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Abstract. The importance of an abstract approach to a computation
theory over general data types has been stressed by John Tucker in
many of his papers. Ulrich Berger and Monika Seisenberger recently
elaborated the idea for extraction out of proofs involving (only) abstract
reals. They considered a proof involving coinduction of the proposition
that any two reals in [−1, 1] have their average in the same interval,
and informally extract a Haskell program from this proof, which works
with stream representations of reals. Here we formalize the proof, and
machine-extract its computational content using the Minlog proof assis-
tant. This required an extension of this system to also take coinduction
into account.
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Extraction of programs from constructive proofs has received extensive
interest in recent years [12, 19]. Here we concentrate on an application area
of particular importance, namely exact real arithmetic, seen as a subfield of
constructive analysis. A standard way to approach the subject is to base
the study on a concrete representation of (constructive) real numbers, like
Cauchy sequences with a modulus [18, 15]. However, an attractive alterna-
tive to such an approach has been proposed by Berger and Seisenberger [5]:
one might start out with an abstract theory of reals instead. But then the
immediate question is: how could one associate computational content with
a formula ∀x . . . where x ranges over abstract reals? By the very idea of
abstractness we do (and should) not know the type of x; in fact, it may be
a type variable. Therefore the quantifier ∀x should have no computational
significance. Following [3] we use a “non-computational” universal quanti-
fier ∀ncx instead, and move the computational content of our assumption into
a predicate, i.e., we consider ∀ncx (Px → . . . ) instead. This leaves the exact
form of realizers for Px and hence the data type we use for representing
real numbers open. Particularly relevant for concrete computations with
exact real numbers is a stream representation based on signed digits, say
−1, 0, 1. This has been realized very early: the thesis of [21, 22] (supervised
by Engeler) is an example, and it is noted there that already Cauchy saw
the usefulness of such a representation. Now, how can we achieve that Px
has a stream of signed digits as realizer? An obvious way is to define the
predicate P coinductively.
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More precisely, we start out with a (free) algebra I of “standard intervals”,
given by a nullary constructor I (representing the interval [−1, 1]) and a
binary constructor C of type SD → I → I. Here SD are the “signed
digits” −1, 0, 1 (or L, M, R for left, middle, right); we write Cdv for Cdv. The
intuition is that Cd0(Cd1 . . . (Cdk−1

I) . . . ) denotes the interval in [−1, 1] all
of whose reals have a signed digit representation starting with d0d1 . . . dk−1.
For example, C1I denotes [0, 1], C0I denotes [−1

2 ,
1
2 ] and C0(C−1I) denotes

[−1
2 , 0]. Generally, Cd0(Cd1 . . . (Cdk−1

I) . . . ) denotes the interval with end

points 1
2k

(
∑

i<k di2
k−1−i ± 1).

Now define inductively a set I of (abstract) reals, by the clauses

(1) I0, ∀ncx ∀d
(
Ix→ I

x+ d

2

)
.

Clearly, a witness for a proposition Ir according to the two clauses above
can be seen as a constructor expression in our algebra I, or alternatively as
a “total ideal” in the intended model (the base domain of the Scott-Ershov
model of partial continuous functionals over free algebras; cf. section 1.1 or
[19] for details). For I we can (as for every inductively defined predicate) de-
fine its “companion”, the coinductively defined predicate coI, by the (single)
clause

(2) ∀ncx
(
coIx→ x = 0 ∨ ∃ry∃d(x =

y + d

2
∧ coIy)

)
(∃ry indicates that the existentially quantified variable y is disregarded in
the realizability interpretation; cf. section 1.2). A witness for a proposition
coIr according to this clause is a finite or infinite stream of signed digits,
indicating which signed digit d has been chosen in the second disjunct, and
stopping if the first disjunct is taken. Such objects can be seen as “coto-
tal ideals” for the algebra I (cf. section 1.1). Now we can formulate the
proposition to be proved:

(3) ∀ncx,y(coIx→ coIy → coI
x+ y

2
),

where addition + and division by 2 are performed on the abstract level;
in fact, x, y are ignored by the realizability interpretation, because of the
non-computational ∀ncx,y. The only computational effect of addition + and
division by 2 is the way in which their definition influences the proof of (3).
By the above the computational content of (3) will be a stream transformer,
and this is exactly what we want.

