
The greatest common divisor: a case study for program
extraction from classical proofs

U. Berger H. Schwichtenberg

September 25, 2000

Yiannis Moschovakis suggested the following example of a classical existence proof with a
quantifier–free kernel which does not obviously contain an algorithm: the gcd of two natural
numbers a1 and a2 is a linear combination of the two. Here we treat that example as
a case study for program extraction from classical proofs. We apply H. Friedman’s A–
translation [3] followed by a modified realizability interpretation to extract a program from
this proof. However, to obtain a reasonable program it is essential to use a refinement of the
A–translation introduced in Berger/Schwichtenberg [2, 1]. This refinement makes it possible
that not all atoms in the proof are A–translated, but only those with a “critical” relation
symbol. In our example only the divisibility relation ·|· will be critical.

Let a, b, c, i, j, k, `, m, n, q, r denote natural numbers. Our language is determined by the
constants 0, 1, +, ∗, function symbols for the quotient and the remainder denoted by q(a, c)
and r(a, c), a 4–ary function denoted by abs(k1a1−k2a2) whose intended meaning is clear from
the notation and an auxiliary 5–ary function f which will be defined later. We will express the
intended meaning of these function symbols by stating some properties (lemmata) v1, . . . , v6
of them; these will be formulated as we need them.

Theorem.

∀a1, a2(0 < a2 → ∃k1, k2(abs(k1a1 − k2a2)|a1 ∧ abs(k1a1 − k2a2)|a2 ∧ 0 < abs(k1a1 − k2a2))).

Proof. Let a1, a2 be given and assume 0 < a2. The ideal (a1, a2) generated from a1, a2 has a
least positive element c, since 0 < a2. This element has a representation c = abs(k1a1−k2a2)
with k1, k2 ∈ N. It is a common divisor of a1 and a2 since otherwise the remainder r(ai, c)
would be a smaller positive element of the ideal.

The number c ∈ (a1, a2) dividing a1 and a2 is the greatest common divisor since any
common divisor of a1 and a2 must also be a divisor of c.

1

The least element principle and <-induction.

In order to formally write out the proof above we need to make explicit the instance of the
induction scheme used implicitly in the least element principle. The least element principle
w.r.t. a measure µ says

∃~k M(~k) → ∃~k (M(~k) ∧ ∀~̀[µ(~̀) < µ(~k) → M(~̀) → ⊥])

(in our example M(k1, k2) ≡ 0 < abs(k1a1−k2a2) and µ(k1, k2) ≡ abs(k1a1−k2a2)). In order
to reduce this to the induction scheme we use the fact that the formula above is classically
equivalent to

∀~k (M(~k) → ∀~̀[µ(~̀) < µ(~k) → M(~̀) → ⊥] → ⊥) → ∀~k(M(~k) → ⊥)

which nothing but the principle of <–induction for the complement of M , N(~k) := M(~k) → ⊥.
We can write this as

Prog(N) → ∀~k N(~k),

where
Prog(N) := ∀~k(∀~̀[µ(~̀) < µ(~k) → N(~̀)] → N(~k)).

In the formal treatment of our example it will be more convenient to use the least element
principle in the form of <–induction.

To prove <–induction we assume that N is progressive,

w1: Prog(N),

and prove ∀~k N(~k). This is achieved by proving ∀nB(n), where

B(n) := ∀~k(µ(~k) < n → N(~k)),

and using B(n) with n := µ(~k) + 1. We prove ∀nB(n) by (zero–successor) induction.
Base. B(0) follows easily from the lemma

v1:∀m(m < 0 → ⊥)

and Efq:⊥ → N(~k). Efq is not needed if (as in our example) N is a negation.
Step. Let n be given and assume w2: B(n). To show B(n + 1) let ~k be given and assume

w3: µ(~k) < n + 1. We will derive N(~k) by using the progressiveness of N, w1, at ~k. Hence we
have to prove

∀~̀(µ(~̀) < µ(~k) → N(~̀)).

