
1 Introduction

This document explains, in which way the Completeness of the real numbers (i.e. that every
Cauchy-sequence of reals converges to a real number) can be proofed, using the proof-assistant
MINLOG. The bits of code appearing in this text are extracted from the file librseq.scm

starting from the header 1.Completion of Reals. The noteworthly definitons and theorems
are:

RatCauchyConvMod (in file "rat.scm")

RCauchy, RealCauchy

RealLim, cRLim

RealLimReal

RealCompleteAux1, RealCompleteAux1

RealCauchyConvMod

RealComplete

where RealComplete is the final theorem, proving the Completeness of the reals.
Throughout the text, we assume the reader to have suffient knowledge about the implementation
of N,P,Q and R in MINLOG, as well as basic arithmetical statements for these. Information
about these can be found in the corresponding texts or library-files of MINLOG.

2 RatCauchyConvMod

Recall, that in rea.scm we have introduced the natural notion of reals by an inductive predicate
Real of arity R = (N → Q)× (P → N). In fact, x ∈Real iff the sequence of rationals ((an)n,M),
defining x, is Cauchy-sequence and M a monotone function.
Tackling the Completeness of R, one usually starts by proveing the ”well-definedness” of the reals
by Cauchy-sequences and moduli, in the sense, that the Cauchy-sequence of rationals ((an)n,M
defining x ∈Real converges to x with modulus M . We give a natural proof of this.

Theorem 2.1 (RatCauchyConvMod)
For any x = ((an)n,M) ∈ R: x ∈Real ⇒ ∀p, n ≥ M(p) : |an − x| ≤ 1

2p

Proof:
Let p ∈ P and n ≥ M(p).
The definitions in rea.scm state, that |an − x| = ((|an − am|)m∈N, N),
with N(p) :=max(M(p+1), 0(p+1)), where 0 is the 0-modulus from the inclusion of Q in R. Mo-
reover, |an−x| ≤ 1

2p in R iff |an−aK(q)| ≤ 1
2p +

1
2q in Q for every q. Here, K :=max(N(q), 0(q)).

It therefore suffices to prove the later statement about rationals.
Let q ∈ P. We can now use that ((an)n,M) is a Cauchy-sequence with monotone M , since
x ∈Real. Hence, we know that |an − am| ≤ 1

2r , whenever n,m ≥ M(r).
Suppose q ≥ p, then we instantly obtain |an − aK(q)| ≤ 1

2p ≤ 1
2p + 1

2q , as K(q) ≥ M(p).

Conversely, suppose q < p, then we’ll see, that |an − aK(q)| ≤ 1
2q ≤ 1

2p + 1
2q , because q + 1 ≤ p

gives n ≥ M(p) ≥ M(q + 1) = K(q).

As usual, the MINLOG-implementation follows this natural proof. The statement of RatCauchyConvMod
then is the following

(set-goal "all as,M,p,n(Real(RealConstr as M) -> M p<=n

-> abs(as n+ ~(RealConstr as M))<<=(1#2**p))")

We can then fix variables and make the assumptions avaible for the proof using the comand
(assume "as" "M" "p" "n" "Rx" "nBd"). Hence, MINLOG asks us to prove

2:abs(as n+ ~(RealConstr as M))<<=(1#2**p)
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from the assumptions

as M p n Rx:Real(RealConstr as M) nBd:M p<=n

Now we recall that the theorem RealLeChar2RealConstrFree gives us the Definition of ≤ in
R, stateing: ∀x = ((cn)n, C), y = ((dn)n, D) ∈Real, ∀p ∃n ∀n0 ≥ n : cn0 ≤ dn0 +

1
2p → x ≤ y.

If we use RealLeChar2RealConstrFree, we then obtain the goals:

?^3:Real(abs(as n+ ~(RealConstr as M)))

?^4:Real(1#2**p)

?^5:all p0 exnc n0 all n1

(n0<=n1 -> (abs(as n+ ~(RealConstr as M)))seq n1<=(1#2**p)seq n1+(1#2**p0)

We will discuss ^?3 and ^?4 here, as they are simple applications of basic theorems in rea.scm.
Using (ng) on ^?5, then reduces to the goal:

?^10:all p0 exnc n0 all n1

(n0<=n1 -> abs(as n+ ~(as n1))<=(2**p0+2**p#2**p*2**p0)

Notice, that this can be proved using reasoning in Q, only. Fixing the variable p0, one then
easily sees, that 2p0+2p

