
Program Extraction in Constructive Analysis

Helmut Schwichtenberg

Abstract

We sketch a development of constructive analysis in Bishop’s style,
with special emphasis on low type-level witnesses (using separability of
the reals). The goal is to set up things in such a way that realistically
executable programs can be extracted from proofs. This is carried
out for (1) the Intermediate Value Theorem and (2) the existence of a
continuous inverse to a monotonically increasing continuous function.
Using the Minlog proof assistant, the proofs leading to the Interme-
diate Value Theorem are formalized and realizing terms extracted. It
turns out that evaluating these terms is a reasonably fast algorithm to
compute, say, approximations of

√
2.

1 Introduction

We are interested in exact real numbers, as opposed to floating point num-
bers. The final goal is to develop the basics of real analysis in such a way
that from a proof of an existence formula one can extract a program. For
instance, from a proof of the intermediate value theorem we want to extract
a program that, given an arbitrary error bound 2−k, computes a rational a
where the given function is zero up to the error bound.

Why should we be interested in logic in a study of constructive analysis?
There are at least two reasons.

• Obviously we need to be aware of the difference of the classical and
the constructive existential quantifier, and try to prove the stronger
statements involving the latter whenever possible. Then one is forced
to give “constructive” proofs, whose algorithmic content can be “seen”
and then used as a basis to formulate a program for computing the
solution. This was the point of view in Bishop’s classic textbook [4],
and more explicitly carried through in Andersson’s Master’s thesis [1]
(based on Palmgren’s [9]), with Mathematica as the target program-
ming language.

• However, one can go one step further and automatize the step from the
(formalized) constructive proof to the corresponding program. This

1

can be done by means of the so-called realizability interpretation in-
troduced by Kreisel [7]. The desire to have “mathematics as a nu-
merical language” in this sense was clearly expressed by Bishop in his
article [5] (with just that title). There are now many implementations
of these ideas, for instance Coq, Isabelle/HOL, Agda, Nuprl, Minlog
(cf. Wiedijk’s “The Seventeen Provers of the World”, to appear as
Springer LNAI).

What are the requirements on a constructive logic that should guide us
in our design?

• It should be as close as possible to the mathematical arguments we
want to use. Variables should carry (functional) types, with free al-
gebras (e.g., natural numbers) as base types. Over these, inductive
definitions and the corresponding introduction and elimination axioms
should be allowed.

• The constants of the language should denote computable functionals in
the Scott-Ershov sense, and hence the higher-order quantifiers should
range over their (mathematically correct) domain, the partial conti-
nuous functionals.

• The language of the logic should be strong (in the sense of being ex-
pressive), but the existence axioms used should be weak.

• Type parameters (ML style) should be allowed, but quantification over
types should be disallowed in order to keep the theory predicative.
Similarly, predicate variables should be allowed as place-holders for
formulas (or more precisely, comprehension terms, that is formulas
with some variables abstracted). However, in comprehension terms
quantification over predicate variables is not allowed, since this would
form a glaring impredicativity: we then would define a predicate (by
the comprehension term) with reference to the totality of all predicates,
to which the one to be defined belongs.

The Minlog proof assistant (www.minlog-system.de, under development in
Munich), has been designed to meet these demands. Some information on
the logical theory it formalizes can be found in [11]. The present paper
reports on experiences in formalizing proofs in constructive analysis and
extracting programs from them, using the Minlog proof assistant.

Sections 2 and 3 develop some basic machinery of constructive analysis,
in a form suitable for formalization. This includes proofs of the Interme-
diate Value Theorem in 3.4 and of the fact that every continuous function
with a uniform lower bound on its slope has a continuous inverse, in 3.5.
In section 4 we report on a formalization of the material in sections 2 and
3, which includes program extraction. After providing in 4.1 some general

2

proof-theoretical background on program extraction and on necessary opti-
mizations, in 4.2 we display the extracted terms for the proofs leading to the
Intermediate Value Theorem, and discuss what they intuitively mean. We
then report on experiments using these terms to compute approximations
of
√

2.
Related work has recently been done in the “Constructive Coq Reposi-

tory (C-CoRN)” project at Nijmegen (Barendregt, Geuvers, Wiedijk, Cruz-
Filipe [6]). It grew out of the FTA project, where Kneser’s constructive
proof of the fundamental theorem of algebra was to be formalized. How-
ever, program extraction from this proof turned out to be problematic, for
a number of reasons, among them:

• Strong extensionality was required, in the form ∀x,y.f(x)#f(y) →
x#y. However, the missing witness in this formula turned out to
be harmful for program extraction.

• The Set, Prop distinction in Coq was found to be insufficient. In
his thesis [6], Cruz-Filipe was forced to introduce a certain variant he
called “CProp”.

Compared with the literature, the novel aspect of the present work is
the development of elementary constructive analysis in such a way that
witnesses have as low a type level as possible. For example, a continuous
function on the reals is determined by its values on the rationals, and hence
can be represented by a type-one (rather than type-two) object. This clearly
is important for the complexity of the extracted programs.

The subject of the present volume is “Logicism, Intuitionism, and For-
malism – What has become of them?” This paper can be seen as providing
first steps in an attempt to develop “Mathematics as a numerical language”,
as advocated by Bishop [5]. Clearly this requires a constructive view of
mathematics as advocated by Brouwer, but in the liberal sense of Bishop
and Troelstra. But of course, any such attempt would be impossible without
the pioneering ideas and concepts from all these foundational schools.

2 Real Numbers

2.1 Reals, Equality of Reals

We shall view a real as a Cauchy sequence of rationals with a separately
given modulus.

Definition. A real number x is a pair ((an)n∈N,M) with an ∈ Q and
M : N→ N such that (an)n is a Cauchy sequence with modulus M , that is

|an − am| ≤ 2−k for n, m ≥M(k)

and M is weakly increasing. M is called a Cauchy modulus of x.

3

We shall loosely speak of a real (an)n if the Cauchy modulus M is clear
from the context or inessential. Every rational a is tacitly understood as the
real represented by the constant sequence an = a with the constant modulus
M(k) = 0.

