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The importance of an abstract approach to a computation theory over general data

types has been stressed by John Tucker in many of his papers. Ulrich Berger and Monika

Seisenberger recently elaborated the idea for extraction out of proofs involving (only)

abstract reals. They considered a proof involving coinduction of the proposition that any

two reals in [−1, 1] have their average in the same interval, and informally extract a

Haskell program from this proof, which works with stream representations of reals. Here

we formalize the proof, and machine-extract its computational content using the Minlog

proof assistant. This required an extension of this system to also take coinduction into

account.
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Extraction of programs from constructive proofs has received extensive interest in re-

cent years (Kohlenbach 2008; Schwichtenberg and Wainer 2012). Here we concentrate

on an application area of particular importance, namely exact real arithmetic, seen as a

subfield of constructive analysis. A standard way to approach the subject is to base the

study on a concrete representation of (constructive) real numbers, like Cauchy sequences

with a modulus (Schwichtenberg 2008; O’Connor 2009). However, an attractive alterna-

tive to such an approach has been proposed in (Berger and Seisenberger 2010): one might

start out with an abstract theory of reals instead. But then the immediate question is:

how could one associate computational content with a formula ∀x . . . where x ranges

over abstract reals? By the very idea of abstractness we do (and should) not know the

type of x; in fact, it may be a type variable. Therefore the quantifier ∀x should have

no computational significance. Following (Berger 2009) we use a “non-computational”

universal quantifier ∀ncx instead, and move the computational content of our assumption

into a predicate, i.e., we consider ∀ncx (Px → . . . ) instead. This leaves the exact form

of realizers for Px and hence the data type we use for representing real numbers open.

Particularly relevant for concrete computations with exact real numbers is a stream rep-

resentation based on signed digits, say −1, 0, 1. This has been realized very early: the

thesis (Wiedmer 1977; Wiedmer 1980) (supervised by Engeler) is an example, and it is
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noted there that already Cauchy saw the usefulness of such a representation. Now, how

can we achieve that Px has a stream of signed digits as realizer? An obvious way is to

define the predicate P coinductively.

More precisely, we start out with a (free) algebra I of “standard intervals”, given by a

nullary constructor I (representing the interval [−1, 1]) and a binary constructor C of type

SD→ I→ I. Here SD are the “signed digits” −1, 0, 1 (or L, M, R for left, middle, right); we

write Cdv for Cdv. The intuition is that Cd0(Cd1 . . . (Cdk−1
I) . . . ) denotes the interval in

[−1, 1] all of whose reals have a signed digit representation starting with d0d1 . . . dk−1. For

example, C1I denotes [0, 1], C0I denotes [− 1
2 ,

1
2 ] and C0(C−1I) denotes [− 1

2 , 0]. Generally,

Cd0(Cd1 . . . (Cdk−1
I) . . . ) denotes the interval with end points 1

2k
(
∑
i<k di2

k−1−i ± 1).

Now define inductively a set I of (abstract) reals, by the clauses

I0, ∀ncx ∀d
(
Ix→ I

x+ d

2

)
. (1)

Clearly, a witness for a proposition Ir according to the two clauses above can be seen as a

constructor expression in our algebra I, or alternatively as a “total ideal” in the intended

model (the base domain of the Scott-Ershov model of partial continuous functionals over

free algebras; cf. section 1.1 or (Schwichtenberg and Wainer 2012) for details). For I we

can (as for every inductively defined predicate) define its “companion”, the coinductively

defined predicate coI, by the (single) clause

∀ncx
(
coIx→ x = 0 ∨ ∃ry∃d(x =

y + d

2
∧ coIy)

)
(2)

(∃ry indicates that the existentially quantified variable y is disregarded in the realizability

interpretation; cf. section 1.2). A witness for a proposition coIr according to this clause

is a finite or infinite stream of signed digits, indicating which signed digit d has been

chosen in the second disjunct, and stopping if the first disjunct is taken. Such objects

can be seen as “cototal ideals” for the algebra I (cf. section 1.1). Now we can formulate

the proposition to be proved:

∀ncx,y(coIx→ coIy → coI
x+ y

2
), (3)

where addition + and division by 2 are performed on the abstract level; in fact, x, y

are ignored by the realizability interpretation, because of the non-computational ∀ncx,y.