So, let ~̀ be given and assume further w4: µ(~̀) < µ(~k). ¿From w4 and w3: µ(~k) < n + 1 we
infer µ(~̀) < n (using an arithmetical lemma). Hence, by induction hypothesis w2: B(n) at ~̀

we get N(~̀).

2

Detailed proof of the theorem.

Now we repeat the proof of the theorem in some more detail using <–induction. As
always in classical logic, we may view the proof as an indirect one, deriving a contradiction
from the assumption that the claim is false. So let a1, a2 be given and assume v0: 0 < a2 and

u: ∀k1, k2(abs(k1a1 − k2a2)|a1 → abs(k1a1 − k2a2)|a2 → 0 < abs(k1a1 − k2a2) → ⊥).

We have to prove ⊥ which will be achieved by proving ∀k1, k2(0 < abs(k1a1 − k2a2) → ⊥)
by <–induction and then specializing this formula to k1, k2 = 0, 1 and using the assumption
v0: 0 < a2(= abs(0a1 − 1a2)).

The principle of <-induction is used with

N(k1, k2) := 0 < abs(k1a1 − k2a2) → ⊥ and µ(k1, k2) := abs(k1a1 − k2a2).

We have to show that N is progressive. To this end let k1, k2 be given and assume

u1: ∀`1, `2(µ(`1, `2) < µ(k1, k2) → N(`1, `2)).

We have to prove N(k1, k2). So, assume u2: 0 < µ(k1, k2). We have to show ⊥. This will
be achieved by using the (false) assumption u at k1, k2. We have to prove µ(k1, k2)|a1 and
µ(k1, k2)|a2. Informally, one would argue “if, say, µ(k1, k2) 6 |a1 then the remainder r1 :=
r(a1, µ(k1, k2)) is positive and less than µ(k1, k2). Furthermore we can find `1, `2 such that
r1 = µ(`1, `2). Altogether this contradicts the assumption u1”. More formally, to prove
µ(k1, k2)|a1 we use the lemma

v2: ∀a, q, c, r(a = qc + r → (0 < r → ⊥) → c|a)

at a1, q1 := q(a1, µ(k1, k2)) (the quotient), µ(k1, k2) and r1. We have to prove the premises

a1 = q1µ(k1, k2) + r1 and 0 < r1 → ⊥

of the instantiated lemma v2. Here we need the lemmata

v3:∀a, c(0 < c → a = q(a, c)c + r(a, c)),
v4: ∀a, c(0 < c → r(a, c) < c)

specifying the functions quotient and remainder. Now the first premise follows immediately
from lemma v3 and u2: 0 < µ(k1, k2). To prove the second premise, 0 < r1 → ⊥, we assume
u3: 0 < r1 and show ⊥. First we compute `1, `2 such that r1 = µ(`1, `2). This is done by
some auxiliary function f , defined by

f(a1, a2, k1, k2, q) :=
{

qk1 − 1, if k2a2 < k1a1 and 0 < q;
qk1 + 1, otherwise.

3

f satisfies the lemma

v5:∀a1, a2, k1, k2, q, r(a1 = q · µ(k1, k2) + r → r = µ(f(a1, a2, k1, k2, q), qk2)).

Hence we let `1 := f(a1, a2, k1, k2, q1) and `2 := q1k2. Now we have µ(`1, `2) = r1 < µ(k1, k2)
by v5, u2 and v4, as well as 0 < r1 = µ(`1, `2) by u3 and v5. Therefore, we get ⊥ by u1 at
`1, `2 (using some equality lemmata). This completes the proof of µ(k1, k2)|a1. µ(k1, k2)|a2
is proved similarly using the lemma

v6:∀a1, a2, k1, k2, q, r(a2 = q · µ(k1, k2) + r → r = µ(qk1, f(a2, a1, k2, k1, q))).