Definition. Two reals x := ((an)n,M), y := ((bn)n, N) are called equivalent
(or equal), which is written x = y if the context makes clear what is meant,
if

|aM(k+1) − bN(k+1)| ≤ 2−k for all k ∈ N

We want to show that this is an equivalence relation. Reflexivity and
symmetry are clear. For transitivity we use the following lemma:

Lemma. Two reals x := ((an)n,M), y := ((bn)n, N) are equal if and only
if

∀k∃clq ∀n≥q |an − bn| ≤ 2−k.

Lemma. Equality between reals is transitive.

Proof. Let (an)n, (bn)n, (cn)n be the Cauchy sequences for x, y, z. Assume
x = y, y = z and pick p, q according to the lemma above. Then |an − cn| ≤
|an − bn|+ |bn − cn| ≤ 2−k−1 + 2−k−1 for n ≥ p, q.

2.2 The Archimedean Axiom

For every function on the reals we certainly want compatibility with equality.
This however is not always the case; here is an important example.

Lemma (RealBound). For every real x := ((an)n,M) we can find an
upper bound 2kx on the elements of the Cauchy sequence: |an| ≤ 2kx for all
n.

Proof. Let kx be such that max{ |an| | n ≤ M(0) } + 1 ≤ 2kx . Hence
|an| ≤ 2kx for all n.

Clearly this assignment of kx to x is not compatible with equality.

2.3 Nonnegative and Positive Reals

A real x := ((an)n,M) is called nonnegative (written x ∈ R0+) if

−2−k ≤ aM(k) for all k ∈ N.

It is k-positive (written x ∈k R+, or x ∈ R+ if k is not needed) if

2−k ≤ aM(k+1).

We want to show that both properties are compatible with equality.
First we prove a useful characterization of nonnegative reals.

4

Lemma. A real x := ((an)n,M) is nonnegative if and only if

∀k∃p∀n≥p − 2−k ≤ an.

Lemma. If x ∈ R0+ and x = y, then also y ∈ R0+.

Proof. Let x := ((an)n,M) and y := ((bn)n, N). Assume x ∈ R0+ and
x = y, and let k be given. Pick p according to the lemma above and q
according to the characterization of equality of reals in 2.1 (both for k + 1).
Then for n ≥ p, q

−2−k ≤ −2−k−1 + an ≤ (bn − an) + an.

Hence y ∈ R0+ by definition.

We now show compatibility of positivity with equality. Again we need a
lemma:

Lemma. A real x := ((an)n,M) is k-positive if and only if

∃l,p∀n≥p 2−l ≤ an.

For ∀n≥p 2−l ≤ an write x ∈l,p R+ or 0 <l,p x.

Lemma. Positivity of reals is compatible with equality.

Proof. Assume 0 <k,p x and x = y, so in particular we have a q such that
∀n≥q |an − bn| ≤ 2−k−1. Then for max(p, q) ≤ n

2−k−1 = −2−k−1 + 2k ≤ (bn − an) + an = bn.

Hence 0 <k+1,max(p,q) y.

2.4 Arithmetical Functions

Given real numbers x := ((an)n,M) and y := ((bn)n, N), we define each
z from the list x + y, −x, |x|, x · y, and 1

x (the latter only provided that
|x| ∈l R+) as represented by the respective sequence (cn) of rationals with
modulus L:

z cn L(k)

x + y an + bn max
(
M(k + 1), N(k + 1)

)
−x −an M(k)
|x| |an| M(k)
x · y an · bn max

(
M(k+1+k|y|), N(k+1+k|x|)

)
1
x for |x| ∈l R+

{
1

an
if an 6= 0

0 if an = 0
M(2(l + 1) + k),

where 2kx is the upper bound provided by 2.2.

5

Lemma. For reals x, y also x+y, −x, |x|, x·y and (provided that |x| ∈l R+)
also 1/x are reals.

Lemma. The functions x + y, −x, |x|, x · y and (provided that |x| ∈l R+)
also 1/x are compatible with equality.

Lemma. For reals x, y, z

x + (y + z) = (x + y) + z

x + 0 = x

x + (−x) = 0
x + y = y + x

x · (y · z) = (x · y) · z
x · 1 = x

0 < |x| → x · 1
x

= 1

x · y = y · x
x · (y + z) = x · y + x · z

Lemma. For reals x, y from x · y = 1 we can infer 0 < |x|.

Proof. Pick k such that |bn| ≤ 2k for all n. Pick q such that q ≤ n implies
1/2 ≤ an · bn. Then for q ≤ n, 1/2 ≤ |an| · 2k, and hence 2−k−1 ≤ |an|.

Lemma. For reals x, y,

(a) x, y ∈ R0+ → x + y, x · y ∈ R0+,

(b) x, y ∈ R+ → x + y, x · y ∈ R+,

(c) x ∈ R0+ → −x ∈ R0+ → x = 0.

Proof. (a), (b). Routine. (c). Let k be given. Pick p such that −2−k ≤ an

and −2−k ≤ −an for n ≥ p. Then |an| ≤ 2−k.

2.5 Comparison of Reals

We write x ≤ y for y − x ∈ R0+ and x < y for y − x ∈ R+. Unwinding the
definitions yields that x ≤ y is to say that for every k, aL(k) ≤ bL(k) + 2−k

with L(k) := max(M(k), N(k)), or equivalently (using the characterization
of reals in 2.3) that for every k there exists p such that an ≤ bn + 2−k

for all n ≥ p. Furthermore, x < y is a shorthand for the presence of
k with aL(k+1) + 2−k ≤ bL(k+1) with L the maximum of M and N , or
equivalently (using the characterization of reals in 2.3) for the presence of
k, q with an + 2−k ≤ bn for all n ≥ q; we then write x <k y (or x <k,q y)
whenever we want to call these witnesses.

Lemma (RealApprox). ∀x,k∃a |a− x| ≤ 2−k.

Proof. Let x = ((an),M). Given k, pick aM(k). We show |aM(k) − x| ≤
2−k, that is |aM(k) − aM(l)| ≤ 2−k + 2−l for every l. But this follows from
|aM(k) − aM(l)| ≤ |aM(k) − aM(k+l)|+ |aM(k+l) − aM(l)| ≤ 2−k + 2−l.