Now what will be special in the proof of (3)? To reasonably work with the
predicate coI we will need coinduction, or more precisely, the greatest-fixed-
point axiom for coI. On the level of extracted terms we will have to provide
the corecursion operator, as the computational content of coinduction.

In Berger and Seisenberger [5] the idea for extraction out of proofs in-
volving (only) abstract reals is presented. As a case study they consider a
proof of proposition (3) above about the average function. Based on an in-
formal understanding of the computational content of this proof, they write
down a Haskell program expressing this content. At the end of [5] a desire
for an automation of such an extraction process is expressed. The present
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paper reports on how this can be achieved using the proof assistant Min-
log1, and illustrates it with the case study at hand. We found it helpful to
take TCF (“theory of computable functionals”, cf. section 1 or [19]) as the
underlying theory. This made it possible to directly formalize the informal
proof (cf. section 2). However, it was necessary to extend Minlog by (i)
coinductively defined predicates, (ii) their greatest-fixed-point axioms (i.e.,
coinduction) and (iii) corecursion operators as realizers for the coinduction
axioms. Moreover, we had to deal with the problem that terms involving
corecursion operators do not have a normal form. Using such an extension
of Minlog we could automatically extract a term realizing proposition (3)
from its proof (section 3.2), and test it on concrete input data (section 3.4).

An important aspect of this way of dealing with extraction of computa-
tional content from proofs is that what is extracted is a term in the language
of the underlying theory. This makes it possible to prove (again in the formal
theory) that this term is indeed a realizer of its specification (3) (section 3.3).

Comparison with the literature. The importance of an abstract ap-
proach to a computation theory over general data types has been stressed
by John Tucker in many of his papers (for instance [20]). The present paper
is based heavily on Berger and Seisenberger’s [5], as explained above. The
average function has been studied from an exact real number perspective by
Plume [16] and Ciaffaglione and Gianantonio in [9]. The latter paper starts
with explicit definitions of stream transformers; correctness is verified in the
proof assistant Coq [10]. Work involving coinduction is also prominent in
the proof assistant Agda [1]; see the recent PhD thesis of Chi Ming Chuang
[8]. However, in Agda whole proofs are taken as programs (not only their
computationally relevant parts), and this causes difficulties (special care is
needed to guarantee that postulates do not prevent normalization).

1. The formal system

We discuss particular features of the underlying formal system TCF (“the-
ory of computable functionals”, cf. [19]), which are relevant for the example
at hand.

1.1. Algebras and their total and cototal ideals. Rather than working
with algebras and coalgebras in a categorical setting (as for instance done
in [5]), we just use (free) algebras to generate the basic domains of the
Scott-Ershov model of partial continuous functionals. Among the ideals of
such a domain we single out the total and cototal ones, which are our well-
founded and non-well-founded objects, respectively. We construct domains
by information systems, given by a set of tokens, a set of finite consistent
sets of tokens, and an entailment relation. As an example, consider the
algebra I of standard intervals introduced above, and let C range over its
constructors. The following definitions are an adaption of the more general
ones in [19] to the present case.

(a) The tokens a are the type correct constructor expressions (or trees)
Ca∗1 . . . a

∗
n where a∗i is an extended token, i.e., a token or the special

symbol ∗ which carries no information.

1See http://www.minlog-system.de
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(b) A finite set U of tokens is consistent if all its elements start with the
same constructor C, say of arity τ1 → . . . → τn → I, and all Ui are
consistent (i = 1, . . . , n), where Ui consists of all (proper) tokens at the

i-th argument position of some token in U = {C ~a∗1, . . . ,C ~a∗m}.
(c) {C ~a∗1, . . . ,C ~a∗m} ` C′ ~a∗ (“entails”) is defined to mean C = C′, m ≥ 1

and Ui ` a∗i , with Ui as in (b) above (and U ` ∗ taken to be true).

These are definitions by recursion on the height (of the syntactic expressions
involved), defined by

|Ca∗1 . . . a∗n| := 1 + max{ |a∗i | | i = 1, . . . , n }, | ∗ | := 0,

|{ ai | i ∈ I }| := max{ 1 + |ai| | i ∈ I },
|U ` a| := max{1 + |U |, 1 + |a|}.