The refined A–translation.

The proof of the principle of <–induction and the proof of the theorem were given in such
a detail that it is now easy to formalize them completely. Only some arguments concerning
< and = were left implicit. We will now briefly recall the term extraction process described
in [2, 1] in general, and will see that we don’t need to worry about these omissions.

Let ∀~x1C1, . . . , ∀~x`C` be Π–formulas (i.e. Ci quantifier free) and A1, . . . , Am quantifier
free formulas (in our example C1 ≡ 0 < a2 (~x1 is empty), A1 ≡ abs(a1k1 − a2k2)|a1, A2 ≡
abs(a1k1 − a2k2)|a2, A3 ≡ 0 < abs(a1k1 − a2k2)). Assume we have a classical proof of

∀~a(∀~x1C1 → . . . → ∀~x`C` → ∃~k(A1∧, . . . ,∧Am)),

i.e., a deduction

d[u: ∀~k(A1 → . . . → Am → ⊥), v1: ∀~x1C1, . . . , v`: ∀~x`C`,]:⊥.

To keep the derivation short we allow auxiliary lemmata v`+1: ∀~x`+1C`+1, . . . , vn:∀~xnCn as-
serting true Π–formulas. So, in fact, we have

d[u, v1, . . . , vn]:⊥.

We sketch the main steps leading from this derivation to an intuitionistic proof of

A := ∃∗~k(A1 ∧ . . . ∧Am)

(∃∗ is the constructive existential quantifier) and hence to terms computing a witness ~k.

1. Let L := {A1 → . . . → Am → ⊥, C1, . . . , Cn}. Determine inductively the L–critical
relation symbols as follows: If (~D1 → P1) → . . . → (~Dm → Pm) → R(~t) is a positive
subformula of a formula in L, and for some i, Pi ≡ ⊥ or Pi ≡ Q(~s) where Q is L–critical,
then R is L–critical too.

4

2. For each formula F let its A–translation FA be the formula obtained from F by replacing
⊥ by A and each subformula R(~s), where R is L–critical, by (R(~s) → A) → A. Find
derivations

du:∀~k(A1 → . . . → Am → ⊥)A, and dvi [vi: ∀~xiCi]: ∀~xiCA
i

following the recipe given in [1].

3. Replace in d[u, v1, . . . , vn]:⊥ each formula by its A–translation. We obtain a derivation

dA[uA, v1A, . . . , vnA]: A,

where uA: ∀~k(AA
1 → . . . → AA

m → A) and viA: ∀~xiCA
i (induction axioms are replaced

by new induction axioms for the A–translated formulas). Furthermore replace in the
derivation above the free assumptions by the derivations constructed in step 2. We get
the translated derivation

dtr[v1, . . . , vn] := dA[du, dv1 , . . . , dvn]:A.

4. Apply Kreisel’s modified realizability interpretation [4] to extract a finite list of terms

~r := (dtr)ets

such that A1[~r/~k] ∧ . . . ∧Am[~r/~k] is provable from v1, . . . , v6.

Comments.

– Term extraction commutes with the logical rules, e.g. (d1d2)ets = dets
1 dets

2 , and substi-
tution, i.e.

(dtr)ets ≡ (dA[du, dv1 , . . . , dvn])ets ≡ dets
A [dets

u , dets
v1

, . . . , dets
vn

].

By the latter we may first extract terms from the derivations dA, dv1 , . . . , dvn and also
from the proof of <–induction separately, and then substitute these terms into the
terms extracted from dA[uA, v1A, . . . , vnA]: A.

– Assume that we have fixed some system of lemmata ∀~x1C1, . . . , ∀~xnCn and computed
the L-critical relation symbols according to step 1. Then it’s clear that we may use any
other true → ∀–formula D as a further lemma, provided D does neither contain ⊥ nor
any L–critical relation symbol. The simple reason is, that in this case DA ≡ D. In the
sequel we will call such formulas D harmless.

