
Infinite Series

Infinite series are handled in Minlog as a special type of sequence with

modulo, analogous to how series are treated in classical analysis (minus the

modulo). This yields the following definition:

Definition (RSerConvLim)

A series
∑∞

k=0 xk is said to converge to x with modulo M iff

∀p, n : (M(p) ≤ n → |(
∑n

k=0 xk)− x| ≤ 1
2p
) 1

Note that MINLOG introduces this and the coming definitions twice,

although in one case the series is explicitly required to have only real parts

and the modulo has to be increasing. For the sake of simplicity, I shall not

deal with these slightly different definitions, as proofs in the second case are

also usually just reduced to the first.

This second definition is the analogue to Cauchyness for series:

Definition (RSerConv)

A series is
∑∞

k=0 xk said to be Cauchy with modulo M iff

∀p, n,m : (M(p) ≤ n → |
∑n+m−1

k=n xk| ≤ 1
2p
) 2

This now lets us prove out first theorem:

Theorem (RSerAbsConvToConv)∑∞
k=0 |xk| is Cauchy with modulo M ⇒

∑∞
k=0 xk is Cauchy with modulo M

1The types of the variables should be clear from the context. I will only specify, where
confusion might arise.

2If the use of the natural numberm seems odd in this definition, it is useful to remember
the way sums are defined in MINLOG
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The proof of this theorem mainly uses the triangle inequality for finite sums

(RealLeAbsSum), which will not be shown in this article.

It is also important to note here, that in MINLOG we, at different stages in

this article, have to prove a number of small theorems about index shifts for

series, and being able to split sums up into parts, etc. While conceptually

very easy to understand, the proofs of these theorem can be quite tricky to

actually complete in MINLOG. I will however use these theorems when

necessary without much comment.

Let us now move on to a different topic, namely the binomial theorem:

Theorem (RealBinom)

∀x, y ∈ R ∀n ∈ N : (x+ y)n =
∑n

m=0 x
n−mym

(
n
m

)
3

Proof:

We prove the theorem by induction. As the base case is clear, let’s move on

to the successor case. We have:

(x+ y)n+1 = (x+ y)(x+ y)n = x(x+ y)n + y(x+ y)n

IH
= x

∑n
m=0 x

n−mym
(
n
m

)
+ y

∑n
m=0 x

n−mym
(
n
m

)
=

∑n
m=0 x

n+1−mym
(
n
m

)
+
∑n

m=0 x
n−mym+1

(
n
m

)
= xn+1 +

∑n
m=1 x

n+1−mym
(
n
m

)
+
∑n

m=0 x
n−mym+1

(
n
m

)
= xn+1 +

∑n
m=1 x

n+1−mym
(
n
m

)
+
∑n+1

m=1 x
n+1−mym

(
n

m−1

)
= xn+1 +

∑n+1
m=1 x

n+1−mym
(
n
m

)
+
∑n+1

m=1 x
n+1−mym

(
n

m−1

)
(as

(
n

n+1

)
:= 0)

= xn+1 +
∑n+1

m=1 x
n+1−mym(

(
n
m

)
+
(

n
m−1

)
)

3Note here again that equality technically should be read as ===, which is simply an
equivalence relation with ”nice” properties. For the sake of these proofs however, we need
no Leibniz-equality, so I shall use the usual symbol.
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= xn+1 +
∑n+1

m=1 x
n+1−mym

(
n+1
m

)
(Pascal’s identity)

=
∑n+1

m=0 x
n+1−mym

(
n+1
m

)
This was what we wanted to show, so by induction we are done.

Now we shall concern ourselves with one of the classic convergence tests for

series, namely the comparison and quotient test. Here our main goal is to

construct an explicit Cauchy modulo. The approach here is to show the

theorems for basic cases first (i.e. the sequences is dominated from the

beginning) and then move on to more complex cases.