A set of tokens is deductively closed if it contains all tokens entailed from
one of its finite subsets. An ideal is defined to be a (possibly infinite)
consistent and deductively closed set of tokens. The intuition is that a finite
consistent set U of tokens is seen as a “formal neighborhood” (Kreisel [13])
in a space of abstract points or ideals.

To define total and cototal ideals, consider a constructor tree P (∗) with
a distinguished occurrence of ∗. Writing Cn

da for Cd(Cd(. . . (Cd a) . . . )), for
P (∗) := C−1C

2
1∗ we have P (C1∗) = C−1C

3
1∗ �1 C−1C

2
1∗ = P (∗). Then an

arbitrary P (C ~a∗) is called one-step extension of P (∗), written P (C ~a∗) �1

P (∗). An ideal x is called cototal if every constructor expression P (∗) ∈ x
has a one-step extension P (C ~a∗) ∈ x; it is called total if it is cototal and
the relation �1 on x is well-founded. Every total ideal then can be seen as
a standard interval

Ii·2−k,k := [
i

2k
− 1

2k
,
i

2k
+

1

2k
] for −2k < i < 2k.

The cototal ideals are what we mean by a “stream representation” of
reals. For instance, the cototal ideals include {Cn

−1∗ | n ≥ 0 }, a stream
representation of the real −1, and also {C1C

n
−1∗ | n ≥ 0 } and {C−1C

n
1∗ |

n ≥ 0 }, which both represent the real 0. Generally, the cototal ideals give
us all reals in [−1, 1], in the (non-unique) stream representation via signed
digits −1, 0, 1.

1.2. Realizability. We now address the issue of extracting computational
content from proofs. The method of program extraction is based on modified
realizability as introduced by Kreisel [13] and described in detail in [19]. In
short, from every constructive proof M of a non-Harrop formula A (in na-
tural deduction) one extracts a program et(M) “realizing” A, essentially by
removing computationally irrelevant parts from the proof (proofs of Harrop
formulas have no computational content). The extracted program has some
simple type τ(A) which depends solely on the logical shape of the proven for-
mula A. In its original form the extraction process is fairly straightforward,
but often leads to unnecessarily complex programs. In order to obtain better
programs, proof assistants (for instance Coq, Isabelle/HOL, Agda, Nuprl,
Minlog) offer various optimizations of program extraction. Below we de-
scribe optimizations implemented in Minlog [17], which are relevant for our
present case study.
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Quantifiers without computational content. Besides the usual quantifiers,
∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc and ∃r,
which allow for the extraction of simpler programs. These quantifiers, which
were first introduced by Berger in [2], can be viewed as a refinement of the
Set/Prop distinction in constructive type systems like Coq or Agda. Intu-
itively, a proof of ∀ncx A(x) (A(x) non-Harrop) represents a procedure that
assigns to any x a proof M(x) of A(x) where M(x) does not make “compu-
tational use” of x, i.e., the extracted program et(M(x)) does not depend on
x. Dually, a proof of ∃rxA(x) is a proof of M(x) for some x where the witness
x is “hidden”, that is, not available for computational use (the “r” stands
for “right”); in fact, ∃r can be seen as inductively defined by the clause
∀ncx (A → ∃rxA). The types of extracted programs for non-computational
quantifiers are τ(∀ncxρA) = τ(∃rxρA) = τ(A) as opposed to τ(∀xρA) = ρ →
τ(A) and τ(∃xρA) = ρ× τ(A). The extraction rules are, for example in the

case of ∀nc-introduction and -elimination, et((λxM
A(x))∀

nc
x A(x)) = et(M) and

et((M∀
nc
x A(x)t)A(t)) = et(M) as opposed to et((λxM

A(x))∀xA(x)) = et(λxM)

and et((M∀xA(x)t)A(t)) = et(Mt). For the extracted programs to be correct
the variable condition at ∀nc-introduction must be strengthened by requiring
in addition the abstracted variable x not to occur in the extracted program
et(M), and similarly for ∃r. Note that for a Harrop formula A the formulas
∀ncx A, ∀xA and also ∃rxA, ∃xA are equivalent.