2p2p0
= 1

2p + 1
2p0

. Hence, we can simplify our goal using with the comand

(simp (pf "(2**p0+2**p#2**p*2**p0)=((1#2**p)+(1#2**p0))"))

Now, MINLOG replaces the terms, which are equal according to the proposed equality, and asks
aus to prove the newly constructed goal and the proposed equality

?^12:exnc n0 all n1(n0<=n1 -> abs(as n+ ~(as n1))<=(1#2**p)+(1#2**p0)

?^13:(2**p0+2**p#2**p*2**p0)=(1#2**p)+(1#2**p0)

^?13 however, can be proved using simple arithmetics of Q. Hence, we will omit a closer discus-
sion of a proof of ^?13.
For ^?12 one now proposes M(p) as a possible option to take the place of n0 in the existence
statement. This si done using the comand (intro 0 (pt "M p")). MINLOG then renames n1
to n0. Fixin this variable and assuming n0bd: M pleqn0, we then obtain the goal:

?^15:abs(as n+ ~(as n0))<=(1#2**p)+(1#2**p0)

Now, this can obviously be proved using the Cauchy-property of as! Hence, with
(use "RatLeTrans" (pt "(1#2**p)+0")) we kill the (1#2**p0) from our goal. Of course, this
also gives us a new goal, namely to show that (1#2**p)+0<=(1#2**p)+(1#2**p0). How to come
up with a proof of this should be clear, however. With the Elimination-Axiom of Cauchy, we
obtain the goals

?^18:Cauchy as M ?^19:M p<=n ?^20:M p<=n0

We instantly see that these goals can be proved using the assumptions Rx, nBd and n0Bd.

3 Cauchy-Sequences in R

Next, we’ll need a notion of Cauchy-sequences with moduli for R. Following the basic intuition
from the natural proof, we can give a first definition by an inductive predicate.

Definition 3.1
RCauchy:=µI (∀(xn)n,M (∀p, n,m (n,m ≥ M(p) → |xn − xm| ≤ 1

2p ) → I((xn)n,M))

This gives us the following Introduction- and Elimination-Axioms for RCauchy:
(RCauchy)+: ∀(xn)n,M (∀p, n,m (n,m ≥ M(p) → |xn − xm| ≤ 1

2p ) →RCauchy((xn)n,M))
(RCauchy)−: ∀(xn)n,M (∀p, n,m (n,m ≥ M(p) → |xn−xm| ≤ 1

2p ) → ((xn)n,M) ∈ X →RCauchy⊂
X
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As RCauchy is defined inductively, MINLOG automatically saves the axiom (RCauchy)+ as theo-
rem RCauchyIntro. (RCauchy)−, in contrary, still needs to be proved. However, this is a standard
procedure and we will not discuss it here.
Obviously,RCauchy doesn’t keep track, whether the members of Cauchy-Sequence are construc-
tive reals (not partial ones). Hence, it will be useful to have an extra notion which makes sure,
that we’re talking about concrete reals.

Definition 3.2
RealCauchy:=µI (∀(xn)n,M (∀n(xn ∈Real)→ M ∈Mon→ RCauchy((xn)n,M) → I((xn)n,M))

From the Elimination-Axiom (RealCauchy)−, we can instantly derive the following partial eli-
minations:
RealCauchyToReals: ∀(xn)n,M (((xn)n,M) ∈RealCauchy→ ∀n (xn ∈Real))
RealCauchyToMon: ∀(xn)n,M (((xn)n,M) ∈RealCauchy→ M ∈Mon)
RealCauchyToRCauchy:∀(xn)n,M (((xn)n,M) ∈RealCauchy→ (((xn)n,M) ∈RCauchy)

4 A Natural Proof of RealComplete

Let’s recall, how the Completeness of Reals is proved naturally, to get the idea of diagonalizing
and to fix first notation.

Theorem 4.1 (RealComplete)
For any ((xn)n,M) ∈ RealCauchy, we can find a x ∈Real, such that ((xn)n converges to x with
modulus M uniquely, i.e. ∀p, n ≥ M(p) (|xn − x| ≤ 1

2p ).

Proof :
1.Step: Find a Candidate for x (cRLim)
By RealCauchyToReals we know that xn ∈Real for every n. Hence, we can pick a Cauchy-

sequence ((a
(n)
k )k, Nn) of Q, such that xn = ((a

(n)
k )k, Nn)). This leaves us with a double indexed

sequence ((a
(n)
k )k)n and a sequence of moduli Nn. By the nature of Cauchy-sequences, we suspect

that (xn)n narrows down to a point x for n → ∞. Therefore, we’d like to have a sequence of Q,
which follows (xn)n down the line. Note, that RatCauchyConvMod states, that for all k ≥ Nn(p),

we have |a(n)k − xn| ≤ 1
2p for any p. Hence, setting bn := a

(n)
Nn

(n), provides us with a sequence

((bn)n), that approaches (xn)n with error at most 1
2n .