Theorem (RComparisonTest)

For sequences (xk)k, (yk)k with ∀k : 0 ≤ xk ≤ yk, we have that∑∞
k=0 yk is Cauchy with modulo M ⇒

∑∞
k=0 xk is Cauchy with modulo M

A large portion of the proof in MINLOG is dedicated to showing∑n+m−1
k=n |xk| =

∑n+m−1
k=n xk ≥ 0.

Once this is shown, we simply have

∀p, n,m : (M(p) ≤ n →
∑n+m−1

k=n |xk| =
∑n+m−1

k=n xk ≤
∑n+m−1

k=n yk ≤

|
∑n+m−1

k=n yk| ≤ 1
2p
)

Let us now generalize a bit:

Lemma (RComparisonTextMax)

For sequences (xk)k, (yk)k and a natural number l with ∀k : 0 ≤ xk and

∀k ≥ l : xk ≤ yk, we have that∑∞
k=0 yk is Cauchy with modulo M ⇒

∑∞
k=0 xk is Cauchy with modulo

N(p) = max(M(p), l)
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The main gist of this generalization is the change in modulo. Since

N(p) ≥ l for all p, we have that N(p) ≤ n → l ≤ n and so we can apply

RComparisonTest.

Before we can move on to the comparison test, we need to show a few

Lemmas. I will not go through the proof of these, but state some of them

here.

Lemma (RCauchyTimesConstR)

If
∑∞

k=0 xk is Cauchy with modulo M and y is a real numbers with y <= 2q

for a natural number q, then
∑∞

k=0 yxk is Cauchy with modulo

N(p) = M(p+ q)

Lemma (RSerConvShiftUp)

If
∑∞

k=0 xk is Cauchy with modulo M and l ∈ N, then
∑∞

k=0 xk+l is Cauchy

with modulo N(p) = M(p)− l

None of these Lemmas should be too surprising, and some more similar

Lemmas shall also be used throughout this article.

Before we can finally prove the ratio test, we need one more final theorem:

Theorem (RCauchyExpToRSerConvExp)

If 0 ≤ x and 1− x ∈p R+, and (xn)n∈N is a Cauchy-sequence with modulo

M (it will be a Null-sequence, but the modulo is explicitly important here),

then
∑∞

k=0 x
k is Cauchy with modulo N(p0) = M(p0 + p+ 1)

Proof: For M(p0 + p+ 1) ≤ n and m ∈ N we have

|
∑n+m−1

k=n xk| = |(
∑n+m−1

k=0 xk)− (
∑n−1

k=0 x
k)| GeomSumEq

= |1−xn+m

1−x
− 1−xn

1−x
|
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= |xn−xn+m

1−x
| = |xn+m−xn|

|1−x| ≤
1

2p0+p+1

|1−x|

RealPosChar

≤ 1
2p0+p+12p+1 = 1

2p0
4

Now we are finally ready to prove the constructive version of the ratio-test:

Theorem (RealRatioTestZero)

Let (xn)n be a real sequence, |x0| ≤ 2q for some q ∈ N and 0 ≤ z ∈ R with

1− z ∈p R, (zn)n∈N Cauchy with modulo M and ∀n ∈ N : |xn+1| ≤ z|xn|,

then
∑∞

k=0 |xk| is Cauchy with modulo N(p0) = M(q + p0 + p+ 1)

Proof: We first show by induction, that ∀k ∈ N : |xk| ≤ zk|x0|. Then we

have for M(q + p0 + p+ 1) ≤ n and m ∈ N that∑n+m+1
k=n |xk| ≤

∑n+m+1
k=n zk|x0| = |x0|

∑n+m+1
k=n zk ≤ 5 |x0| 1

2q+p0
≤ 2q

2q+p0
= 1

2p0

Applying the same trick as in the comparison-test case, we get:

Theorem (RealRatioTestMax)

Let (xn)n be a real sequence, m ∈ N, |xm| ≤ 2q for some q ∈ N and

0 ≤ z ∈ R with 1− z ∈p R, (zn)n∈N Cauchy with modulo M and

∀n ≥ m : |xn+1| ≤ z|xn|, then
∑∞

k=0 |xk| is Cauchy with modulo

N(p0) = max(M(q + p0 + p+ 1),m)

Pair-Encoding

Before we can move on to prove the Cauchy-Product theorem, we need to

have a clean way of writing the product of two sums as one sum over pairs.