The only computational effect of addition + and division by 2 is the way in which their

definition influences the proof of (3). By the above the computational content of (3) will

be a stream transformer, and this is exactly what we want.

Now what will be special in the proof of (3)? To reasonably work with the predicate
coI we will need coinduction, or more precisely, the greatest-fixed-point axiom for coI.

On the level of extracted terms we will have to provide the corecursion operator, as the

computational content of coinduction.

In (Berger and Seisenberger 2010) the idea for extraction out of proofs involving (only)

abstract reals is presented. As a case study they consider a proof of proposition (3) above

about the average function. Based on an informal understanding of the computational

content of this proof, they write down a Haskell program expressing this content. At the

end of (Berger and Seisenberger 2010) a desire for an automation of such an extraction
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process is expressed. The present paper reports on how this can be achieved using the

proof assistant Minlog†, and illustrates it with the case study at hand. We found it

helpful to take TCF (“theory of computable functionals”, cf. section 1 or (Schwichtenberg

and Wainer 2012)) as the underlying theory. This made it possible to directly formalize

the informal proof (cf. section 2). However, it was necessary to extend Minlog by (i)

coinductively defined predicates, (ii) their greatest-fixed-point axioms (i.e., coinduction)

and (iii) corecursion operators as realizers for the coinduction axioms. Moreover, we

had to deal with the problem that terms involving corecursion operators do not have a

normal form. Using such an extension of Minlog we could automatically extract a term

realizing proposition (3) from its proof (section 3.2), and test it on concrete input data

(section 3.4).

An important aspect of this way of dealing with extraction of computational content

from proofs is that what is extracted is a term in the language of the underlying theory.

This makes it possible to prove (again in the formal theory) that this term is indeed a

realizer of its specification (3) (section 3.3).

Comparison with the literature

The importance of an abstract approach to a computation theory over general data

types has been stressed by John Tucker in many of his papers (for instance (Tucker

and Zucker 1992)). The present paper is based heavily on (Berger and Seisenberger

2010), as explained above. The average function has been studied from an exact real

number perspective in (Plume 1998) and (Ciaffaglione and Gianantonio 2006). The latter

paper starts with explicit definitions of stream transformers; correctness is verified in

the proof assistant Coq (Coq Development Team 2009). Work involving coinduction

is also prominent in the proof assistant Agda (Agda 2013); see the recent PhD thesis

(Chuang 2011). However, in Agda whole proofs are taken as programs (not only their

computationally relevant parts), and this causes difficulties (special care is needed to

guarantee that postulates do not prevent normalization).

1. The formal system

We discuss particular features of the underlying formal system TCF (“theory of com-

putable functionals”, cf. (Schwichtenberg and Wainer 2012)), which are relevant for the

example at hand.

1.1. Algebras and their total and cototal ideals

Rather than working with algebras and coalgebras in a categorical setting (as for instance

done in (Berger and Seisenberger 2010)), we just use (free) algebras to generate the basic

domains of the Scott-Ershov model of partial continuous functionals. Among the ideals of

such a domain we single out the total and cototal ones, which are our well-founded and

† See http://www.minlog-system.de/
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non-well-founded objects, respectively. We construct domains by information systems,

given by a set of tokens, a set of finite consistent sets of tokens, and an entailment

relation. As an example, consider the algebra I of standard intervals introduced above,

and let C range over its constructors. The following definitions are an adaption of the

more general ones in (Schwichtenberg and Wainer 2012) to the present case.

(a) The tokens a are the type correct constructor expressions (or trees) Ca∗1 . . . a
∗
n where

a∗i is an extended token, i.e., a token or the special symbol ∗ which carries no infor-

mation.

(b) A finite set U of tokens is consistent if all its elements start with the same constructor

C, say of arity τ1 → . . . → τn → I, and all Ui are consistent (i = 1, . . . , n), where

Ui consists of all (proper) tokens at the i-th argument position of some token in

U = {C ~a∗1, . . . ,C ~a∗m}.
(c) {C ~a∗1, . . . ,C ~a∗m} ` C′ ~a∗ (“entails”) is defined to mean C = C′, m ≥ 1 and Ui ` a∗i ,

with Ui as in (b) above (and U ` ∗ taken to be true).