In consequence, if x were the limit of xn, for any n ≥max(M(p+ 1), p+ 1) we’d get

|bn − x| ≤ |bn − xn|+ |xn − x| = |a(n)Nn(n)
− xn|+ |xn − x| ≤ 1

2n
+

1

2p+1
≤ 1

2p+1
+

1

2p+1
=

1

2p

Choosing K(p) :=max(M(p+1), p+2) therefore gives the desired diagonal sequence ((bn)n,K).
We can now choose our candidate for the limit as x := ((bn)n,K). However, we’d still have to
show that this is well-defined, i.e. that this x is a Real again.

2.Step: Show x∈ Real (RealLimReal)
By the Introduction-Axiom of Real, it therefore suffices to show, that (bn)n is a Cauchy-Sequence
with modulus K (RealCompleteAux2) and K is a monotone function.
The second part is obvious, since K(p) =max(M(p+ 1), p+ 2) and M ∈Mon.
The first part, however takes a bit more effort.
Here, we first prove the claim RealCompleteAux1: ∀n (|bn − xn| ≤ 1

2n .
By Definition of ≤R, bn and xn we know that:

|bn − xn| = |a(n)Nn(n)
− xn| ≤

1

2n
⇔ |a(n)Nn(n)

− a
(n)
Nn(q)

| ≤ 1

2n
+

1

2q
∀q
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But now |a(n)Nn(n)
− a

(n)
Nn(q)

| ≤

{
1
2n for n ≤ q
1
2q for n > q

≤ 1
2n + 1

2q ∀q. This gives the claim.

Now, let p ∈ P and n,m ≥ K(p). Then, since xn is itself a Cauchy-sequence, we get

|bn − bm| ≤ |bn − xn|+ |xn − xm|+ |xm − bm| ≤ 1

2n
+

1

2p+1
+

1

2m
≤ 1

2p+2
+

1

2p+1
+

1

2p+2
=

1

2p

3.Step: (xn)n converges to x with modulus M : (RealCauchyConvMod)
Let p be fixed and q any positive number. Also, let n ≥ M(p), m ≥ max(K(q+1), q+1,M(p)).
Obviously

|xn − x| ≤ |xn − xm|+ |xm − x| ≤ |xn − xm|+ |xm − bm|+ |bm − x|

Then, |xn − xm| ≤ 1
2p , since (xn)n is a Cauchy-sequence.

Moreover, |xm − bm| ≤ 1
2q+1 by RealCompleteAux1.

And lastly, |bm−x| ≤ 1
2q+1 . This is, because ((bn)n,K) is a Cauchy-sequence inQ by 2.Step(RealCompleteAux2),

which defines x, and by RatCauchyConvMod, Cauchy-Sequences converge to the Real, which they
define, within their Modulus .
Hence, we obtain, that

|xn − x| ≤ 1

2p
+

1

2q+1
+

1

2q+1
=

1

2p
+

1

2q
for any q

This means |xn − x| ≤ 1
2p , of course. We will now examine, in which way this natural proof

can be implemented in MINLOG

5 Step 1: Candidates for the Limit: RealLim and cRLim

As we saw, the first step in the proof of Completeness of Reals was to derive a candidate for
the limit, to which the given Cauchy-Sequence ((xn)n,M) converges. This involved defining a

diagonal sequence (bn)n,K) double indexed sequence of rationals (a
(n)
k )k, Nn) from the corre-

sponding to (xn)n by xn = ((a
(n)
k )k, Nn)). This was achieved by setting bn := a

(n)
Nn(n)

.

Hence, we can give a first definition of Limit in MINLOG, by deriving (bn)n from (xn)n as a
predicate-constant RealLim, using the computation rule:
RealLim((xn)n,M):=((xn)seq(xn)mod(n), p 7→ max(M(p+ 1), p+ 2)) ∈ R
Hence, in MINLOG one writes:

(add-program-constant "RealLim" (py "(nat=>rea)=>(pos=>nat)=>rea"))

(add-computation-rules

"RealLim xs M"

"RealConstr([n](xs n)seq((xs n)mod(cNatPos n))) ([p]M(PosS p)max PosS(PosS p))")

This of course gives us the desired candidate of a Limit for xn, as it directly coindcides with
our natural definition. However, using RealLim in our MINLOG-proofs can lead to unwanted
unfoldings, when we are normalizing the goal. This is just the same as it was with GRec and
NatToPos1.
After we have checked that RealLim is total, we then prove

RLim: ∀(xn)n,M∃x(x =RealLim(xn)n,M).