5

Computing the L–critical relation symbols.

Now we come back to our example. Let us repeat the main lemmata used in the proofs
of the principle of <–induction and the theorem.

v0: 0 < a2,

v1:∀m(m < 0 → ⊥),

v2: ∀a, q, c, r(a = qc + r → (0 < r → ⊥) → c|a),

v3: ∀a, c(0 < c → a = q(a, c)c + r(a, c)),

v4:∀a, c(0 < c → r(a, c) < c),

v5: ∀a1, a2, k1, k2, q, r(a1 = q · µ(k1, k2) + r → r = µ(f(a1, a2, k1, k2, q), qk2)),

v6:∀a1, a2, k1, k2, q, r(a2 = q · µ(k1, k2) + r → r = µ(qk1, f(a2, a1, k2, k1, q))).

The only critical relation symbol w.r.t. v0, . . . , v6 is ·|·. Since the parts of our proofs which
were left implicit concerned neither ·|· nor ⊥, they may be viewed as applications of harmless
lemmata (in the sense of the second comment) and hence won’t cause problems.

Formal derivations.

We now spell out the derivation term d[u, v0, v1, . . . , v6]:⊥ formalizing the proof of the
theorem. We use the following abbreviations.

µ(~k) := abs(k1a1 − k2a2),

qi(~k) := q(ai, µ(~k)),

ri(~k) := r(ai, µ(~k)),
~̀1(~k) := f(a1, a2, k1, k2, q1(~k)), q1(~k)k2,
~̀2(~k) := q2(~k)k1, f(a2, a1, k2, k1, q2(~k)),

N(~k) := 0 < µ(~k) → ⊥,

Prog := ∀~k(∀~̀[µ(~̀) < µ(~k) → N(~̀)] → N(~k)),

B(n) := ∀~k(µ(~k) < n → N(~k)).

Recall that, using the abbreviations above, u denotes the assumption

u: ∀~k(µ(~k)|a1 → µ(~k)|a2 → N(~k)).

The derivations below are given in a natural deduction calculus and are written as typed
λ–terms according to the well–known Curry–Howard correspondence. By e we will denote
(different) subderivations of d which derive a harmless formula from harmless assumptions.

6

There is no need to make them explicit since they will disappear in the term extraction
process. The derivation of the theorem is given by

d ≡ dProg→∀~k N(~k)
<−ind dProg

prog 01(e0<µ(0,1)[v0]),

where

d<−ind ≡ λwProg
1 λ~k.Indn,B(n)dbasedstep(µ(~k) + 1)~keµ(~k)<µ(~k)+1,

dbase ≡ λ~k, wµ(~k)<0
0 , w̃0

0<µ(~k).v1µ(~k)w0,

dstep ≡ λn,wB(n)
2 ,~k, wµ(~k)<n+1

3 .w1~k(λ~̀, wµ(~̀)<µ(~k)
4 .w2~̀(eµ(~̀)<n[w4, w3])),

dprog ≡ λ~k, u∀
~̀(µ(~̀)<µ(~k)→N(~̀))

1 , u0<µ(~k)
2 .u~kdµ(~k)|a1

div1
dµ(~k)|a2

div2
u2,

ddivi ≡ v2aiqi(~k)µ(~k)ri(~k)(eai=qi(~k)µ(~k)+ri(~k)[v3, u2])d
0<ri(~k)→⊥
6<i

,

d6<i ≡ λu0<ri(~k)
3,i .u1~̀i(~k)(eµ(~̀i(~k))<µ(~k)[v5, u2, v4])(e0<µ(~̀i(~k))[u3,i, v5]).

A–translation and term extraction.