Animation. Suppose a proof of a theorem uses a lemma. Then the proof
term contains just the name of the lemma, say L. In the term extracted
from this proof we want to preserve the structure of the original proof as
much as possible, and hence use a new constant cL at those places where the
computational content of the lemma is needed. When we want to execute
the program, we have to replace the constant cL corresponding to a lemma
L by the extracted program of its proof. This can be achieved by adding
computation rules for cL. We can be rather flexible here and enable/block
rewriting by using animate/deanimate as desired.

1.3. Inductive and coinductive definitions. To be able to work from a
computational point of view with our abstract reals, we have to inductively
define what we need to know in order to be able to view an abstract real as
a computational object. This is done by means of inductive and coinductive
definitions.

As an example, consider the inductive definition of I by the clauses (1)
and the coinductive definition of coI by (2). We already noted above that a
witness for a proposition Ir can be seen as a total ideal in our algebra I, and
a witness for a proposition coIr as a cototal ideal. We still need to express
that I is the least predicate satisfying the two clauses (1). This is done by
means of the least-fixed-point axiom

(4) ∀ncx (Ix→ P0→ ∀ncy ∀d(Iy → Py → P
y + d

2
)→ Px).

Dually we need to express that coI is the greatest predicate satisfying (2),
by the greatest-fixed-point axiom

(5) ∀ncx (Px→ ∀ncy (Py → y = 0 ∨ ∃d∃rz(y =
z + d

2
∧ (coIz ∨ Pz)))→ coIx).
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Both can be understood as dealing with a “competitor” predicate P satis-
fying the same clauses/clause as I/coI. Then (4) says that P is a superset
of I, and (5) that P is a subset of coI.

The computational content of these axioms depends on the type τ :=
τ(Pr) of P . Then the term extracted from the least-fixed-point axiom (4)
is Gödel’s (structural) recursion operator RτI , and the term extracted from
the greatest-fixed-point axiom (5) is the “corecursion” operator coRτI defined
below (in section 1.4). Moreover, the terms extracted from the clauses (1)
for I are the constructors of I, and the term extracted from the clause (2)
for coI is the destructor DI of type I → U + SD × I (where U is the unit
type containing u only), defined by

D(I) := inl u, D(Cdv) := inr〈d, v〉.

Note that the application described in this paper does not require (5), but
the following weaker axiom suffices.

∀ncx (Px→ ∀ncy (Py → y = 0 ∨ ∃d∃rz(y =
z + d

2
∧ Pz))→ coIx).

However, using the stronger form (5) does not complicate matters, and it
is the proper (general) way to state elimination axioms. A similar remark
applies to Section 1.4.

1.4. Corecursion. Streams are infinite objects, and require a special treat-
ment when computing with them. It is well-known that an arbitrary “re-
duction sequence” beginning with a term in Gödel’s T terminates. For this
to hold it is essential that the constants allowed in T are restricted to con-
structors C and recursion operators R. A consequence is that every closed
term of a base type denotes a total ideal. The conversion rules for R work
from the leaves towards the root, and terminate because total ideals are
well-founded. If, however, we deal with cototal ideals (streams, for exam-
ple), then a similar operator is available to define functions with cototal
ideals as values, namely corecursion. The corecursion operator coRτI is used
to construct a mapping from τ to I by corecursion on the structure of I. Its
type and conversion relation are

coRτI : τ → (τ → U + SD× (I + τ))→ I
coRτINM 7→ [λ I, λd,z(Cd([λ I, λu(coRτIuM)]z))](MN)

where [f, g] : ρ+ σ → τ is defined for f : ρ→ τ and g : σ → τ by

[f, g](inl xρ) := f(x), [f, g](inr yσ) := g(y).

We write an underscore for a variable whose name is irrelevant. In a more
readable notation we have

coRτINM 7→ [case (MN)U+SD×(I+τ) of

inl 7→ I |
inr〈d, z〉 7→ Cd[case zU+τ of

inl 7→ I |
inr uτ 7→ coRτIuM ]].

(6)
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As an example of a function defined by corecursion consider the transfor-
mation of an abstract real in the interval [−1, 1] into a stream representation
using signed digits. Assume that we work in an abstract (axiomatic) theory
of reals, having an unspecified type ρ, and that we have a type Q for ratio-
nals as well. Assume that the abstract theory provides us with a function
g : ρ→ Q→ Q→ B (B is the type of booleans) comparing a real x with a
proper rational interval p < q:

g(x, p, q) = tt→ x ≤ q,
g(x, p, q) = ff → p ≤ x.