Since RealLim is total, this provides us with a witness cRLim to RLim, which has the same
computation rules as RealLim. Of course this gives that

∀(xn)n,M (cRLim((xn)n,M)) =2 RealLim((xn)n,M) (RLimExFree).

1cf. ”pos.scmänd the corresponding part of the script
2this ”=” is Leibniz-Equality
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With the command (deanimate), we can now remove the computation rules cRLim again and
receive a program constant cRLim resembling the candidate for the limit, which cannot be
unfolded. However, if we do wish to unfold cRLim we can always use RLimExFree.

6 Step 2: cRLim is a Real (RealLimReal)

We will simply follow the procedure of the 2.Step of the natural proof with MINLOG. Hence,
we shall first prove the auxiliary claims RealCompleteAux1: ”(bn)n follows (xn)n” and
RealCompleteAux2: ”(bn)n is a Cauchy-Sequence”. Just then we’re ready to prove 2.Step(RealLimReal)

6.1 RealCompleteAux1

(set-goal "all ass,Ns,xs,bs(

all n xs n eqd RealConstr(ass n)(Ns n) -> all n Real(xs n)

-> all n bs n=ass n(Ns n(cNatPos n)) -> all n abs(bs n+ ~(xs n))<<=(1#2**n))")

Fixing variables ass,Ns,xs,bs and the assumptions on their properties, we obtain the assump-
tions

ass Ns xs bs xsDef:all n xs n eqd RealConstr(ass n)(Ns n)

Rxs:all n Real(xs n) bsDef:all n bs n=ass n(Ns n(cNatPos n)) n

By the way it is used our goal, n has to be of type N. By our Definitions of Cauchy Sequences,
however, we can only get, that some absolute value is smaller than 1

2p for some p ∈ P. We
therefore have to evaluate

(use "RealLeTrans" (pt "RealConstr([n0](1#2**cNatPos n))([p]Zero)"))

This yields the goals: ?^3:abs(bs n+ ~(xs n))<<=(1#2**cNatPos n) and
?^4:(1#2**cNatPos n)<<=(1#2**n). Note that we will only discuss ?^3, since proving ?^4 only
invovles statements from "nat.scm",pos.scm" and "rat.scm".
By plugging in the Definions xsDef and bsDef, just as we did in the natural proof, we arrive at
the goal:

?^6:abs(ass n(Ns n(cNatPos n))+ ~(RealConstr(ass n)(Ns n)))<<=(1#2**cNatPos n)

Now ass n, which is the sequence (a
(n)
k )k, is a Cauchy-sequence wiht modulus Ns n, since

xs∈Real. We can therefore use RatCauchyConvMod and obtain the two goals

?^7:Real(RealConstr(ass n)(Ns n) and ?^8:Ns n(cNatPos n)<=Ns n(cNatPos n)

Now, these two easily follow by assumption Rxs and "Truth".

6.2 RealCompleteAux2

The next step in the natural proof of RealLimReal was to show that (bn)N is a Cauchy-sequence.
In the MINLOG program librseq16.scm this is done by proveing RealCompleteAux2

(set-goal "all ass,Ns,xs,M,bs,K(

all n Real(xs n) ->

all p,n,m(M p<=n -> M p<=m -> abs(xs n+ ~(xs m))<<=(1#2**p))

-> all n xs n eqd RealConstr(ass n)(Ns n) -> all n bs n=ass n(Ns n(cNatPos n))

-> all p K p=M(PosS p)max PosS(PosS p) -> all p,n,m(K p<=n -> K p<=m -> abs(bs n+ ~(bs m))<<=(1#2**p)))")

We therefore fix the variables and take the assumptions below

ass Ns xs M bs K

Rxs: all n Real(xs n) xsCs:all p,n,m(M p<=n -> M p<=m -> abs(xs n+ ~(xs m))<<=(1#2**p))

xsDef:all n xs n eqd RealConstr(ass n)(Ns n) bsDef:all n bs n=ass n(Ns n(cNatPos n))