These are definitions by recursion on the height (of the syntactic expressions involved),

defined by

|Ca∗1 . . . a∗n| := 1 + max{ |a∗i | | i = 1, . . . , n }, | ∗ | := 0,

|{ ai | i ∈ I }| := max{ 1 + |ai| | i ∈ I },
|U ` a| := max{1 + |U |, 1 + |a|}.

A set of tokens is deductively closed if it contains all tokens entailed from one of its

finite subsets. An ideal is defined to be a (possibly infinite) consistent and deductively

closed set of tokens. The intuition is that a finite consistent set U of tokens is seen as a

“formal neighborhood” (Kreisel 1959) in a space of abstract points or ideals.

To define total and cototal ideals, consider a constructor tree P (∗) with a distin-

guished occurrence of ∗. Writing Cnda for Cd(Cd(. . . (Cd a) . . . )), for P (∗) := C−1C2
1∗ we

have P (C1∗) = C−1C3
1∗ �1 C−1C2

1∗ = P (∗). Then an arbitrary P (C ~a∗) is called one-

step extension of P (∗), written P (C ~a∗) �1 P (∗). An ideal x is called cototal if every

constructor expression P (∗) ∈ x has a one-step extension P (C ~a∗) ∈ x; it is called total if

it is cototal and the relation �1 on x is well-founded. Every total ideal then can be seen

as a standard interval

Ii·2−k,k := [
i

2k
− 1

2k
,
i

2k
+

1

2k
] for −2k < i < 2k.

The cototal ideals are what we mean by a “stream representation” of reals. For instance,

the cototal ideals include {Cn−1∗ | n ≥ 0 }, a stream representation of the real−1, and also

{C1Cn−1∗ | n ≥ 0 } and {C−1Cn1∗ | n ≥ 0 }, which both represent the real 0. Generally,

the cototal ideals give us all reals in [−1, 1], in the (non-unique) stream representation

via signed digits −1, 0, 1.

1.2. Realizability

We now address the issue of extracting computational content from proofs. The method of

program extraction is based on modified realizability as introduced in (Kreisel 1959) and
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described in detail in (Schwichtenberg and Wainer 2012). In short, from every construc-

tive proof M of a non-Harrop formula A (in natural deduction) one extracts a program

et(M) “realizing” A, essentially by removing computationally irrelevant parts from the

proof (proofs of Harrop formulas have no computational content). The extracted pro-

gram has some simple type τ(A) which depends solely on the logical shape of the proven

formula A. In its original form the extraction process is fairly straightforward, but of-

ten leads to unnecessarily complex programs. In order to obtain better programs, proof

assistants (for instance Coq, Isabelle/HOL, Agda, Nuprl, Minlog) offer various optimiza-

tions of program extraction. Below we describe optimizations implemented in Minlog

(Schwichtenberg 2006), which are relevant for our present case study.

Quantifiers without computational content Besides the usual quantifiers, ∀ and ∃, Minlog

has so-called non-computational quantifiers, ∀nc and ∃r, which allow for the extraction

of simpler programs. These quantifiers, which were first introduced in (Berger 1993), can

be viewed as a refinement of the Set/Prop distinction in constructive type systems like

Coq or Agda. Intuitively, a proof of ∀ncx A(x) (A(x) non-Harrop) represents a procedure

that assigns to any x a proof M(x) of A(x) where M(x) does not make “computational

use” of x, i.e., the extracted program et(M(x)) does not depend on x. Dually, a proof

of ∃rxA(x) is a proof of M(x) for some x where the witness x is “hidden”, that is, not

available for computational use (the “r” stands for “right”); in fact, ∃r can be seen as

inductively defined by the clause ∀ncx (A → ∃rxA). The types of extracted programs for

non-computational quantifiers are τ(∀ncxρA) = τ(∃rxρA) = τ(A) as opposed to τ(∀xρA) =

ρ→ τ(A) and τ(∃xρA) = ρ×τ(A). The extraction rules are, for example in the case of ∀nc-
introduction and -elimination, et((λxM

A(x))∀
nc
x A(x)) = et(M) and et((M∀

nc
x A(x)t)A(t)) =

et(M) as opposed to et((λxM
A(x))∀xA(x)) = et(λxM) and et((M∀xA(x)t)A(t)) = et(Mt).

For the extracted programs to be correct the variable condition at ∀nc-introduction must

be strengthened by requiring in addition the abstracted variable x not to occur in the

extracted program et(M), and similarly for ∃r. Note that for a Harrop formula A the

formulas ∀ncx A, ∀xA and also ∃rxA, ∃xA are equivalent.