From g we define a function h : ρ→ U + SD× (I + ρ) by

h(x) :=


inr〈−1, inr(2x+ 1)〉 if g(x,−1

2 , 0) = tt,

inr〈0, inr(2x)〉 if g(x,−1
2 , 0) = ff, g(x, 0, 12) = tt,

inr〈1, inr(2x− 1)〉 if g(x, 0, 12) = ff.

h is definable by a closed term M in Gödel’s T. Then the desired function
f : ρ→ I transforming an abstract real x into a cototal ideal (i.e., a stream)
in I can be defined by

f(x) := coRρIxM.

This f(x) will thus be a stream of signed digits −1, 0, 1.

2. The informal proof

We now present an informal proof of proposition (3) above about the
average function, closely following [5]. This proof and in particular the
notions involved in it will be formalized in section 3 below. By convention
on variable names, d, e are for SD, and i, j are for SD2 := {−2,−1, 0, 1, 2}
(or LL, LT, MT, RT, RR), the algebra of “extended signed digits”.

Theorem (Average).

∀ncx,y(coIx→ coIy → coI
x+ y

2
).

Proof. Let

X := { x+ y

2
| x, y ∈ coI }, Y := { x+ y + i

4
| x, y ∈ coI, i ∈ SD2 }.

Below we will show X ⊆ Y and that Y satisfies the clause coinductively
defining coI. Therefore by the greatest-fixed-point for coI we have Y ⊆ coI.
Hence X ⊆ coI, which is our claim. �

In the following we abbreviate ∀ncx (coIx → A) by ∀ncx∈coIA, and similarly
for existential quantifiers.

Lemma (XSubY).

∀ncx,y∈coI∀ncz
(
z =

x+ y

2
→ ∃i∃rx′,y′∈coI z =

x′ + y′ + i

4

)
.

Proof. Let x, y ∈ coI and z := x+y
2 . Assume for instance x = x′+d

2 and

y = y′+e
2 for some x′, y′ ∈ coI and d, e ∈ SD. Then z = x+y

2 = x′+y′+d+e
4 .

In case x = 0 and y = y′+e
2 we have z = x+y

2 = y′+e
4 . The other cases are

similar. �
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Lemma (YSatClause).

∀i∀ncx,y∈coI∀ncz
(
z =

x+ y + i

4
→

z = 0 ∨ ∃j,d∃rx′,y′∈coI∃rz′
(
z′ =

x′ + y′ + j

4
∧ z =

z′ + d

2

))
.

Proof. Let i ∈ SD2 and x, y ∈ coI. We show that z := x+y+i
4 satisfies the

right hand side of the disjunction. In case x = x′+d′

2 and y = y′+e′

2 we have

z = x′+y′+d′+e′+2i
8 . Solve d′ + e′ + 2i = j + 4d. Then for z′ := x′+y′+j

4

z′ + d

2
=

4z′ + 4d

8
=
x′ + y′ + j + 4d

8
=
x′ + y′ + d′ + e′ + 2i

8
= z.

The other cases are simpler. �

3. Formalization and extraction

Since the formal proof follows rather closely the informal one above, we
do not comment on how it is generated interactively, but only on some of
the more interesting points, and the extracted terms.

3.1. Formalization.

Abstract reals. We use a type variable ρ to denote an abstract type of reals.
To formulate their properties, we need functions P (plus) of type ρ→ ρ→ ρ
for addition, and H (half) of type ρ→ ρ for division by 2. Moreover we need
auxiliary functions connecting the concrete data types Z (integers), SD
(signed digits {−1, 0, 1}) and SD2 (extended signed digits {−2,−1, 0, 1, 2})
with our abstract reals and also among themselves. These are

SDToInt : SD→ Z, SDtwoToInt : SD2 → Z, IntToR : Z→ ρ.

We use + for P possibly with implicit IntToR, and +Z for integer addition.
The properties we need to assume for our abstract reals are

(x+ k)/2 + l = (x+ (k +Z 2l))/2,

(x+ k)/4 + l = (x+ (k +Z 4l))/4,

(x+ k)/2 + (y + l)/2 = ((x+ y) + (k +Z l))/2,

x+ 0 = x, 0 + y = y,

0/2 = 0, 2k/2 = k, k + l = k +Z l.