5



KDef:all p K p=M(PosS p)max PosS(PosS p)

p n m

nBd:K p<=n mBd:K p<=m

In view towards the inequality in our natural proof, one first asserts that
?^3:abs(bs n+ ~(bs m))<<=:RealPlus(1#2**n)(1#2**PosS p)+(1#2**m). Then, one also has
to translate |bn − bm|, which are operations in Q, into R, in order to be able insert xn and then
use the triangle inequality. This is done by using

(use "RealLeTrans" (pt "abs(bs n+RealUMinus(bs m))")

on ?^3. This splits ?^3 into two new goals ?^5 and ?^6, where
?^5:abs(bs n+ ~(bs m))<<=abs(bs n+ ~(bs m) (where the leftside is in R and the right one
in Q). This can easily be proved using simplifications. ?^6 then is the version of ?^3 with
operations in R.
For ?^6 we then bring xn and use the triangle-inequality on the resulting term, using the
comands:

(simpreal (pf "bs n+RealUMinus(bs m)===bs n+ ~(xs n)+(xs n+ RealUMinus(bs m))"))

(use "RealLeTrans" (pt "abs(bs n+ ~(xs n))+abs(xs n+ RealUMinus(bs m))"))

Note, that the asserted equality bs n+RealUMinus(bs m)===bs n+ ~(xs n)+(xs n+ RealUMinus(bs m))

and the inequality abs(bs n+ ~(xs n))+abs(xs n+ RealUMinus(bs m)) can easily be proved
by using RealPlusInsert3 and RealLeAbsPlus4. One then arrives at the goal

?^14:abs(bs n+ ~(xs n))+abs(xs n+ ~(bs m))<<=

RealPlus(1#2**n)(1#2**PosS p)+(1#2**m)

Now, we consider RealLeMonPlusTwo, which states that

∀x, y, z, z0 (x <<= y → z <<= z0 → x+ z <<= y + z0)

Using this Theorem, it suffices to show the two following goals, in order to obtain ?^14.

?^21:abs(bs n+ ~(xs n))<<=(1#2**n)

?^22:abs(xs n+ ~(bs m))<<=RealPlus(1#2**PosS p)(1#2**m)

We instantly see that ?^21 exactly matches RealCompleteAux1, hence we can easily close this
goal, since the definitions of xs,bs etc. are available as assumptions.
It remains to prove ?^22. Because of RealPlusInsert and RealLeAbsPlus, we can insert
xs m into ?^22 and then use triangle-inequality, just like it was done at ?^6. Again, with
RealLeMonPlusTwo we can split into the two goals:

?^32:abs(xs n+ ~(xs m))<<=(1#2**PosS p)

?^33:abs(xs m+ ~(bs m))<<=(1#2**m)

Now, ?^32 just corresponds to xs being a Cauchy-Sequence. Hence, we can simply use assump-
tion xsCS and plug in the definition of K to get that n,m≤M(p+1).
For ?^33 can then switch xs m and bs m, using basic simplifications, so that we arrive at

?^50:abs(bs m+ ~(xs m))<<=(1#2**m)

This is exactly the statement of RealCompleteAux1 again! Hence, we finish ?^50 off, using
RealCompleteAux1 and our assumed definitions.
The proof in MINLOG conintues with proveing all the necessary equalities and triangle-inequalities,
which we have used so far, as well as statements about realness of some fractions. However, we
will omitt a careful discussion of those, as we have already argued in favor of the (in-)equalities
and the proofs of the latter can be put together using theorems about Realness only.

3stating that ∀x, y, z(Realx → Realy → Realz → x+ z === x+ y + (y + z))
4stating that ∀x, y(Realx → Realy → abs(x+ y) <<= absx+ absy)
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6.3 RealLimReal

We’re finally ready to prove the main goal of the 2.Step: RealLimReal, which is

(set-goal "all xs,M(RealCauchy xs M -> Real(cRLim xs M))")

By this means, we shall prove that, for every Cauchy-Sequence of proper Reals, the limit-
candidate, obtained by diagonalizaion, is a proper Real again.
After fixing xs,M, we derive from the assumption RC: RealCauchy xs M, that xs is a sequence
of proper Reals and M is a monotone function. This is done by using (assert) for these state-
ments and proveing them with the eliminations of RealCauchy (cf. 3.2). Therefore, we now have
available:

xs M RC:RealCauchy xs M Rxs:all n Real(xs n) MonM:Mon M

RCxsM:RCauchy xs M

We would also like to introduce the notation of our natural proof using (ass,Ns) for the sequence
of rationals and (bs,K) for the diagonal sequence. This, again, is achieved by (assert). For
example to introduce ass, we do