6

Lemma. 0 ≤ x and 0 <k y imply 0 <k+1 x + y.

Proof. From 0 ≤ x we have ∀l∃p∀n≥p − 2−l ≤ an. From 0 <k y we have
some q such that ∀n≥q 2−k ≤ bn. Pick p for k + 1. Then p, q ≤ n implies
0 ≤ an + 2−k−1 and 2−k−1 ≤ bn − 2−k−1, hence 2−k−1 ≤ an + bn.

Lemma. For reals x, y, z,

x ≤ x

x ≤ y → y ≤ x→ x = y

x ≤ y → y ≤ z → x ≤ z

x ≤ y → x + z ≤ y + z

x ≤ y → 0 ≤ z → x · z ≤ y · z

x 6< x

x < y → y < z → x < z

x < y → x + z < y + z

x < y → 0 < z → x · z < y · z

Proof. From 2.4.

Lemma. x ≤ y → y <k z → x <k+1 z.

Proof. This follows from the next to last lemma.

As is to be expected in view of the existential and universal character of
the predicates < and ≤ on the reals, we have:

Lemma. x ≤ y ↔ y 6< x.

Proof. →. Assume x ≤ y and y < x. By the previous lemma we obtain
x < x, a contradiction.
←. It clearly suffices to show 0 6< z → z ≤ 0, for a real z given by

(cn)n. Assume 0 6< z. We must show ∀k∃p∀n≥p cn ≤ 2−k. Let k be given.
By assumption 0 6< z, hence ¬∃l 2−l ≤ cM(l+1), hence ∀l cM(l+1) < 2−l. For
l := k + 1 this implies cM(k+2) < 2−k−1, hence cn ≤ cM(k+2) + 2−k−2 < 2−k

for M(k + 2) ≤ n.

Constructively, we cannot compare two reals, but we can compare a real
with a nontrivial interval (“Approximate Splitting Principle”):

Lemma (ApproxSplit). Let x, y, z be given and assume x < y. Then
either z ≤ y or x ≤ z.

Proof. Let x := ((an)n,M), y := ((bn)n, N), z := ((cn)n, L). Assume x <k

y, that is (by definition) 1/2k ≤ bp − ap for p := max(M(k + 2), N(k + 2)).
Let q := max(p, L(k + 2)) and d := (bp − ap)/4.

Case cq ≤ ap+bp

2 . We show z ≤ y. It suffices to prove cn ≤ bn for n ≥ q.
To see this, observe

cn ≤ cq +
1

2k+2
≤ ap + bp

2
+

bp − ap

4
= bp −

bp − ap

4
≤ bp −

1
2k+2

≤ bn.

7

Case cq 6≤ ap+bp

2 . We show x ≤ z, via an ≤ cn for n ≥ q.

an ≤ ap +
1

2k+2
≤ ap +

bp − ap

4
≤ ap + bp

2
− bp − ap

4
≤ cq −

1
2k+2

≤ cn.

This concludes the proof.

Notice that the boolean object determining whether z ≤ y or x ≤ z
depends on the representation of x, y and z. In particular this assignment
is not compatible with our equality relation.

One might think that the non-available comparison of two reals could
be circumvented by using a maximum function. Indeed, such a function
can easily be defined (component-wise), and it has the expected properties
x, y ≤ max(x, y) and x, y ≤ z → max(x, y) ≤ z. What is missing is the
knowledge that max(x, y) equals one of its arguments, i.e., we do not have
max(x, y) = x ∨max(x, y) = y.

3 Continuous Functions

We define continuous functions as type-1-objects, and prove their basic prop-
erties. This includes proofs of the Intermediate Value Theorem in 3.4 and
of the fact that every continuous function with a uniform lower bound on
its slope has a continuous inverse, in 3.5.

An inhabited, closed finite interval is called compact . We use I, J to
denote compact intervals [a, b] with rational end points a < b.

3.1 Continuous Functions as Type-1-Objects

Definition. A continuous function f : I → R is given by

(a) an approximating map hf : (I ∩ Q) × N → Q and a map αf : N → N
such that (hf (a, n))n is a Cauchy sequence with (uniform) modulus αf ;

(b) a modulus ωf : N→ N of (uniform) continuity, which satisfies

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k for n ≥ αf (k);

(c) a lower bound Nf and an upper bound Mf for all hf (a, n).

αf and ωf are required to be weakly increasing (that is, n ≤ m→ αf (n) ≤
α)f(m)).. A function real-valued function defined on an arbitrary interval is
continuous if it is continuous on every compact subinterval of with rational
end points.

8

Notice that a continuous function is given by objects of type level ≤ 1
only. This is due to the fact that it suffices to define its values on rational
numbers.

The lower and upper bound of the values of the approximating map have
been included to ease the definition of composition of continuous functions;
however, they also have an effect on computational efficiency.

An example is the exponential function. On [c, d] (c < d) it is given by

(a) the approximating map

hexp(a, n) :=
n∑

k=0

ak

k!
,

and a uniform Cauchy modulus αexp, which can be computed from

∣∣∣ n∑
k=0

ak

k!
−

m∑
k=0

ak

k!

∣∣∣ =
∣∣∣ m∑
k=n+1

ak

k!

∣∣∣ ≤ ∞∑
k=n+1

|a|k

k!
≤ 2

|a|n+1

(n + 1)!

for |a| ≤ 1 + n
2 and n ≤ m;

(b) the modulus of uniform continuity, which can be obtained from

∣∣∣ n∑
k=0

ak

k!
−

n∑
k=0

bk

k!

∣∣∣ =
∣∣∣ n∑
k=1

ak − bk

k!

∣∣∣ = |a− b|
n∑

k=1

1
k!