Animation Suppose a proof of a theorem uses a lemma. Then the proof term contains

just the name of the lemma, say L. In the term extracted from this proof we want to

preserve the structure of the original proof as much as possible, and hence use a new

constant cL at those places where the computational content of the lemma is needed.

When we want to execute the program, we have to replace the constant cL corresponding

to a lemma L by the extracted program of its proof. This can be achieved by adding

computation rules for cL. We can be rather flexible here and enable/block rewriting by

using animate/deanimate as desired.

1.3. Inductive and coinductive definitions

To be able to work from a computational point of view with our abstract reals, we have

to inductively define what we need to know in order to be able to view an abstract real as

a computational object. This is done by means of inductive and coinductive definitions.
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As an example, consider the inductive definition of I by the clauses (1) and the coin-

ductive definition of coI by (2). We already noted above that a witness for a proposition

Ir can be seen as a total ideal in our algebra I, and a witness for a proposition coIr as

a cototal ideal. We still need to express that I is the least predicate satisfying the two

clauses (1). This is done by means of the least-fixed-point axiom

∀ncx (Ix→ P0→ ∀ncy ∀d(Iy → Py → P
y + d

2
)→ Px). (4)

Dually we need to express that coI is the greatest predicate satisfying (2), by the greatest-

fixed-point axiom

∀ncx (Px→ ∀ncy (Py → y = 0 ∨ ∃d∃rz(y =
z + d

2
∧ (coIz ∨ Pz)))→ coIx). (5)

Both can be understood as dealing with a “competitor” predicate P satisfying the same

clauses/clause as I/coI. Then (4) says that P is a superset of I, and (5) that P is a subset

of coI.

The computational content of these axioms depends on the type τ := τ(Pr) of P .

Then the term extracted from the least-fixed-point axiom (4) is Gödel’s (structural)

recursion operator RτI , and the term extracted from the greatest-fixed-point axiom (5)

is the “corecursion” operator coRτI defined below (in section 1.4). Moreover, the terms

extracted from the clauses (1) for I are the constructors of I, and the term extracted

from the clause (2) for coI is the destructor DI of type I→ U + SD× I (where U is the

unit type containing u only), defined by

D(I) := inlu, D(Cdv) := inr〈d, v〉.

Note that the application described in this paper does not require (5), but the following

weaker axiom suffices.

∀ncx (Px→ ∀ncy (Py → y = 0 ∨ ∃d∃rz(y =
z + d

2
∧ Pz))→ coIx).

However, using the stronger form (5) does not complicate matters, and it is the proper

(general) way to state elimination axioms. A similar remark applies to Section 1.4.

1.4. Corecursion

Streams are infinite objects, and require a special treatment when computing with them.

It is well-known that an arbitrary “reduction sequence” beginning with a term in Gödel’s

T terminates. For this to hold it is essential that the constants allowed in T are restricted

to constructors C and recursion operators R. A consequence is that every closed term

of a base type denotes a total ideal. The conversion rules for R work from the leaves

towards the root, and terminate because total ideals are well-founded. If, however, we deal

with cototal ideals (streams, for example), then a similar operator is available to define

functions with cototal ideals as values, namely corecursion. The corecursion operator
coRτI is used to construct a mapping from τ to I by corecursion on the structure of I. Its

type and conversion relation are

coRτI : τ → (τ → U + SD× (I + τ))→ I
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coRτINM 7→ [λ I, λd,z(Cd([λ I, λu(coRτIuM)]z))](MN)

where [f, g] : ρ+ σ → τ is defined for f : ρ→ τ and g : σ → τ by

[f, g](inl xρ) := f(x), [f, g](inr yσ) := g(y).

We write an underscore for a variable whose name is irrelevant. In a more readable

notation we have
coRτINM 7→ [case (MN)U+SD×(I+τ) of

inl 7→ I |
inr〈d, z〉 7→ Cd[case z

U+τ of

inl 7→ I |
inr uτ 7→ coRτIuM ]].

(6)

As an example of a function defined by corecursion consider the transformation of

an abstract real in the interval [−1, 1] into a stream representation using signed digits.