(assert "exl ass all n ass n eqd(xs n)seq")

This comand gives the existence statement above as a new goal ^?16. By the natural defini-
tion of ass, we know that this sequence is obtained from xs, by settiing ass:=[n](xs n)seq.
Hence, we use the introduction (intro 0 (pt "[n](xs n)seq")) on ^?16 and reach the goal
?^17:all n ([n0](xs n0)seq)n eqd(xs n)seq. This goal can of course be proved using the
introduction-axiom for Leibniz-Equality InitEqD5. If we carry out this assertion-procedure for
Ns6,bs and K as well, we are provided with the following additional assumptions:

ass assDef:all n ass n eqd(xs n)seq

Ns NsDef:all n Ns n eqd(xs n)mod

xsChar:all n xs n eqd RealConstr(ass n)(Ns n)

bs bsDef:all n bs n=ass n(Ns n(cNatPos n))

K KDef:all p K p=M(PosS p)max PosS(PosS p)

Having introduced our usual definitions now, we can start with the actual proof, where our goal
remains to be ?^55:Real(cRLim xs M).
By plugging in the Definition RLimExFree of cRLim we can simplify this to ?^56:Real(RealLim xs M).
By the Introduction axiom of Real, we have to show that ^?57:(RealLim xs M)seq is a Cauchy-
sequence and ^?58:(RealLim xs M)mod is a montone Function. We will start with ^?57.
By the introduction of Cauchy, proveing ^?57 is equivalent to proveing:

?^59:allnc p,n,m((RealLim xs M)mod p<=n -> (RealLim xs M)mod p<=m

-> abs((RealLim xs M)seq n+ ~((RealLim xs M)seq m))<=(1#2**p))

Hence, we frst p,n,m and assume nBd:(RealLim xs M)mod p<=n and mBd:(RealLim xs M)mod p<=m.
Now, by definition (RealLim xs M)seq resp. (RealLim xs M)mod has to be equal to bs resp
K. Hence, we can simplify ^?57, using the asserted equalities assDef,NsDef,bsDef,etc. and
reformulate ^?57 as

?^68:abs(bs n+ ~(bs m))<<=(1#2**p)

This is exactly, what RealCompleteAux2 states! Hence, we use RealCompleteAux2 on this goal
with our notation and reduce ?^68 to show K p≤n and K p≤m. For for these two goals, however,
we simply need to plug in the KDef and use nBd:(RealLim xs M)mod p<=n and mBd. So, we’re
done with ?^57.
It remains to prove ^?58:Mon((RealLim xs M)mod). Note, that by computation-rules of RealLim

5which reads as: (InitEqD)+: ∀x (x eqd x)
6where we also add the Characterisation xsChar, that (ass,Ns) is a defining Cauchy sequence for (xs,M)
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we have Mon((RealLim xs M)mod):=M(PosS p)max PosS(PosS p)7. Now, this just involves ba-
sic reasoning for numbers in P, such as that p ≤ p + 2 and using that M is mononte by MonM.
Hence, we consider ?^58 to be closed.

7 3.Step: Convergence: RealCauchyConvMod, RealComplete

Recall that our main goal is to show RealComplete:, stating that any RealCauchy-sequence
converges against the candidate cRLim. Before we are able to prove this theorem, however,
we need to make one more auxiliary claim RealCauchyConvMod: ”Any RealCauchy-sequence
(xs,M) converges against the real given by (bs,K) with modulus M”. Note, that whilst pro-
veing RealCauchyConvMod we will follow the exact procedure of 3.Step of our natural proof.
RealComplete, however, will just consists of using RealCauchyConvMod on cRLim then.

7.1 RealCauchyConvMod

We shall prove REalCauchyConvMod now, which reads in MINLOG as:

(set-goal "all ass,Ns,xs,M,bs,K,x(

all n xs n eqd RealConstr(ass n)(Ns n) -> RealCauchy xs M

-> all n bs n=ass n(Ns n(cNatPos n)) -> all q K q=M(PosS q)max PosS(PosS q)

-> x===RealConstr bs K -> all p,n(M p<=n -> abs(xs n+ ~x)<<=(1#2**p)))")

Fixing variables and assumption we’d have to derive ?^2:abs(xs n+ ~x)<<=(1#2**p) from

ass Ns xs M bs K x

xsDef: all n xs n eqd RealConstr(ass n)(Ns n)