∣∣∣k−1∑
l=0

ak−1−lbl
∣∣∣

≤ |a− b|
n∑

k=1

kMk−1

k!
= |a− b|

n−1∑
k=0

Mk

k!
< |a− b| exp(M),

where M = max(|c|, |d|);

(c) the lower bound Nexp := 0 and upper bound

Mexp :=
L∑

k=0

dk

k!
+ 2

|d|L+1

(L + 1)!
with L := 2d|d|e;

these can easily be verified.

3.2 Application of a Continuous Function to a Real

Since the approximating map operates on rationals only, we need to define
what it means to apply a continuous function in our sense to a real.

Definition. Application of a continuous function f : I → R (given by hf ,
αf , ωf) to a real x := ((an)n,M) in I is defined to be

(hf (an, n))n

9

with modulus max(αf (k + 2),M(ωf (k + 1)− 1)). This is a modulus, for

|hf (am,m)− hf (an, n)|
≤ |hf (am,m)−hf (am, p)|+ |hf (am, p)−hf (an, p)|+ |hf (an, p)−hf (an, n)|
≤ 2−k−2 + 2−k−1 + 2−k−2

if m, n ≥ M(ωf (k + 1) − 1) and p ≥ αf (k + 1) (for the middle term), and
moreover m,n, p ≥ αf (k + 2) (for the first and last term). We denote this
real by f(x). The set of all such reals is called the range of f .

Two continuous functions f : I → R and g : J → R are equal if I = J
and f(a) = g(a) for all rationals a ∈ I.

We show that indeed a continuous function f has ωf as a modulus of
uniform continuity.

Lemma (ContMod). Let f be continuous and x, y be reals in its domain.
Then

|x− y| ≤ 2−ωf (k) → |f(x)− f(y)| ≤ 2−k.

Proof. Let x := ((an)n,M) and y := ((bn)n, N). Assume |an − bn| ≤
2−ωf (k)+1 for n ≥ p. Then |hf (an, n) − hf (bn, n)| ≤ 2−k for n ≥ p, αf (k),
that is |f(x)− f(y)| ≤ 2−k.

Essentially the same proof shows that application is compatible with
equality.

Lemma (ContAppComp). Let f be a continuous function and x, y be
reals in its domain. Then x = y implies f(x) = f(y).

Proof. Let x := ((an)n,M) and y := ((bn)n, N), and assume x = y. Given
k, pick p such that |an − bn| ≤ 2−ωf (k)+1 for n ≥ p. Then, as in the proof
above, |f(x)− f(y)| ≤ 2−k. Hence f(x) = f(y).

3.3 Continuous Functions and Limits

We show that continuous functions commute with limits.

Lemma (ContLim). Let (xn)n be a sequence of reals which converges to y.
Assume xn, y ∈ I and let f : I → R be continuous. Then (f(xn))n converges
to f(y).

Proof. For a given k, pick p such that p ≤ n→ |xn − y| ≤ 2−ωf (k) for all n.
Then by the previous lemma p ≤ n→ |f(xn)−f(y)| ≤ 2−k. Hence (f(xn))n

converges to f(y).

Lemma (ContRat). Assume that f, g : I → R are continuous and coincide
on all rationals a ∈ I. Then f = g.

Proof. Let x := ((an)n,M). By ContLim, (f(an))n converges to f(x) and
(g(an))n to g(x). Now f(an) = g(an) implies f(x) = g(x).

10

3.4 Intermediate Value Theorem

We next supply the standard constructive versions of the intermediate value
theorem.

Theorem (Approximate Intermediate Value Theorem). Let a < b be
rational numbers. For every continuous function f : [a, b] → R with f(a) ≤
0 ≤ f(b), and every k, we can find c ∈ [a, b] such that |f(c)| ≤ 2−k.

Proof. In the sequel we repeatedly invoke the Approximate Splitting Prin-
ciple from 2.5. Given k, let ε := 2−k. We compare f(a) and f(b) with
−ε < − ε

2 and ε
2 < ε, respectively. If −ε < f(a) or f(b) < ε, then |f(c)| < ε

for c = a or c = b; whence we may assume that

f(a) < −ε

2
and

ε

2
< f(b).

Now pick l so that, for all x, y ∈ [a, b], if |x−y| ≤ 2−l, then |f(x)−f(y)| ≤ ε,
and divide [a, b] into a = a0 < a1 < · · · < am = b such that |ai−1 − ai| ≤
2−l. Compare every f(ai) with − ε

2 < ε
2 . By assumption f(a0) < − ε

2 and
ε
2 < f(am); whence we can find j minimal such that

f(aj) <
ε

2
and − ε

2
< f(aj+1).

Finally, compare f(aj) with −ε < − ε
2 and f(aj+1) with ε

2 < ε. If −ε <
f(aj), we have |f(aj)| < ε. If f(aj+1) < ε, we have |f(aj+1)| < ε. If both
f(aj) < − ε

2 and ε
2 < f(aj+1), then we would have |f(aj+1) − f(aj)| > ε,

contradicting |aj+1 − aj | ≤ 2−l.

Alternative Proof. We give a different proof, which more directly makes use
of the fact that our continuous functions come with witnessing data.

We may assume f(a) < −2−k−1 and 2−k−1 < f(b) (see above). Divide
[a, b] into a = a0 < a1 < · · · < am = b such that |ai−1 − ai| ≤ 2−ωf (k+1).
Consider all finitely many

h(ai, n0) for i = 1, . . . ,m,

with n0 := αf (k + 1). Pick j such that h(aj−1, n0) ≤ 0 ≤ h(aj , n0); this can
be done because f(a) < −2−k−1 and 2−k−1 < f(b). We show |f(aj)| ≤ 2−k;
for this it clearly suffices to show |h(aj , n)| ≤ 2−k for n ≥ n0. Now

|h(aj , n)| ≤
∣∣h(aj , n)− h(aj , n0)

∣∣ +
∣∣h(aj , n0)

∣∣ ≤ 2−k−1 + 2−k−1,

where the first estimate holds by the choice of n0, and the second one follows
from the choice of aj and |h(ai−1, n)− h(ai, n)| ≤ 2−k−1.