We do this by ”filling out the square”. For this, we’re going to use a

natural encoding of pairs that arises in this context.

4The reason for the somewhat odd disappearance of the +1 in RealPosChar lies in a
technical detail in the definition of ∈p R

5See the modulo of the geometric series in RCauchyExpToRSerConvExp

5



Figure 1: Pair-encoding

Here, we show the encoding code(i, j) where i and j are numbered (from 0)

on the x-axis and y-axis respectively.

From this idea, we can already extract a possible formula for our encoding,

namely

code(i, j) =

 i2 + j, for j < i

j2 + j + i, for i ≤ j


To motivate this formula: Note that code(i, 0) = i2 and code(0, j) = j2 + j.

Then the rest of the formula follows by noting code(i, j) = code(i, 0) + j for

j < i and code(i, j) = code(0, j) + i for i ≤ j.

It should be clear for why this encoding is called ”filling out the square”.

Now, as this encoding is supposed to be a bijection, code : N2 → N needs to

have an inverse(s) (codeL, codeR) : N → N2 such that

∀n ∈ N : code(codeL(n), codeR(n)) = n and

∀i, j ∈ N : codeL(code(i, j)) = i ∧ codeR(code(i, j)) = j.

Let us try to construct these: Before we can do this, lets define a function

that returns the ”natural root” of a number n, i.e. the largest natural
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number k such that k2 ≤ n, or, in term of our graph, the (size of the)

square that n lies in in our encoding. We define the function Rt recursively:

Rt(0) = 0

Rt(n+ 1) =

 Rt(n), if n < Rt(n)2 + 2Rt(n)

j2 + j + i, else


The reader is invited to ponder this definition until convinced by it, we

suggest looking at the above graph..

Now using the Rt function, we can finally define our function CodeL and

CodeR. We have:

codeL(n) =

 Rt(n), for n < Rt(n)2 +Rt(n)

n− (Rt(n)2 +Rt(n)), else


codeR(n) =

 n−Rt(n)2, for n < Rt(n)2 +Rt(n)

Rt(n), else


Again, please ponder this definition until it becomes clear.

It comes with some difficulty to show that these functions actually do (in

their pair) constitute an inverse, but I hope it is intuitively somewhat clear.

In the following I shall write cL and cR for codeL and codeR respectively.

Before me move on, lets develop some useful intuitions.

First of all. we have that the n-th square (i.e. with sidelength n) is given

by {k ∈ N : max(cL(k), cR(k)) ≤ n} , because max(cL(k), cR(k)) = Rt(k).

Note that the n− 1-th square is also given by {k ∈ N : k ≤ n2 − 1} , which

yields the following equality

{k ∈ N : k ≤ n2 − 1} = {k ∈ N : max(cL(k), cR(k)) < n} .
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Thus, the n− 1-th square minus the m− 1-th square is given by

{k ∈ N : m ≤ max(cL(k), cR(k)) ∧ k ≤ n2 − 1} .

Furthermore, the upper triangle in the n− 1-th square (including the

diagonal) is given by {k ∈ N : n ≤ cL(k) + cR(k) ∧ k ≤ n2 − 1}, the lower

triangle (excluding the diagonal) is thus given by

{k ∈ N : cL(k) + cR(k) < n ∧ k ≤ n2 − 1}.

Cauchy-Product

Now we finally have all the tools to prove the Cauchy-Product-Theorem.

Note that in the following section, we revert back to viewing series as

sequences, and talking about convergence of sequences. This is not for any

strictly mathematical reasons, all these proofs could be carried out using

only talk of convergence/Cauchyness of series. However, as we shall see, it

is useful to let the sum only go up to n− 1, which would change the modulo

of convergence by 1. So instead of constantly having to add/subtract 1, for

simplicity, we talk of series as sequences. First we shall prove some

equalities that demonstrate the usefulness of our chosen pair-encoding.