CxsM:RealCauchy xs M bsDef:all n bs n=ass n(Ns n(cNatPos n))

KDef:all q K q=M(PosS q)max PosS(PosS q) xEq:x===RealConstr bs K

p n nBd:M p<=n

Again, we can use the eliminations for RealCauchy and obtain the following valid, additional
assumptions by (assert):

Rxs:all n Real(xs n) RCxsM:RCauchy xs M

Just as we did in the natural proof, we can reformulate ?^2. Hence, by using RealLeAllPlusToLe8,
we see that, to obtain ?^2, it suffices to show, that for every arbitrary q holds:

?^14:abs(xs n+ ~x)<<=RealPlus(1#2**p)(1#2**q)

Since the ?^2 and ?^14 for arbitrary q are clearly equivalent.
Recall, that in the natural proof, we now inserted a xm into |xn − x| to then use the triangle-
inequality, where we chose m := max(M(p),K(p + 1), p + 1). We can do the same here! So we
first define the m by the comand:

(defnc "m" "(M p)max(PosS q max K(PosS q))")

Then we insert xs m and use the triangle inequality, using similiar comand as we did in the
proof of RealCompleteAux2. This gives the goal

?^25:abs(xs n+ ~(xs m))+abs(xs m+ ~x)<<=RealPlus(1#2**p)(1#2**q)

Also, we obtain a few side-goals with this procedure, again. But, as we saw in the RealCompleteAux2,
these can easily be proved proved by using RealPlusInsert9 and RealLeAbsPlus10, so we’ll omit

7this term just stand for the function p 7→ max(M(p+ 1), p+ 2)
8which stands for: ∀x, y(Realx− > Realy− > allpx <<= y + 1

2p
− > x <<= y)

9stating that ∀x, y, z(Realx → Realy → Realz → x+ z === x+ y + (y + z))
10stating that ∀x, y(Realx → Realy → abs(x+ y) <<= absx+ absy)
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them from our discussion. Following RealCompleteAux2, we can use RealLeMonPlusTwo, to split
?^25 into the two goals

?^28:abs(xs n+ ~(xs m))<<=(1#2**p)

?^29:abs(xs m+ ~x)<<=(1#2**q)

By careful observation of ?^28 one notices, that this is equal to claiming that xs is Cauchy
sequence. We can hence use the assumption RCxsM, saying exactly that xs is a RCauchy-Sequence
with modulus M. With nBd and mDef we can also prove that n,m ≥ M(p), which finishes the
proof.
It remains to prove ?^29. Recall that we achieved this in the natural proof by inserting bm,
using the triangle equaltiy and then showing that |bm − xm| ≤ 1

2p+1 by RealCompleteAux1 and
|bm − x| ≤ 1

2p+1 by using RatCauchyConvMod.
The first thing to do in MINLOG is therefore to reformulate our claim to be

?^34:abs(xs m+ ~x)<<=RealPlus(1#2**PosS q)(1#2**PosS q)

Since, we do this using simplification on the equality 1
2p = 1

2p+1 +
1

2p+1 , we will have to prove this
equality later (which is the goal ?^35. This however, will be a simple application of the theorem
RatPlusHalfExpPosS11. Thus, it suffices to deal with ?^34.
Here, we insert bs m, use the triangle-inequality and split our claim, just like we did above. This
produces the two goals

?^42:abs(xs m+ ~(bs m))<<=(1#2**PosS q)

?^43:abs(bs m+ ~x)<<=(1#2**PosS q)

Now, regarding ?^42, we can use RealCompleteAux1 to get that abs(bs m+ ~(xs m))<<=(1#2**m)

,after we have switched xs m and bs m in the statement. We can therefore close off ?^42, if we
prove:

?^59:(1#2**m)<<=(1#2**PosS q)

Note, that we will omit a discussion, how this is proved, because it involves statements about
Real and rational arithmetic and pluging in the definition of m. The interested reader might have
a look at librseq16.scm
It remains to prove ?^43. If we plug in the definition of x: xEq now. ?^43 simplifies to

?^68:abs(bs m+ ~(RealConstr bs K))<<=(1#2**PosS q)

Since bs is a Cauchy-Sequence by RealCompleteAux2, we can now apply RatCauchyConvMod to
obtain this goal and therefore finish the proof.