Assume that we work in an abstract (axiomatic) theory of reals, having an unspecified

type ρ, and that we have a type Q for rationals as well. Assume that the abstract theory

provides us with a function g : ρ→ Q→ Q→ B (B is the type of booleans) comparing

a real x with a proper rational interval p < q:

g(x, p, q) = tt→ x ≤ q,
g(x, p, q) = ff → p ≤ x.

From g we define a function h : ρ→ U + SD× (I + ρ) by

h(x) :=


inr〈−1, inr(2x+ 1)〉 if g(x,− 1

2 , 0) = tt,

inr〈0, inr(2x)〉 if g(x,− 1
2 , 0) = ff, g(x, 0, 12 ) = tt,

inr〈1, inr(2x− 1)〉 if g(x, 0, 12 ) = ff.

h is definable by a closed term M in Gödel’s T. Then the desired function f : ρ → I

transforming an abstract real x into a cototal ideal (i.e., a stream) in I can be defined by

f(x) := coRρIxM.

This f(x) will thus be a stream of signed digits −1, 0, 1.

2. The informal proof

We now present an informal proof of proposition (3) above about the average function,

closely following (Berger and Seisenberger 2010). This proof and in particular the notions

involved in it will be formalized in section 3 below. By convention on variable names, d, e

are for SD, and i, j are for SD2 := {−2,−1, 0, 1, 2} (or LL, LT, MT, RT, RR), the algebra

of “extended signed digits”.

Theorem (Average).

∀ncx,y(coIx→ coIy → coI
x+ y

2
).
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Proof. Let

X := { x+ y

2
| x, y ∈ coI }, Y := { x+ y + i

4
| x, y ∈ coI, i ∈ SD2 }.

Below we will show X ⊆ Y and that Y satisfies the clause coinductively defining coI.

Therefore by the greatest-fixed-point for coI we have Y ⊆ coI. Hence X ⊆ coI, which is

our claim.

In the following we abbreviate ∀ncx (coIx → A) by ∀ncx∈coIA, and similarly for existential

quantifiers.

Lemma (XSubY).

∀ncx,y∈coI∀ncz
(
z =

x+ y

2
→ ∃i∃rx′,y′∈coI z =

x′ + y′ + i

4

)
.

Proof. Let x, y ∈ coI and z := x+y
2 . Assume for instance x = x′+d

2 and y = y′+e
2 for

some x′, y′ ∈ coI and d, e ∈ SD. Then z = x+y
2 = x′+y′+d+e

4 . In case x = 0 and y = y′+e
2

we have z = x+y
2 = y′+e

4 . The other cases are similar.

Lemma (YSatClause).

∀i∀ncx,y∈coI∀ncz
(
z =

x+ y + i

4
→

z = 0 ∨ ∃j,d∃rx′,y′∈coI∃rz′
(
z′ =

x′ + y′ + j

4
∧ z =

z′ + d

2

))
.

Proof. Let i ∈ SD2 and x, y ∈ coI. We show that z := x+y+i
4 satisfies the right hand

side of the disjunction. In case x = x′+d′

2 and y = y′+e′

2 we have z = x′+y′+d′+e′+2i
8 .

Solve d′ + e′ + 2i = j + 4d. Then for z′ := x′+y′+j
4

z′ + d

2
=

4z′ + 4d

8
=
x′ + y′ + j + 4d

8
=
x′ + y′ + d′ + e′ + 2i

8
= z.

The other cases are simpler.

3. Formalization and extraction

Since the formal proof follows rather closely the informal one above, we do not comment

on how it is generated interactively, but only on some of the more interesting points, and

the extracted terms.

3.1. Formalization

Abstract reals We use a type variable ρ to denote an abstract type of reals. To formulate

their properties, we need functions P (plus) of type ρ→ ρ→ ρ for addition, and H (half)

of type ρ → ρ for division by 2. Moreover we need auxiliary functions connecting the

concrete data types Z (integers), SD (signed digits {−1, 0, 1}) and SD2 (extended signed

digits {−2,−1, 0, 1, 2}) with our abstract reals and also among themselves. These are

SDToInt : SD→ Z, SDtwoToInt : SD2 → Z, IntToR : Z→ ρ.
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We use + for P possibly with implicit IntToR, and +Z for integer addition. The properties

we need to assume for our abstract reals are

(x+ k)/2 + l = (x+ (k +Z 2l))/2,

(x+ k)/4 + l = (x+ (k +Z 4l))/4,

(x+ k)/2 + (y + l)/2 = ((x+ y) + (k +Z l))/2,

x+ 0 = x, 0 + y = y,

0/2 = 0, 2k/2 = k, k + l = k +Z l.