Preparation. We let

A := ∃∗~k(µ(~k)|a1 ∧ µ(~k)|a2 ∧ 0 < µ(~k)),

where ~k ≡ k1, k2. In the modified realizability interpretation every formula F is mapped to
a finite list τ(F) of finite types over nat, such that if d derives F then dets has type τ(F).
For instance τ(A) = ~nat := (nat,nat). Using some obvious abbreviations to denote finite
sequences of types — for instance nat → ~nat → ~nat abbreviates (ρ, ρ), where ρ ≡ nat →
nat → nat → nat — we compute the types of some further formulas.

τ(N(~k)A) = τ(⊥A) = τ(A) = ~nat,

τ(ProgA) = ~nat → (~nat → ~nat) → ~nat,

τ(B(n)A) = τ(a|cA) = ~nat → ~nat.

If F neither contains ⊥ nor ·|· then τ(FA) = τ(F) = () and hence the sequence of extracted
terms of a derivation of F is empty too. Furthermore note that (Indn,B(n)A)ets ≡ ~R where
~R ≡ (R1, R2) are simultaneous primitive recursion operators of type

~R: (~nat → ~nat) → (nat → (~nat → ~nat) → (~nat → ~nat)) → nat → (~nat → ~nat)

with
Ri~y ~f0 = yi,
Ri~y ~f(z + 1) = fiz(R1~y ~fz)(R2~y ~fz).

7

Now we are prepared to compute the extracted terms. To make the relation between the
derivations and their extracted terms as clear as possible we denote the finite list of object–
(or function–) variables corresponding to the assumption wi by ~wi etc. According to step 3
and step 4 and the comment the extracted terms are given by

(dtr)ets ≡ (dtr
<−ind)

ets(dtr
prog)

ets01

where

(dtr
<−ind)

ets ≡ λ~w
~nat→(~nat→ ~nat)→ ~nat

1 λ~k. ~R(dtr
base)

ets(dtr
step)

ets(µ(~k) + 1)~k,

(dtr
base)

ets ≡ λ~k.dets
v1

µ(~k),

(dtr
step)

ets ≡ λn, ~w ~nat→ ~nat
2 ,~k.~w1~k(λ~̀.~w2~̀),

(dtr
prog)

ets ≡ λ~k, ~u ~nat→ ~nat
1 .dets

u
~k(dtr

div1
)ets(dtr

div2
)ets,

(dtr
divi

)ets ≡ dets
v2

aiqi(~k)µ(~k)ri(~k)(~u1~̀i(~k)).

It remains to compute dets
u , dets

v1
and dets

v2
.

du: ∀~k(((µ(~k)|a1 → A) → A) → ((µ(~k)|a2 → A) → A) → 0 < µ(~k) → A),

du ≡ λ~k, u((µ(~k)|a1→A)→A)
4 , u((µ(~k)|a2→A)→A)

5 , u0<µ(~k)
6 .u5(λuµ(~k)|a2

8 .u4(λuµ(~k)|a1
7 .∃∗+A

~ku7u8u6)).

Here we used the ∃∗–introduction axiom

∃∗+A : ∀~k(µ(~k)|a1 → µ(~k)|a2 → 0 < µ(~k) → A)

with (∃∗+A)ets ≡ λ~k.~k. We obtain

dets
u ≡ λ~k, ~u ~nat→ ~nat

4 , ~u ~nat→ ~nat
5 .~u5(~u4~k).

The computation of dets
v1

is easy:

dv1 :∀m(m < 0 → A),

dv1 ≡ λm, um<0
9 .EfqA(v1mu9),

dets
v1
≡ λm~0

(instead of ~0 any terms of type ~nat would do). The control structure of the extracted program
is introduced by dets

v2
:

dv2 : ∀a, q, c, r(a = qc + r → (0 < r → A) → (c|a → A) → A),

dv2 ≡ λa, q, c, r, ua=qc+r
10 , u0<r→A

11 , uc|a→A
12 .g0<ru11(λu0<r→⊥

13 .u12(v2aqcru10u13)),

8

where
g0<r: (0 < r → A) → ((0 < r → ⊥) → A) → A

is a derivation with extracted terms

gets
0<r ≡ λ~x, ~y.if 0 < r then ~x ~nat else ~y ~nat fi.