7.2 RealComplete

To finalize our proof of the Completeness of Reals in MINLOG we need to show that the
statement of RealCauchyConvMod also holds for our candidate for the limit: cRLim. Hence, we
wish to prove:

(set-goal "all xs,M(RealCauchy xs M ->

all p,n(M p<=n -> abs(xs n+ ~(cRLim xs M))<<=(1#2**p)))")

We can then obtain the usual notation for the natural proof as assumptions by makeing suitable
assertions like we did above. Fixing the variables xs, M and later p,n and using the Eliminations
for RealCauchy we obtain the assumptions:

xs M RC:RealCauchy xs M Rxs:all n Real(xs n)

MonM:Mon M RCxsM:RCauchy xs M ass assDef:all n ass n eqd(xs n)seq

Ns NsDef:all n Ns n eqd(xs n)mod xsChar:all n xs n eqd RealConstr(ass n)(Ns n)

11which is precisely the statement that forallp( 1
2p

= 1
2p+1 + 1

2p+1 .
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bs bsDef:all n bs n=ass n(Ns n(cNatPos n)) K KDef:all p K p=M(PosS p)max PosS(PosS p)

p n

Having taken those assumptions we still need to prove the goal

?^56:M p<=n -> abs(xs n+ ~(cRLim xs M))<<=(1#2**p)

As we know by RealCauchyConvMod, the statement ?^56 holds for any x, which satisfies x eqd (bs, K).
Thus, we use RealCauchyConvMod on ?^56 together with the asserted Definitions and obtain
the goal:

?^61:cRLim xs M===RealConstr bs K

However, :cRLim xs M is Leibniz-equal to RealLim xs M, as we know by RLimExFree. Hence,
we can replace :cRLim xs M by RealLim xs M in the goal ?^61. Now, we’ll try to prove the
newly obtained goal, by unraveling the Definition of RealLim xs M. To be more precise, it
suffices to show, that the defining sequences of RealConstr bs K and RealLim xs M coincide
at some point and ongoing from that point. In MINLOG, we have proved this statement, called
RealSeqEqToEq, in rea.scm. Using it on our goal, with chosen starting point of Coincidence: 0,
gives:

?^63:Real(RealLim xs M)

?^64:Real(RealConstr bs K)

?^65:all n(Zero<=n -> (RealLim xs M)seq n==(RealConstr bs K)seq n)

Now, if replace RealLim xs M in ^?63 with :cRLim xs M again, we observe that the resulting
goal exactly match bei b) bei der es the statement of RealLimReal!. Hence, using RealLimReal

closes of ^?63, since the assumption, that xs M is RealCauchy-sequence is availabel by RC.
We can also close off ^?64, since we know that, given our notation in the assumptions above,
bs K is a Cauchy-sequence by RealCompleteAux2 with monotone modulus K.
It remains to show ?^65. After fixing a variable n1 for n, we can plug in the computation-rules
with (ng #t) and obtain the goal:

?^94:(xs n1)seq((xs n1)mod(cNatPos n1))==bs n1

Using that xs was defined via ass by xsChar, we can further normalize this to the goal to

?^96:ass n1(Ns n1(cNatPos n1))==bs n1

This is of course true by the definition bsDef.

8 Reformulation of RealComplete

Having proved that the Reals are complete, we might want to have a more natural way to speak
about limits and convergence, than always having to deal with in-equalities and absolute values.
We therefore propose two new predicates RConvLim and RealConvLim, each stateing that a given
sequence xs converges (by the means above) agains an x with modulus M. Hence, we define

Definition 8.1
RConvLim:=µI(∀(xn)n, x,M (∀p, nM(p) ≤ m → |xn − x| ≤ 1

2) → I((xn)n, x,M))

which is the version of general, possibly non-constructive reals. The next one is for constructive
Reals then:

Definition 8.2
RealConvLim:=µI(∀(xn)n, x,M (∀n (xn ∈Real) → x ∈Real → M ∈Mon → I((xn)n, x,M))

We hence obtain the Introduction and Elimination-Axioms:
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These are proved in MINLOG in the usual manner.
of course, we would like to verify that the predicates RConvLim, RealConvLim fit into the context
of the previous theorems. More presicely, we’d like to prove that every RealCauchy-sequence has
the property RealConvLim with the limit cRLim.

Theorem 8.3
RealCompleteCor: ∀xs,x,M (RealCauchy(xs,M)→ RealConvLim(xs, cRLim(xs,M), M))

The prove of this theorem in MINLOG is rather simple. One only has to use the previosly
proved statements: RealCauchyToReals, RealLimReal, RealCauchyToMon and last, but not
least RealComplete.

9 Lookahead: Arithmetics of Limits
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