proof. Let f : [0, n] → Y be an injective function s.t. Y ⊆ N. Let k + 1 be the least number s.t.
k+1 ̸∈ f([0, n]) (for that use NatLeast). Note that since f is injective k ≥ n, hence we have two cases:
(i) k = n, in such a case, f would already be bijective since f injective and |f([0, n])| = |[0, n]|, hence
take σ = f and (ii) k > n. In this latter case, proceed by finite recursion by taking the least element
in [0, k], call it y s.t. ¬∃x∈[0,n]f(x) = y (again use NatLeast), then define σ(y) = n+ j for j the step of
the recursion. For a last and finite j equal to k − n, we have constructed a bijection σ : [0, k] → [0, k]
which can then be expanded to σ∞ : N → N by simply extending it with idN.

Induction

The library contains not only program constants and some lemmas strictly on them but also theorems
that are true on natural numbers. In particular we know that induction is a mathematically intricate
concept at the heart of natural numbers, here we examine two more intricate proofs on induction:
CVIndPvar and CVInd. Those two proof differ in the use of ((Pvar nat)m) and ps m, the former is a
non-computable predicate variable, though the latter is an element of type nat => bool. Hence the
difference here lays in whether a computable procedure to determine the predicate for each variable
has been given or not.

CVIndPvar

Just like before, I proceed by showing the some new commands and then explaining the proof in
natural language.
The quantifier allnc that we read in the claim stands for “non-computational” all quantifier, they
are used in cases where the variable on which it quantifies won’t be used freely in the proof, though,
logically it has no difference from the familiar all.
Note that the first antecedent stands for the assumption that from ⊥ we can derive the desired
statement, a weakening of the general “Ex Falso Quodlibet”
The command (assert "...") adds a new goal and sets it as an antecedent of the present goal.
Claim. (⊥ → ∀n(φ(n))) → ∀n(∀m<n(φ(m)) → φ(n)) → ∀nφ(n).
Proof. First assume the antecedent (with (assume "efq")), then assume also ∀n∀m<n(φ(m)) → φ(n)
and keep ∀nφ(n) as a goal.
Now claim ∀n,m(m < n → φ(m)) (with (assert "...")), and proceed proving it by induction on n.
First note that the induction start, ∀m(m < 0 → φ(m)), follows trivially from falsity of the antecedent
m < 0 (with (assume "m" "Absurd")).
On the induction step of the claim, namely: (∀m<n → φ(m)) → ∀mm < n+1 → φ(m), simply assume
both antecedents: ∀m<n → φ(m) and ∀mm < n + 1 and set the goal to ∀mϕ(m). Now consider the
cases (i) m = n and (ii) m < n, we can do that since we know that m < n+ 1 holds (use "m < Succ

n").
Consider (ii) where m < n, then prove ϕ(m) thanks to ∀mm < n → φ(m), the induction hypothesis.
Now consider (i), assume m = n and keep the goal φ(m), use the assumption Prog to get ∀m<nφ(m)
and conclude the case.
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Now we go back to the assumption made trough (assert "..."), claiming that the assertion proves
our former goal, namely: ∀n,m(n < m → φ(m)) → ∀nφ(n). After assuming the antecedent (assume
"Assertion"), we can use it instantiating m = n+ 1 to get the claim.

;; CVIndPvar

(set-goal "(F -> allnc n^(Pvar nat)n^) ->

all n(all m(m<n -> (Pvar nat)m) -> (Pvar nat)n) ->

all n (Pvar nat)n")

(assume "efq" "Prog")

(assert "all n,m(m<n -> (Pvar nat)m)")

(ind)

(assume "m" "Absurd")

(use "efq")

(use "Absurd")

(assume "n" "IHn" "m" "m<Succ n")

(use "NatLtSuccCases" (pt "m") (pt "n"))

(use "m<Succ n")

(use "IHn")

(assume "m=n")

(simp "m=n")

(use "Prog")

(use "IHn")

(assume "Assertion" "n")

(use "Assertion" (pt "Succ n"))

(use "Truth")

;; Proof finished.

;; (cdp)

(save "CVIndPvar")

CVInd

Claim. ∀ϕ∀n(∀m(m < n → φ(m)) → φ(n)) → ∀nφ(n)
Proof. Assume the antecedent and call it Prog, then assert ∀n,mm < n → φ(m), now I have to both
prove the assertion and that it implies ∀nφ(n), the previous goal.
In order to prove the assertion proceed by induction on n, goals now are induction start and induc-
tion step. Induction start has m < 0 as an antecedent and results therefore trivially true (with (use

"Absurd")). For the induction step first assume the antecedents, the goal will be φ(m), then, with
NatLtSuccCases distinguish (i) m = n and (ii) m < n thanks to (use "m < Succ n").

;; CVInd

(set-goal "all ps(all n(all m(m<n -> ps m) -> ps n) -> all n ps n)")

(assume "ps" "Prog")

(assert "all n,m(m<n -> ps m)")

(ind)

(assume "m" "Absurd")

(use "EfAtom")

(use "Absurd")

(assume "n" "IHn" "m" "m<Succ n")

(use "NatLtSuccCases" (pt "m") (pt "n"))

(use "m<Succ n")

(use "IHn")

(assume "m=n")

(simp "m=n")

(use "Prog")

(use "IHn")

(assume "Assertion" "n")
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(use "Assertion" (pt "Succ n"))

(use "Truth")

;; Proof finished.

;; (cdp)

(save "CVInd")

Further Useful Constants

In this last section I present a couple of program constants that have been implemented afterwards
and which will be very useful for the upcoming discussions. Lastly, I encourage the reader to give a
look to the proof of NatTimesChooseNatF, the claim will certainly result familiar, though the length
of the proof couldn’t fit this script. The proved claim is

(
m
k

)
= n!

k!·(n−k)!

Choose

This program constant implements the binomial coefficients, the constant is added as a function of
type nat => nat => nat and defined recursively.

;; 2023-04-16. Choose (binomial coefficients) added

(add-program-constant "Choose" (py "nat=>nat=>nat"))

(add-computation-rules

"Choose Zero Zero" "Succ Zero"

"Choose Zero(Succ m)" "Zero"

"Choose(Succ n)Zero" "Succ Zero"

"Choose(Succ n)(Succ m)" "Choose n m+Choose n(Succ m)")

The Zero case defines
(
0
0

)
= 1, then we have

(
0

m+1

)
= 0 and

(
n+1
0

)
= 1, finally

(
n+1
m+1

)
=

(
n
m

)
+

(
n

m+1

)
.

those computation rules define by induction the program constants as the binomial coefficients we are
familiar with.

NatF

Finally consider the faculty function of type nat => nat defined by recursion.

;; 2023-03-05. Faculty added. Relation between Choose and NatF proved.

(add-program-constant "NatF" (py "nat=>nat"))

(add-computation-rules

"NatF Zero" "Succ Zero"

"NatF(Succ n)" "NatF n*(Succ n)")

The two computational rules needed to define this function are 0! = 1 and (n+ 1)! = n! · (n+ 1).
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