Hence
dets

v2
≡ λa, q, c, r, ~u ~nat

11 , ~u ~nat
12 .if 0 < r then ~u11 else ~u12 fi.

The final program.

If we plug dets
u , dets

v1
and dets

v2
into the program pieces we obtain

(dtr)ets ≡ (dtr
<−ind)

ets(dtr
prog)

ets01

where

(dtr
<−ind)

ets =αβη λw
~nat→(~nat→ ~nat)→ ~nat

1 λ~k′. ~R(λ~k.~0)(λn, ~w ~nat→ ~nat
2 ,~k.~w1~k ~w2)(µ(~k′) + 1)~k′,

(dtr
prog)

ets =β λ~k, ~u ~nat→ ~nat
1 .(dtr

div2
)ets((dtr

div1
)ets~k),

(dtr
divi

)ets =β λ~u ~nat
12 .if 0 < ~ri(~k) then ~u1~̀i(~k) else ~u12 fi

and hence

(dtr
prog)

ets =β λ~k, ~u ~nat→ ~nat
1 . if 0 < r2(~k) then ~u1~̀2(~k) else

if 0 < r1(~k) then ~u1~̀1(~k) else
~k fifi.

Therefore we get, using the fact that µ(0, 1) = a2,

(dtr)ets =β ~R(λ~k.~0)
(λn, ~w ~nat→ ~nat

2 ,~k. if 0 < r2(~k) then ~w2~̀2(~k) else
if 0 < r1(~k) then ~w2~̀1(~k) else
~k fifi)

(a2 + 1)01

To make this algorithm more readable we may write it in the form (dtr)ets = ~h(a2 + 1, 0, 1),
where

~h(0,~k) := ~0,
~h(n + 1,~k) := if 0 < r2(~k) then ~h(n, ~̀2(~k)) else

if 0 < r1(~k) then ~h(n, ~̀1(~k)) else
~k fifi.

9

As an example let us try out the extracted algorithm to compute coefficients k1, k2 such that
gcd(66, 27) = |k1 · 66− k2 · 27|.

~h(28, 0, 1) µ(0, 1) = 27

0 < r1 = 12 q1 = 2

q1k1
︸︷︷︸

0

±1, q1k2
︸︷︷︸

2

−1, if k2a2 < k1a1
︸ ︷︷ ︸

0

No

1, 2

~h(27, 1, 2) µ(1, 2) = 12

0 < r1 = 6 q1 = 5

q1k1
︸︷︷︸

5·1

±1, q1k2
︸︷︷︸

5·2

−1, if k2a2
︸ ︷︷ ︸

2·27

< k1a1
︸ ︷︷ ︸

1·66

Yes

4, 10

~h(26, 4, 10) µ(4, 10) = |4 · 66− 10 · 27| = |264− 270| = 6

6|66

0 < r2 = 3 q2 = 4

q2k1
︸︷︷︸

4·4

, q2k2
︸︷︷︸

4·10

±1 − 1, if k1a1
︸ ︷︷ ︸

4·66=264

< k2a2
︸ ︷︷ ︸

10·27=270

Yes

16, 39

~h(25, 16, 39) µ(16, 39) = |16 · 66− 39 · 27| = |1056− 1053| = 3

3|66

3|27

Result: 16, 39

Note that, although 3 = |16 · 66 − 39 · 27| is the least positive element of the ideal (66, 27),
the coefficients 16, 39 are not minimal. The minimal coefficients are 2, 5.

Remarks.