11

A problem with both of these proofs is that the algorithms they provide
are rather bad: in each case one has to partition the interval into as many
pieces as the modulus of the continuous function requires for the given error
bound, and then for each of these (many) pieces perform certain operations.
This problem seems to be unavoidable, since our continuous function may
be rather flat. However, we can do somewhat better if we assume a uniform
lower bound on the slope of f , that is, some l ∈ N such that for all c, d ∈ Q
and all m ∈ N

1
2m
≤ d− c→ f(c) <m+l f(d).

Instead of the linear function m 7→ m+l one could use (as in [2]) an arbitrary
“modulus of increase”.

We begin with an auxiliary lemma for the Intermediate Value Theorem,
which from a “correct” interval c < d (that is, f(c) ≤ 0 ≤ f(d) and 2−n ≤
d− c) constructs a new one c1 < d1 with d1 − c1 = 2

3(d− c).

Lemma (IVTAux). Let f : [a, b] → R be continuous, and with a uniform
lower bound l on its slope. Assume a ≤ c < d ≤ b, say 2−n < d − c, and
f(c) ≤ 0 ≤ f(d). Then we can construct c1, d1 with d1− c1 = 2

3(d− c), such
that again a ≤ c ≤ c1 < d1 ≤ d ≤ b and f(c1) ≤ 0 ≤ f(d1).

Proof. Let c0 = 2c+d
3 and d0 = c+2d

3 . From 2−n < d− c we obtain 2−n−2 ≤
d0 − c0, so f(c0) <n+2+l f(d0). Now compare 0 with this proper interval,
using ApproxSplit. In the first case we have 0 ≤ f(d0); then let c1 = c
and d1 = d0. In the second case we have f(c0) ≤ 0; then let c1 = c0 and
d1 = d.

Theorem (Intermediate Value Theorem). If f : [a, b] → R is continu-
ous with f(a) ≤ 0 ≤ f(b), and with a uniform lower bound on its slope, then
we can find x ∈ [a, b] such that f(x) = 0.

Proof. Iterating the construction in the auxiliary lemma IVTAux above, we
construct two sequences (cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f(cn) ≤ 0 ≤ f(dn),

dn − cn =
(
2/3

)n(b− a).

Let x, y be given by the Cauchy sequences (cn)n and (dn)n with the obvious
modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y.

Remark. The proposition can also be proved for locally nonconstant func-
tions. A function f : [a, b] → R is locally nonconstant whenever if a ≤ a′ <
b′ ≤ b and c is an arbitrary real, then f(x) 6= c for some real x ∈ [a′, b′].
Note that if f is continuous, then there also is a rational with that prop-
erty. Strictly monotonic functions are clearly locally nonconstant, and so
are nonconstant real polynomials.

12

3.5 Inverse Functions

We prove that every continuous function with a uniform lower bound on its
slope has a continuous inverse. A constructive proof of this fact has been
given by Mandelkern [8]. More recently, J. Berger [2] introduced a concept he
called “exact representation of continuous functions”, and based on this gave
a construction converting an exact representation of an increasing function
into an exact representation of its inverse. The proof below is based on our
concept of a continuous function as a type-1 object.

Theorem. Let f : [a, b] → R be continuous with a uniform lower bound on
its slope. Let f(a) ≤ a′ < b′ ≤ f(b). We can find a continuous g : [a′, b′]→ R
such that f(g(y)) = y for every y ∈ [a′, b′] and g(f(x)) = x for every
x ∈ [a, b] such that a′ ≤ f(x) ≤ b′.

Proof. Let f : [a, b] → R be continuous with a uniform lower bound on its
slope, that is, some l ∈ N such that for all c, d ∈ [a, b] and all m ∈ N,

2−m ≤ d− c→ f(c) <m+l f(d).

Let f(a) ≤ a′ < b′ ≤ f(b). We construct a continuous g : [a′, b′]→ R.
Let u ∈ [a′, b′] be rational. Using f(a) − u ≤ a′ − u ≤ 0 and 0 ≤

b′ − u ≤ f(b)− u, the Intermediate Value Theorem gives us an x such that
f(x) − u = 0, as a Cauchy sequence (cn). Let hg(u, n) := cn. Define the
modulus αg such that for n ≥ αg(k), (2/3)n(b − a) ≤ 2−ωf (k+l+2). For the
uniform modulus ωg of continuity assume a′ ≤ u < v ≤ b′ and k ∈ N. We
claim that with ωg(k) := k + l + 2 (l from the hypothesis on the slope) we
can prove the required property

|u− v| ≤ 2−ωg(k)+1 → |hg(u, n)− hg(v, n)| ≤ 2−k (n ≥ αg(k)).

Let a′ ≤ u < v ≤ b′ and n ≥ αg(k). For c
(u)
n := hg(u, n) and c

(v)
n := hg(v, n)

assume that |c(u)
n − c

(v)
n | > 2−k; we must show |u− v| > 2−ωg(k)+1.

By the proof of the Intermediate Value Theorem we have

d(u)
n − c(u)

n ≤ (2/3)n(b− a) ≤ 2−ωf (k+l+2) for n ≥ αg(k).

Using f(c(u)
n)− u ≤ 0 ≤ f(d(u)

n)− u, ContMod in 3.2 gives us

|f(c(u)
n)− u| ≤ |(f(d(u)

n)− u)− (f(c(u)
n)− u)| = |f(d(u)

n)− f(c(u)
n)| ≤ 2−k−l−2

and similarly |f(c(v)
n)−v| ≤ 2−k−l−2. Hence, using |f(c(u)

n)−f(c(v)
n)| ≥ 2−k−l

(which follows from |c(u)
n − c

(v)
n | > 2−k by the hypothesis on the slope),

|u− v| ≥ |f(c(u)
n)− f(c(v)

n)| − |f(c(u)
n)− u| − |f(c(v)

n)− v| ≥ 2−k−l−1.

13

Now f(g(u)) = u follows from

|f(g(u))− u| = |hf (cn, n)− u| ≤ |hf (cn, n)− hf (cn,m)|+ |hf (cn,m)− u|,

which is ≤ 2−k for n, m ≥ αf (k+1). By ContRat, f(g(y)) = y for y ∈ [a′, b′].
For every x ∈ [a, b] with a′ ≤ f(x) ≤ b′, from g(f(x)) < x we obtain the

contradiction f(x) = f(g(f(x))) < f(x) by the hypothesis on the slope, and
similarly for >. So we must have g(f(x)) = x.