Theorem (RealSumTimes)

(
∑n−1

k=0 xk)(
∑n−1

k=0 yk) =
∑n2−1

k=0 xcL(k)ycR(k)

Proof: We prove the theorem by induction over n.

Base case (n = 0): Left-side = 0 = Right-side

Induction step:

(
∑n

k=0 xk)(
∑n

k=0 yk)

= xnyn + xn

∑n−1
k=0 yk + yn

∑n−1
k=0 xk + (

∑n−1
k=0 xk)(

∑n−1
k=0 yk)
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IH
= xnyn + xn

∑n−1
k=0 yk + yn

∑n−1
k=0 xk +

∑n2−1
k=0 xcL(k)ycR(k) (1)

We also have:∑n2+2n
k=n2 xcL(k)ycR(k)

=
∑n2+n−1

k=n2 xcL(k)ycR(k) +
∑n2+2n

k=n2+n xcL(k)ycR(k)

Def. von cL,cR
=

∑n2+n−1
k=n2 xnyk−n2 +

∑n2+2n
k=n2+n xk−(n2+n)yn

= xn

∑n−1
k=0 yk + yn

∑n
k=0 xk (Index-Shift)

= xnyn + xn

∑n−1
k=0 yk + yn

∑n−1
k=0 xk

It follows, that

(1) =
∑n2−1

k=0 xcL(k)ycR(k) +
∑n2+2n

k=n2 xcL(k)ycR(k) =
∑(n+1)2−1

k=0 xcL(k)ycR(k),

which is exactly what we wanted to show.

Now we can show an essential inequality, namely:

Theorem (RealSquareMinusLowTriangEqUp,

RealUpperTriangLeMinusSquare, RealSumMinusSquare)

For 2m ≤ n we have∑n2−1
k=0 |xcL(k)||ycR(k)| −

∑n2−1
cL(k)+cR(k)<n |xcL(k)||ycR(k)|

=
∑n2−1

n≤cL(k)+cR(k) |xcL(k)||ycR(k)|

≤
∑n2−1

m≤max(cL(k),cR(k)) |xcL(k)||ycR(k)|

=
∑n2−1

k=0 |xcL(k)||ycR(k)| −
∑m2−1

k=0 |xcL(k)||ycR(k)|

Proof idea:

The first equality should be clear. For the inequality, observe that

2m ≤ n ≤ cL(k)+cR(k) ⇒ 2m ≤ cL(k)+cR(k) ⇒ m ≤ max(cL(k), cR(k)),

so the inequality is just the result of summing over a larger domain. The

last equality follows from the above note, namely that the n− 1-th square

minus the m− 1-th square is given by

9



{k ∈ N : m ≤ max(cL(k), cR(k)) ∧ k ≤ n2 − 1} .

We now just need some theorems regarding the modulo of convergence of

series. These are direct applications of convergence statements for

sequences, however if the reader is not familiar with those, they also make

for good exercises.

Theorems

1. Let (
∑n−1

k=0 |xk|)n∈N, (
∑n−1

k=0 |yk|)n∈N be Cauchy (as sequences) with

modulo M, N respectively, and
∑∞

k=0 |xk| ≤ 2p,
∑∞

k=0 |yk| ≤ 2q for

some p, q ∈ N.