It is crucial to treat everything connected with ρ (a type variable) as non-
computational. This is a point where the non-computational quantifiers are
essential.

The functions J and D. In the proof of lemma YSatClause we had to solve
d′ + e′ + 2i = j + 4d for given d′, e′ ∈ SD and i ∈ SD2. This is a finite
problem and hence can be solved by defining J : SD→ SD→ SD2 → SD2

and D : SD → SD → SD2 → SD explicitly. The validity of d′ + e′ + 2i =
J(d′, e′, i) + 4D(d′, e′, i) is then verified by means of case distinctions.

3.2. Extraction. We present terms extracted from the formalized proofs
(literal output of Minlog), and give some explanations.
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Extraction from lemma XSubY. The term extracted from the proof is

[v0,v1]

[if (des v0)

[if (des v1)

(MT@v0@v1)

([dv2]JOne M left dv2@v0@right dv2)]

([dv2]

[if (des v1)

(JOne left dv2 M@right dv2@v1)

([dv3]JOne left dv2 left dv3@right dv2@right dv3)])]

Here v is a name for variables ranging over I, and dv for variables ranging
over SD × I. The constant des denotes the destructor for I of type I →
U + SD × I, and JOne : SD → SD → SD2 adds the two integers. Clearly
left and right are (prefix) operators for the components of a pair. The
constant cXSubY of type I → I → SD2 × I × I is defined to be the term
above. It satisfies the equations

cXSubY(I, I) = 〈0, I, I〉,
cXSubY(I,Cew) = 〈e, I, w〉,
cXSubY(Cdv, I) = 〈d, v, I〉,
cXSubY(Cdv,Cew) = 〈d+ e, v, w〉.

For the given two streams cXSubY computes the sum of the two head digits
(regarding I as CMI), and its tails. This sum of digits of type SD2 is a
“carry” which contains intermediate information to compute the average.

Extraction from lemma YSatClause. The term extracted from the proof is

[i0,v1,v2]

[if (des v1)

[if (des v2)

(J M M i0@D M M i0@v1@v2)

([dv3]J M left dv3 i0@D M left dv3 i0@v1@right dv3)]

([dv3]

[if (des v2)

(J left dv3 M i0@D left dv3 M i0@right dv3@v2)

([dv4]J left dv3 left dv4 i0@D left dv3 left dv4 i0

@right dv3@right dv4)])]

The constant cYSatClause of type SD2 → I → I → SD2 × SD × I × I is
defined to be the term above. It satisfies the equations

cYSatClause(i, I, I) = 〈J(0, 0, i), D(0, 0, i), I, I〉,
cYSatClause(i, I,Cew) = 〈J(0, e, i), D(0, e, i), I, w〉,
cYSatClause(i,Cdv, I) = 〈J(d, 0, i), D(d, 0, i), v, I〉,
cYSatClause(i,Cdv,Cew) = 〈J(d, e, i), D(d, e, i), v, w〉.

For the given carry and two signed digit streams, cYSatClause computes the
carry for the next step, the first signed digit of the average of the streams,
and the tails of the streams.
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Extraction from theorem Average. The term extracted from the proof is

[v0,v1]

(CoRec sdtwo@@iv@@iv=>iv)(cXSubY v0 v1)

([ivw2]

Inr

[let jdvw3

(cYSatClause left ivw2 left right ivw2 right right ivw2)

(left right jdvw3@

(InR sdtwo@@iv@@iv iv)(left jdvw3@right right jdvw3))])

of type I → I → I. It calls cXSubY to compute the first carry and the
tails of the inputs. Then CoRec repeatedly calls cYSatClause in order to
compute the average step by step. Here ivw is a name for variables ran-
ging over SD2 × I × I, and jdvw for variables ranging over SD2 × SD ×
I × I. The second argument of the corecursion operator, say M : SD2 ×
I × I → U + SD × (I + SD2 × I × I), operates on an argument 〈i, v, w〉
as follows. Let cYSatClause(i, v, w) = 〈j, d, v′, w′〉. Then M〈i, v, w〉 =
inr〈d, inr〈j, v′, w′〉〉. Given v and w, let cXSubY(v, w) = 〈i, v, w〉 =: N . Then
MN is inr〈d, inr〈j, v′, w′〉〉. Therefore by the conversion rule (6) for the
corecursion operator the result is Cd(

coR〈j, v′, w′〉M).
The term above can be used as a program to compute the average for

concrete input data. An experiment is described in section 3.4. Comparing
with a result by Berger and Seisenberger [6], our extracted program behaves
almost the same as theirs except for a difference coming from the data
type of streams. They use the type of necessarily infinite streams, written
fixα.SD × α, whereas we accept possibly infinite streams (cototal ideals of
I).