As an example, consider the squaring function f : [1, 2]→ [1, 4], given by
the approximating map hf (a, n) := a2, constant Cauchy modulus αf (k) :=
1, modulus ωf (k) := k + 1 uniform continuity and lower and upper bounds
Nf = 1 and Mf = 4. The lower bound on its slope is l := 0, because for all
c, d ∈ [1, 2]

2−m ≤ d− c→ c2 <m d2.

Then hg(u, n) := c
(u)
n , as constructed in the IVT for x2−u, iterating IVTAux.

The Cauchy modulus αg is such that (2/3)n ≤ 2−k+3 for n ≥ αg(k), and the
modulus of uniform continuity is ωf (k) := k + 2.

4 Program extraction

We now address the issue of extracting computational content of some of
these proofs, with machine help. Formalization clearly involves a lot of de-
tails, beginning with an appropriate representation of the data. Here we
take a direct approach, by explicitly building the required number systems
(natural numbers in binary, rationals, reals as Cauchy sequences of rationals
with a modulus, continuous functions in the sense of the type-1 representa-
tion described above, etc.) It turns out that in this setup extracted programs
perform reaonably well.

4.1 Some background on program extraction

Before describing details of the extracted programs we provide some proof-
theoretic background on program extraction and its optimization in general
and on problems arising in this case study in particular.

The method of program extraction used in this paper is based on modified
realizability as introduced by Kreisel [7]. In short, from every constructive
proof M of a non-Harrop formula A (in natural deduction or a similar proof
calculus) one extracts a program [[M]] “realizing” A, essentially, by removing
computationally irrelevant parts from the proof (proofs of Harrop formulas
have no computational content). The extracted program has some simple
type τ(A) which depends on the logical shape of the proven formula A
only. In its original form the extraction process is fairly straightforward,
but usually leads to unnecessarily complex programs. In order to obtain

14

better programs, proof assistants (for instance Coq, Isabelle/HOL, Agda,
Nuprl, Minlog) offer various optimizations of program extraction. Below we
describe some optimizations implemented in Minlog [10], which are relevant
for our present case study.

Animation Suppose a proof of a theorem uses a lemma. Then the proof
term contains just the name of the lemma, say L. In the term extracted
from this proof we want to preserve the structure of the original proof as
much as possible, and hence we use a new constant cL at those places where
the computational content of the lemma is needed. When we want to ex-
ecute the program, we have to replace the constant cL corresponding to a
lemma L by the extracted program of its proof. This can be achieved by
adding computation rules for cL and cGA. We can be rather flexible here and
enable/block rewriting by using animate/deanimate as desired.

Let It often happens that a subterm has many occurrences in a term, which
leads to unwanted recomputations when evaluating it. A possible cure is to
“optimize” the term after extraction, and replace for instance M [x := N]
with many occurrences of x in M by (λxM)N (or a corresponding “let”-
expression). However, this can already be done at the proof level: When an
object (value of a variable or realizer of a premise) might be used more than
once, make sure (if necessary by a cut) that the goal has the form A→ B or
∀xA. Now use the “identity lemma” Id : P̂ → P̂ , with a predicate variable
P̂ . Its realizer then has the form λf, x.fx. If cId is not animated, the
extracted term has the form cId(λxM)N , which is printed as [let x N M].

Quantifiers without computational content Besides the usual quan-
tifiers, ∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc

and ∃nc, which allow for the extraction of simpler programs. The nc-
quantifiers, which were first introduced in [3], can be viewed as a refine-
ment of the Set/Prop distinction in constructive type systems like Coq or
Agda. Intuitively, a proof of ∀nc

x A(x) (A(x) non-Harrop) represents a pro-
cedure that assigns to every x a proof M(x) of A(x) where M(x) does
not make “computational use” of x, i.e., the extracted program [[M(x)]]
does not depend on x. Dually, a proof of ∃nc

x A(x) is proof of M(x) for
some x where the witness x is “hidden”, that is, not available for computa-
tional use. Consequently, the types of extracted programs for nc-quantifiers
are τ(∀nc

xρA) = τ(∃nc
xρA) = τ(A) as opposed to τ(∀xρA) = ρ ⇒ τ(A)

and τ(∃xρA) = ρ × τ(A). The extraction rules are, for example in the
case of ∀nc-introduction and -elimination, [[(λx.MA(x))∀

nc
x A(x)]] = [[M]] and

[[(M∀nc
x A(x)t)A(t)]] = [[M]] as opposed to [[(λx.MA(x))∀xA(x)]] = [[λxM]] and

[[(M∀xA(x)t)A(t)]] = [[Mt]]. In order for the extracted programs to be correct
the variable condition for ∀nc-introduction needs to be strengthened by re-

15

quiring in addition the abstracted variable x not to occur in the extracted
program [[M]]. Note that for a Harrop formula A the formulas ∀nc

x A and ∀xA
are equivalent. Similarly, ∃nc

x A and ∃xA are equivalent.

Rules Constants – denoting partial computable functionals – are defined
via (computation and rewrite) rules (cf. [11] for details). To simplify equa-
tional reasoning, the system identifies terms with the same “normal form”,
and we should be able to add rewrite rules used to generate normal forms.
Decidable predicates are viewed as boolean valued functions, so that the
rewrite mechanism applies to them as well.

4.2 Program Extraction for the Intermediate Value Theorem

Since the formalized proofs follow rather closely the informal development
above, we do not comment on how these proofs are built, but only on the
extracted terms.

Here is the extracted term for ApproxSplit.