– As one sees from this example the recursion parameter n is not really used in the
computation but just serves as a counter or more precisely as an upper bound for the
number of steps until both remainders are zero. This will always happen if the induction
principle is used only in the form of the least element principle (or, equivalently, <–
induction) and the relation symbol < is not critical. Because then in the extracted
terms of <–induction, the step (dtr

step)
ets ≡ λn, ~w ~nat→ ~nat

2 ,~k.~w1~k(λ~̀.~w2~̀) has in its kernel
no free occurrence of n.

10

– If one removes n according to the previous remark it becomes clear that our gcd al-
gorithm is similar to Euklid’s. The only difference lies in the fact that we have kept
a1, a2 fixed in our proof whereas Euklid changes a1 to a2 and a2 to r(a1, a2) provided
r(a1, a2) > 0 (using the fact that this doesn’t change the ideal).

– There is an interesting phenomenon which may occur if we extract a program from a
classical proof which uses the least element principle. Consider as a simple example the
wellfoundedness of <,

∀gnat→nat∃k(g(k + 1) < g(k) → ⊥).

If one formalizes the classical proof “choose k such that g(k) is minimal” and extracts
a program one might expect that it computes a k such that g(k) is minimal. But this
is impossible! In fact the program computes the least k such that g(k + 1) < g(k) → ⊥
instead. This discrepancy between the classical proof and the extracted program didn’t
show up in our gcd example since there was only one c = µ(k) > 0 such that c divides
a1 and a2, whereas in the example above there may be different c = g(k) such that
g(k + 1) < g(k) → ⊥.

Implementation.

The gcd example has been implemented in the interactive proof system MINLOG. We
show the term which was extracted automatically from a derivation of the theorem.

(lambda (a1)
(lambda (a2)
((((((nat-rec-at ’(arrow nat (arrow nat (star nat nat))))

(lambda (k1) (lambda (k2) (cons n000 n000))))
(lambda (n)
(lambda (w)
(lambda (k1)
(lambda (k2)
((((if-at ’(star nat nat))

((<-strict-nat 0) r2))
((w l21) l22))
((((if-at ’(star nat nat))

((<-strict-nat 0) r1))
((w l11) l12))

(cons k1 k2))))))))
((plus-nat a2) 1))
0)
1)))

11

Here we have manually introduced r1, r2, l11, l12, l21, l22 for somewhat lengthy
terms corresponding to our abbreviations ri, ~̀i. The unbound variable n000 appearing in the
base case is a dummy variable used by the system when it is asked to produce a realizing
term for the instance ⊥ → ∃kA(k) of ex–falso–quodlibet. In our case, when the existential
quantifier is of type nat one might as well pick the constant 0 (as we did in the text).

Acknowledgements. We would like to thank Monika Seisenberger and Felix Joachimski for
implementing the refined A–translation and doing the gcd example in the MINLOG system.

References

[1] Ulrich Berger and Helmut Schwichtenberg. Program extraction from classical proofs. In
D. Leivant, editor, Logic and Computational Complexity, International Workshop LCC
’94, Indianapolis, IN, USA, October 1994, volume 960 of Lecture Notes in Computer
Science, pages 77–97. Springer Verlag, Berlin, Heidelberg, New York, 1995.

[2] Ulrich Berger and Helmut Schwichtenberg. The greatest common divisor: a case study
for program extraction from classical proofs. In S. Berardi and M. Coppo, editors, Types
for Proofs and Programs. International Workshop TYPES ’95, Torino, Italy, June 1995.
Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 36–46. Springer
Verlag, Berlin, Heidelberg, New York, 1996.

[3] Harvey Friedman. Classically and intuitionistically provably recursive functions. In D.S.
Scott and G.H. Müller, editors, Higher Set Theory, volume 669 of Lecture Notes in Math-
ematics, pages 21–28. Springer Verlag, Berlin, Heidelberg, New York, 1978.

[4] Georg Kreisel. Interpretation of analysis by means of constructive functionals of finite
types. In A. Heyting, editor, Constructivity in Mathematics, pages 101–128. North–
Holland, Amsterdam, 1959.

12