Then ((
∑n−1

k=0 xk)(
∑n−1

k=0 yk))n∈N is Cauchy with modulo

K(r) = max(M(p+ r + 1), N(q + r + 1))

(RealUpperTriangLimZeroAux)

2. Let (
∑n−1

k=0 xk)n∈N, (
∑∞

k=0 yk)n∈N converge to x, y ∈ R respectively

with modulo M,N (again, as sequences). Furthermore, let

∀n ∈ N : |
∑n−1

k=0 xk| ≤ 2p, |
∑n−1

k=0 yk| ≤ 2q for some p, q ∈ N. Then∑n2−1
k=0 xcL(k)ycR(k) = (

∑n−1
k=0 xk)(

∑n−1
k=0 yk)n∈N converges to xy with

modulo K(r) := max(N(p+ r + 1),M(q + r + 1))

(RealConvLimZStar)

Proof: (1.) follows from RealCauchyBdTimes, (2.) from

RealConvLimTimes.
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Theorem (RealCauchyProdLim)

Let (
∑n−1

k=0 xk)n∈N, (
∑n−1

k=0 yk)n∈N converge to x, y ∈ R respectively with

modulo M,N . Furthermore, let ∀n ∈ N : |
∑n

k=0 xk| ≤ 2p, |
∑n

k=0 yk| ≤ 2q

for some p, q ∈ N. Define K(r) := max(N(p+ r + 1),M(q + r + 1)). Now

assume (
∑n−1

k=0 |xk|)n∈N, (
∑n−1

k=0 |yk|)n∈N are Cauchy (as sequences) with

modulo M0, N0 respectively and
∑∞

k=0 |xk| ≤ 2p0 ,
∑∞

k=0 |yk| ≤ 2q0 for some

p0, q0 ∈ N. Define K0(r) := max(M0(p0 + r + 1), N0(q0 + r + 1)).

Then (
∑n2−1

cL(k)+cR(k)<n xcL(k)ycR(k))n∈N converges to xy with modulo

Q(r) := max(2K0(r + 1), K(r + 1))

Proof: Let max(2K0(r + 1), K(r + 1)) ≤ n. Then

|
∑n2−1

cL(k)+cR(k)<n xcL(k)ycR(k) − xy|

≤ |
∑n2−1

cL(k)+cR(k)<n xcL(k)ycR(k)−
∑n2−1

k=0 xcL(k)ycR(k)|+ |
∑n2−1

k=0 xcL(k)ycR(k)−xy|

= |
∑n2−1

n≤cL(k)+cR(k) xcL(k)ycR(k)|+ |
∑n2−1

k=0 xcL(k)ycR(k) − xy|

= |
∑n2−1

n≤cL(k)+cR(k) xcL(k)ycR(k)|+ |(
∑n−1

k=0 xk)(
∑n−1

k=0 yk)− xy|

(RealSumTimes)

Now since K(r + 1) ≤ n, we have |(
∑n−1

k=0 xk)(
∑n−1

k=0 yk)− xy| ≤ 1
2r+1 by

RealConvLimZStar and thus:

≤ |
∑n2−1

n≤cL(k)+cR(k) xcL(k)ycR(k)|+ 1
2r+1

≤
∑n2−1

n≤cL(k)+cR(k) |xcL(k)||ycR(k)|+ 1
2r+1

Now as we also have 2K0(r + 1) ≤ n we can apply

RealUpperTriangLeMinusSquare (to m = K0(r + 1)), to get:

≤
∑n2−1

K0(r+1)≤max(cL(k),cR(k)) |xcL(k)||ycR(k)|+ 1
2r+1

=
∑n2−1

k=0 |xcL(k)||ycR(k)| −
∑K0(r+1)2−1

k=0 |xcL(k)||ycR(k)|+ 1
2r+1

(RealSumMinusSquare)

= (
∑n−1

k=0 |xk|)(
∑n−1

k=0 |yk|)− (
∑K0(r+1)−1

k=0 |xk|)(
∑K0(r+1)−1

k=0 |yk|) + 1
2r+1
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(RealSumTimes)

= |(
∑n−1

k=0 |xk|)(
∑n−1

k=0 |yk|)− (
∑K0(r+1)−1

k=0 |xk|)(
∑K0(r+1)−1

k=0 |yk|) |+ 1
2r+1

Now finally, using RealUpperTriangLimZeroAux, we get the last inequality:

≤ 1
2r+1 +

1
2r+1

= 1
2r
,

which is exactly what needed to be shown.
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