It is crucial to treat everything connected with ρ (a type variable) as non-computational.

This is a point where the non-computational quantifiers are essential.

The functions J and D In the proof of lemma YSatClause we had to solve d′+ e′+ 2i =

j+4d for given d′, e′ ∈ SD and i ∈ SD2. This is a finite problem and hence can be solved

by defining J : SD → SD → SD2 → SD2 and D : SD → SD → SD2 → SD explicitly.

The validity of d′ + e′ + 2i = J(d′, e′, i) + 4D(d′, e′, i) is then verified by means of case

distinctions.

3.2. Extraction

We present terms extracted from the formalized proofs (literal output of Minlog), and

give some explanations.

Extraction from lemma XSubY The term extracted from the proof is

[v0,v1]

[if (des v0)

[if (des v1)

(MT@v0@v1)

([dv2]JOne M left dv2@v0@right dv2)]

([dv2]

[if (des v1)

(JOne left dv2 M@right dv2@v1)

([dv3]JOne left dv2 left dv3@right dv2@right dv3)])]

Here v is a name for variables ranging over I, and dv for variables ranging over SD× I.

The constant des denotes the destructor for I of type I→ U+SD× I, and JOne : SD→
SD→ SD2 adds the two integers. Clearly left and right are (prefix) operators for the

components of a pair. The constant cXSubY of type I → I → SD2 × I × I is defined to

be the term above. It satisfies the equations

cXSubY(I, I) = 〈0, I, I〉,
cXSubY(I,Cew) = 〈e, I, w〉,
cXSubY(Cdv, I) = 〈d, v, I〉,
cXSubY(Cdv,Cew) = 〈d+ e, v, w〉.
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For the given two streams cXSubY computes the sum of the two head digits (regarding

I as CMI), and its tails. This sum of digits of type SD2 is a “carry” which contains

intermediate information to compute the average.

Extraction from lemma YSatClause The term extracted from the proof is

[i0,v1,v2]

[if (des v1)

[if (des v2)

(J M M i0@D M M i0@v1@v2)

([dv3]J M left dv3 i0@D M left dv3 i0@v1@right dv3)]

([dv3]

[if (des v2)

(J left dv3 M i0@D left dv3 M i0@right dv3@v2)

([dv4]J left dv3 left dv4 i0@D left dv3 left dv4 i0

@right dv3@right dv4)])]

The constant cYSatClause of type SD2 → I→ I→ SD2 × SD× I× I is defined to be

the term above. It satisfies the equations

cYSatClause(i, I, I) = 〈J(0, 0, i), D(0, 0, i), I, I〉,
cYSatClause(i, I,Cew) = 〈J(0, e, i), D(0, e, i), I, w〉,
cYSatClause(i,Cdv, I) = 〈J(d, 0, i), D(d, 0, i), v, I〉,
cYSatClause(i,Cdv,Cew) = 〈J(d, e, i), D(d, e, i), v, w〉.

For the given carry and two signed digit streams, cYSatClause computes the carry for

the next step, the first signed digit of the average of the streams, and the tails of the

streams.

Extraction from theorem Average The term extracted from the proof is

[v0,v1]

(CoRec sdtwo@@iv@@iv=>iv)(cXSubY v0 v1)

([ivw2]

Inr

[let jdvw3

(cYSatClause left ivw2 left right ivw2 right right ivw2)

(left right jdvw3@

(InR sdtwo@@iv@@iv iv)(left jdvw3@right right jdvw3))])

of type I → I → I. It calls cXSubY to compute the first carry and the tails of the

inputs. Then CoRec repeatedly calls cYSatClause in order to compute the average step

by step. Here ivw is a name for variables ranging over SD2×I×I, and jdvw for variables

ranging over SD2 × SD × I × I. The second argument of the corecursion operator, say

M : SD2×I×I→ U+SD×(I+SD2×I×I), operates on an argument 〈i, v, w〉 as follows.