(Rec real=>real=>real=>pos=>boole)
([as4,M5]
(Rec real=>real=>pos=>boole)
([as9,M10]

(Rec real=>pos=>boole)
([as13,M14,n15]
as13(M5(S(S n15))max M10(S(S n15))max M14(S(S n15)))<=
(as4(M5(S(S n15))max M10(S(S n15)))+
as9(M5(S(S n15))max M10(S(S n15))))/2)))

of type real=>real=>real=>pos=>boole. It takes three reals given x, y, z
with moduli M,N,K (here given by their Cauchy sequences as4, as9, as13
and moduli M5, M10, M14) and a positive number k (here n15), and computes
p := max(M(k + 2), N(k + 2)) and q := max(p, L(k + 2)). Then the choice
whether to go right or left is by computing the boolean value cq ≤ ap+bp

2 .
For the auxiliary lemma IVTAux we obtain the extracted term

[f0,n1,n2]
(cId rat@@rat=>rat@@rat)
([cd4]

[let cd5
((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (cApproxSplit(RealConstr(f0 approx left cd5)

([n6]f0 uMod(S(S n6))))
(RealConstr(f0 approx right cd5)

([n6]f0 uMod(S(S n6))))

16

0
(S(S(n2+n1))))

(left cd4@right cd5)
(left cd5@right cd4)]])

of type cont=>pos=>pos=>rat@@rat=>rat@@rat. As in the informal proof,
it takes a continuous f (here f0), a uniform lower bound l on its slope (here
n1), a positive number n (here n2) and two rationals c, d (here the pair cd4)
such that 2−n < d − c. Let c0 := 2c+d

3 and d0 := c+2d
3 (here the pair cd5,

introduced via let because it is used four times). Then ApproxSplit is
applied to f(c0), f(d0), 0 and the witness n + 2 + l (here S(S(n2+n1))) for
f(c0) < f(d0). In the first case we go left, that is c1 := c and d1 := d0, and
in the second case we go right, that is c1 := c0 and d1 := d.

In the proof of the Intermediate Value Theorem, the construction step
in IVTAux (from a pair c, d to the “better” pair c0, d0) had to be iterated,
to produce two sequences (cn)n and (dn)n of rationals. This is the content
of a separate lemma IVTcds, whose extracted term is

[f0,n1,n2](cDC rat@@rat)(f0 doml@f0 domr)
([n4]cIVTAux f0 n1(n2+n4))

of type cont=>pos=>pos=>pos=>rat@@rat. It takes a continuous f : [a, b]→
R (here f0), a uniform lower bound l on its slope (here n1), and a positive
number k0 (here n2) such that 2−k0 < b− a. Then the axiom of dependent
choice DC is used, to construct from an initial pair (c0, d0) = (a, b) of rationals
(here f0 doml@f0 domr) a sequence of pairs of rationals, by iterating the
computational content cIVTAux of the lemma IVTAux.

Now we are ready to formalize the proof of the Intermediate Value The-
orem IVTFinal. Its extracted term is

[f0,n1,n2,n3]RealConstr([n4]left(cIVTcds f0 n1 n2 n4))
([n4]SZero(S(n4+n3)))

of type cont=>pos=>pos=>pos=>real. It takes a continuous f (here f0),
a uniform lower bound l on its slope (here n1), a positive number k0 (here
n2) such that 2−k0 < b − a, and a positive number k1 (here n3) such that
b − a < 2k1 . Then the desired zero x of f is constructed as the Cauchy
sequence (cn)n, with a modulus depending on k1.

To compute approximations of
√

2 we need RealApprox, stating that
every real can be approximated by a rational. Its extracted term is

(Rec real=>pos=>rat)([as2,M3,n4]as2(M3 n4))

of type real=>pos=>rat. It takes a real x (here given by the Cauchy se-
quence as2 and modulus M3) and a positive number k (here n4), and com-
putes a rational a such that |x− a| ≤ 2−k.

17

In order to compose IVTFinal with RealApprox, we prove a proposi-
tion IVTApprox stating that given an error bound, we can find a rational
approximating

√
2 up to this bound. Clearly we need to refer to

√
2 in the

statement of the theorem, but on the other hand we do not want to see a
representation of

√
2 in the extracted term, but only the construction of the

rational approximation from the error bound. Therefore in the statement
of IVTApprox we use the non-computational quantifier ∃nc, for the zero z of
the given continuous f . The extracted term of IVTApprox then simply is

[f0,n1,n2,n3]cRealApprox(cIVTFinal f0 n1 n2 n3)

of type cont=>pos=>pos=>pos=>pos=>rat.
Now we “animate” the auxiliary lemmas, that is, unfold all constants

with “c” in front of name of the lemma. For IVTApprox this gives

[f0,n1,n2,n3,n4]
left
[let cd5

((cDC rat@@rat)(f0 doml@f0 domr)
([n5]
(cId rat@@rat=>rat@@rat)
([cd7]

[let cd8
((2#3)*left cd7+(1#3)*right cd7@
(1#3)*left cd7+(2#3)*right cd7)
[if (0<=(f0 approx left cd8

(f0 uMod(S(S(S(S(S(S(n2+n5+n1))))))))+
f0 approx right cd8
(f0 uMod(S(S(S(S(S(S(n2+n5+n1)))))))))/2)

(left cd7@right cd8)
(left cd8@right cd7)]]))

(PosPred(SZero(S(n4+n3)))))
[let cd6
((2#3)*left cd5+(1#3)*right cd5@
(1#3)*left cd5+(2#3)*right cd5)
[if
(0<=
(f0 approx left cd6
(f0 uMod(S(S(S(S(S(S(S(S(n2+n4+n3+n4+n3+n1))))))))))+
f0 approx right cd6
(f0 uMod(S(S(S(S(S(S(S(S(n2+n4+n3+n4+n3+n1)))))))))))/2)

(left cd5@right cd6)
(left cd6@right cd5)]]]

Let us now use this term to compute approximations of
√

2. First we con-
struct the continuous function x 7→ x2−2 on [1, 2], with its (trivial) uniform

18

Cauchy modulus and modulus of uniform continuity, and give it the name
a-sq-minus-two:

(define a-sq-minus-two
(pt "contConstr 1 2([a0,n1]a0*a0-2)([n0]1)S"))