3.3. Normalization. Recall that the term t extracted from a proof of a
formula A is a realizer of A, in particular a term of the underlying formal
theory TCF. This is in contrast to what is extracted in the proof assis-
tants Coq [14] and Isabelle [7], which (for efficiency reasons) are programs
in a programming language like OCaml, ML, Haskell or Scheme. We prefer
to stay within TCF, for then the proposition t r A (“t realizes A”) can
be proved formally, as a special case of the soundness theorem. This gives
a higher degree of security, since the formal proof of t r A can easily be
machine-checked, largely independent of the full proof assistant. When effi-
ciency is an issue, one can – in a second step – translate the term t into an
expression of a programming language and employ standard optimization
techniques in the process. In Minlog the command is called term-to-expr;
it has Scheme as the target language.

However, we can use the extracted (closed higher-order) term t directly as
a program. For this to work we need to apply it to (closed) input or argument
terms, and calculate (i.e., normalize) the resulting applicative term. For
efficiency reasons we use normalization-by-evaluation [4] here. In case proofs
involve coinduction the extracted term may contain corecursion operators.
This creates a well-known problem for normalization, since the conversion
rule (6) for the corecursion operator does not terminate. However, we can
view this fact as a feature rather than a bug, since we want to compute with
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streams. In particular, we want to see the result only up to a given accuracy,
which controls the number of unfoldings of the corecursion operator.

In the present case a simple approach suffices. First normalize the ex-
tracted term, treating the corecursion operator as a constant (i.e., without
conversion rules), and then provide an external bound for the number of
unfoldings of the corecursion operator. This could be refined to a more
demand driven device, as Haskell’s take command.

3.4. An experiment. Let eterm be the term above, extracted from the
Average theorem. We want to use this term as a program to compute the
average of 5

8 and 3
4 . To this end we proceed as follows.

(1) Normalize eterm to neterm, treating the corecursion operator as a
constant.

(2) Represent the two arguments as terms of type I. Recall that the
constructors of the algebra I are I : I and C: SD→ I→ I, and that
the three (nullary) constructors of SD are −1, 0, 1 (or internally L,
M, R for left, middle, right); we write Cdv for Cdv. Then 5

8 = 1
2 + 1

8

appears as CR(CM(CRI)) and 3
4 = 1

2 + 1
4 as CR(CRI).

(3) Let test be the result of applying neterm to the two arguments,
and ntest its normal form. This term still contains the corecursion
operator; it denotes a cototal ideal in I (i.e., a stream).

(4) Normalize ntest again, but this time allowing say 10 unfoldings of
the corecursion operator. The commands are

(define eterm10 (undelay-delayed-corec ntest 10))

(define neterm10 (nt eterm10))

(pp neterm10)

The final result is

C R (C R (C M (C L (C M (C M (C M (C M (C M (C M

((CoRec sdtwo@@iv@@iv=>iv)...))))))))))

This is the correct result, for

5
8 + 3

4

2
=

11

16
=

1

2
+

1

4
− 1

16
.

Since normalization of terms nt is implemented by means of normalization-
by-evaluation, we have a reasonable efficiency: it takes 50 ms to evaluate
(nt eterm10).

4. Conclusion

We presented a formal proof of the existence of the average of two real
numbers in [−1, 1], as a case study in constructive exact real arithmetic.
From the formal proof involving coinduction we extracted a term containing
the corecursion operator. The evaluation method of the corecursion operator
allows to approximate the computation of cototal ideals or streams, the
standard representation of non-well-founded data as real numbers.

As for the future work, general uniformly continuous functions can be
studied with the same motivation as in the present paper. A promising
treatment is in [3] (or [19]) which involves nested algebras in TCF and their
cototal/total ideals.
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