Let cYSatClause(i, v, w) = 〈j, d, v′, w′〉. Then M〈i, v, w〉 = inr〈d, inr〈j, v′, w′〉〉. Given v

and w, let cXSubY(v, w) = 〈i, v, w〉 =: N . Then MN is inr〈d, inr〈j, v′, w′〉〉. Therefore by

the conversion rule (6) for the corecursion operator the result is Cd(
coR〈j, v′, w′〉M).
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The term above can be used as a program to compute the average for concrete input

data. An experiment is described in section 3.4. Comparing with a result in (Berger and

Seisenberger 2012), our extracted program behaves almost the same as theirs except for a

difference coming from the data type of streams. They use the type of necessarily infinite

streams, written fixα.SD×α, whereas we accept possibly infinite streams (cototal ideals

of I).

3.3. Normalization

Recall that the term t extracted from a proof of a formula A is a realizer of A, in particular

a term of the underlying formal theory TCF. This is in contrast to what is extracted

in the proof assistants Coq (Letouzey 2003) and Isabelle (Berghofer 2003), which (for

efficiency reasons) are programs in a programming language like OCaml, ML, Haskell

or Scheme. We prefer to stay within TCF, for then the proposition t r A (“t realizes

A”) can be proved formally, as a special case of the soundness theorem. This gives a

higher degree of security, since the formal proof of t r A can easily be machine-checked,

largely independent of the full proof assistant. When efficiency is an issue, one can –

in a second step – translate the term t into an expression of a programming language

and employ standard optimization techniques in the process. In Minlog the command is

called term-to-expr; it has Scheme as the target language.

However, we can use the extracted (closed higher-order) term t directly as a pro-

gram. For this to work we need to apply it to (closed) input or argument terms, and

calculate (i.e., normalize) the resulting applicative term. For efficiency reasons we use

normalization-by-evaluation (Berger et al. 2003) here. In case proofs involve coinduction

the extracted term may contain corecursion operators. This creates a well-known prob-

lem for normalization, since the conversion rule (6) for the corecursion operator does not

terminate. However, we can view this fact as a feature rather than a bug, since we want

to compute with streams. In particular, we want to see the result only up to a given

accuracy, which controls the number of unfoldings of the corecursion operator.

In the present case a simple approach suffices. First normalize the extracted term,

treating the corecursion operator as a constant (i.e., without conversion rules), and then

provide an external bound for the number of unfoldings of the corecursion operator. This

could be refined to a more demand driven device, as Haskell’s take command.

3.4. An experiment

Let eterm be the term above, extracted from the Average theorem. We want to use this

term as a program to compute the average of 5
8 and 3

4 . To this end we proceed as follows.

(1) Normalize eterm to neterm, treating the corecursion operator as a constant.

(2) Represent the two arguments as terms of type I. Recall that the constructors of the

algebra I are I : I and C: SD → I → I, and that the three (nullary) constructors of

SD are −1, 0, 1 (or internally L, M, R for left, middle, right); we write Cdv for Cdv.

Then 5
8 = 1

2 + 1
8 appears as CR(CM(CRI)) and 3

4 = 1
2 + 1

4 as CR(CRI).
(3) Let test be the result of applying neterm to the two arguments, and ntest its normal
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form. This term still contains the corecursion operator; it denotes a cototal ideal in I

(i.e., a stream).

(4) Normalize ntest again, but this time allowing say 10 unfoldings of the corecursion

operator. The commands are

(define eterm10 (undelay-delayed-corec ntest 10))

(define neterm10 (nt eterm10))

(pp neterm10)

The final result is

C R (C R (C M (C L (C M (C M (C M (C M (C M (C M

((CoRec sdtwo@@iv@@iv=>iv)...))))))))))

This is the correct result, for

5
8 + 3

4

2
=

11

16
=

1

2
+

1

4
− 1

16
.

Since normalization of terms nt is implemented by means of normalization-by-evaluation,

we have a reasonable efficiency: it takes 50 ms to evaluate (nt eterm10).

4. Conclusion

We presented a formal proof of the existence of the average of two real numbers in [−1, 1],

as a case study in constructive exact real arithmetic. From the formal proof involving

coinduction we extracted a term containing the corecursion operator. The evaluation

method of the corecursion operator allows to approximate the computation of cototal

ideals or streams, the standard representation of non-well-founded data as real numbers.

As for the future work, general uniformly continuous functions can be studied with

the same motivation as in the present paper. A promising treatment is in (Berger 2009)

(or (Schwichtenberg and Wainer 2012)) which involves nested algebras in TCF and their

cototal/total ideals.
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