We now apply the extracted term of theorem IVTApprox to a-sq-minus-two
and in addition a uniform lower bound l on its slope, a positive number k0

such that 2−k0 < b − a, and a positive number k1 such that b − a < 2k1

(which all happen to be 1 in this case), and normalize the result:

(define sqrt-two-approx
(normalize-term
(apply mk-term-in-app-form
(list (proof-to-extracted-term

(theorem-name-to-proof "IVTApprox"))
a-sq-minus-two (pt "1") (pt "1") (pt "1")))))

which prints as

[n0]
left[let cd1

((cDC rat@@rat)(1@2)
([n1]
(cId rat@@rat=>rat@@rat)
([cd3]
[let cd4

((2#3)*left cd3+(1#3)*right cd3@
(1#3)*left cd3+(2#3)*right cd3)
[if (0<=(left cd4*left cd4-2+

(right cd4*right cd4-2))/2)
(left cd3@right cd4)
(left cd4@right cd3)]]))

(PosPred(SZero(S(S n0)))))
[let cd2
((2#3)*left cd1+(1#3)*right cd1@
(1#3)*left cd1+(2#3)*right cd1)
[if (0<=(left cd2*left cd2-2+

(right cd2*right cd2-2))/2)
(left cd1@right cd2)
(left cd2@right cd1)]]]

The term sqrt-two-approx has type pos=>rat, where the argument k is for
the error bound 2−k. We can now directly (that is, without first translating it
into a programming language) use it to compute an approximation of

√
2 to

say 20 binary digits. To do this, we need to “animate” Id and then normalize

19

the result of applying sqrt-two-approx to 20 (we use normalization by
evaluation here, for efficiency reasons):

(animate "Id")
(pp (nbe-normalize-term-without-eta

(make-term-in-app-form sqrt-two-approx (pt "20"))))

The result (returned in 1.5 seconds) is the rational

464225451859201404985#328256967394537077627

or 1.4142135520957329, which differs from
√

2 = 1.4142135623730951 at the
seventh (decimal) digit.

It should be noted that for efficiency reasons we have equipped our con-
stants for arithmetical operations +, ∗,−, /, < on rationals with “external
code”. This means that when the arguments are numerals already, then
the result is computed with the (much faster) arithmetic function of the
programming language, not by the rules defining the internal constants.

For a further speed-up, we can also translate this internal term (where
“internal” means “in our underlying logical language”, hence usable in for-
mal proofs) into an expression of a programming language (Scheme in our
case). This done by evaluating (term-to-expr sqrt-two-approx):

(lambda (n0)
(car
(let ([cd1

(((cdc (cons 1 2))
(lambda (n1)
(lambda (cd3)
(let ([cd4

(cons (+ (* 2/3 (car cd3))
(* 1/3 (cdr cd3)))

(+ (* 1/3 (car cd3))
(* 2/3 (cdr cd3))))])

(if (<= 0
(/ (+ (- (* (car cd4) (car cd4)) 2)

(- (* (cdr cd4) (cdr cd4)) 2))
2))

(cons (car cd3) (cdr cd4))
(cons (car cd4) (cdr cd3)))))))

(pospred (* (+ (+ n0 1) 1) 2)))])
(let ([cd2

(cons (+ (* 2/3 (car cd1)) (* 1/3 (cdr cd1)))
(+ (* 1/3 (car cd1)) (* 2/3 (cdr cd1))))])

(if (<= 0
(/ (+ (- (* (car cd2) (car cd2)) 2)

20

(- (* (cdr cd2) (cdr cd2)) 2))
2))

(cons (car cd1) (cdr cd2))
(cons (car cd2) (cdr cd1)))))))

The result is very close to the internal term displayed above; we have re-
placed the internal constant cDC (computational content of the axiom of
dependent choice) by the corresponding Scheme function (a curried form of
iteration):

(define cdc
(lambda (init)
(lambda (step)
(lambda (n)

(if (= 1 n)
init
((step n) (((cdc init) step) (- n 1)))))))),

the internal arithmetical functions +, *, / by the ones from the programming
language and the internal pairing and unpairing functions by cons, car and
cdr. – It turns out that this code is reasonably fast: evaluating

((ev (term-to-expr sqrt-two-approx)) 20))

gives the result in 10 ms.

References

[1] Patrik Andersson. Exact real arithmetic with automatic error esti-
mates in a computer algebra system. Master’s thesis, Mathematics
department, Uppsala University, 2001.

[2] Josef Berger. Exact calculation of inverse functions. Math. Log. Quart.,
51(2):201–205, 2005.

[3] Ulrich Berger. Program extraction from normalization proofs. In
M. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Ap-
plications, volume 664 of LNCS, pages 91–106. Springer Verlag, Berlin,
Heidelberg, New York, 1993.

[4] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill,
New York, 1967.

[5] Errett Bishop. Mathematics as a numerical language. In J. Myhill
A. Kino and R.E. Vesley, editors, Intuitionism and Proof Theory, Pro-
ceedings of the summer conference at Buffalo N.Y. 1968, Studies in logic
and the foundations of mathematics, pages 53–71. North–Holland, Am-
sterdam, 1970.

21

[6] Luis Cruz-Filipe. Constructive Real Analysis: a Type-Theoretical For-
malization and Applications. PhD thesis, Nijmegen University, 2004.

[7] Georg Kreisel. Interpretation of analysis by means of constructive func-
tionals of finite types. In A. Heyting, editor, Constructivity in Mathe-
matics, pages 101–128. North–Holland, Amsterdam, 1959.

[8] Mark Mandelkern. Continuity of monotone functions. Pacific J. of
Math., 99(2):413–418, 1982.

[9] Erik Palmgren. Constructive nonstandard analysis. In A. Petry, editor,
Méthods et analyse non standard, volume 9, pages 69–97. Cahiers du
Centre de Logique, 1996.

[10] Helmut Schwichtenberg. Minlog. In F. Wiedijk, editor, The Seventeen
Provers of the World, volume 3600 of LNAI, pages 151–157. Springer
Verlag, 2006.

[11] Helmut Schwichtenberg. Recursion on the partial continuous function-
als. To appear: Proc. 2005 ASL European Summer Meeting Athens,
2006.

22

