
Strict Functionals for Termination ProofsJaco van de Pol and Helmut Schwichtenberg 1Mathematisches Institut, Universit�at M�unchenjaco@phil.ruu.nl schwicht@rz.mathematik.uni-muenchen.deA semantical method to prove termination of higher order rewrite systems (HRS)is presented. Its main tool is the notion of a strict functional, which is a variantof Gandy's notion of a hereditarily monotonic functional [1]. The main advantageof the method is that it makes it possible to transfer ones intuitions about why anHRS should be terminating into a proof: one has to �nd a \strict" interpretationof the constants involved in such a way that the left hand side of any rewrite rulegets a bigger value than the right hand side. The applicability of the method isdemonstrated in three examples.� An HRS involving map and append.� The usual rules for higher order primitive recursion in G�odel's T .� Derivation terms for natural deduction systems. We prove termination of therules for �{conversion and permutative conversion for logical rules includingintroduction and elimination rules for the existential quanti�er. This hasalready been proved by Prawitz in [5]; however, our proof seems to be moreperspicuous.Technically we build on [7]. There a notion of a strict functional and simultaneouslyof a strict greater{than relation >str between monotonic functionals is introduced.The main result then is the following. Let M be a term in � normal form and� 2 FV(M). Then for any strict environment U and all monotonic f and g, onehas f >mon g =) [[M ]]U [�7!f ] >str [[M ]]U [�7!g]. From this van de Pol derives thetechnique described above for proving termination of higher order term rewrite sys-tems, generalizing a similar approach for �rst order rewrite systems (cf. [3, p. 367]).Interesting applications are given in [7].Here a slight change in the de�nition of strictness is exploited (against theoriginal conference paper; cf. [7, Footnote p. 316]). This makes it possible todeal with rewrite rules involving types of level > 2 too, and in particular withproof theoretic applications. In order to do this some theory of strict functionalsis developed. We also add product types, which are necessary to treat e.g. theexistential quanti�er.1Both authors are partially supported by the Science Twinning Contract SC1*{CT91{0724 ofthe European Community.



1. Monotonicity and StrictnessLet �, �, � denote simple types over some base types � (containing at least o),composed with ! and �. For simplicity we consider the sets T� of all functionalsof type � over some ground domains T�. The ground domains are provided withsome partial order >�.De�nition. For any type � we de�ne the set M� � T� of monotonic functionalsof type � and simultaneously a relation � on T�.(i) (a) M� = T�.(b) f 2M�!� () for all x;y 2M�; f(x) 2M� andif x � y then f(x) � f(y):(c) M��� =M� �M� .(ii) (a) n �� m () n >� m or n = m.(b) f ��!� g () for all x 2M�; f(x) �� g(x).(c) ha;bi ���� hc;di () a �� c and b �� d.We will use the following notation: ~� ! � denotes the type �1 ! � � � �n ! �.Let x(0) denote the left component of the pair x and x(1) its right component.This allows us to write projections and applications in a uniform way. Further-more, simply typed terms M , N are introduced as usual: Typed variables x, y,z, application MN , abstraction �xM , pairing hM;Ni and projections �i(M) fori = 0; 1. Projections are also written M0 and M1. We use standard notions of freeand bound variables, substitution, interpretation of M in a domain under environ-ment U (denoted by [[M ]]U ). Using the new notation for projections, the previousde�nition can be written very compactly as:De�nition. For any type � we de�ne the set M� � T� of monotonic functionalsof type � and simultaneously a relation � on T�.(i) f 2M () for all ~x; ~y 2M[ f0; 1g; if ~x � ~y; then f(~x) � f(~y).(ii) f � g () for all ~x 2M[ f0; 1g; f(~x) � g(~x).Here ~x and ~y only range over vectors for which f(~x) and f(~y) are of base type.~x � ~y means: For all i such that xi 2M, xi � yi.Lemma 1. For any term M of the simply typed �{calculus we have(i) [[M ]]U 2M for any monotonic environment U .(ii) U � V =) [[M ]]U � [[M ]]V for monotonic environments U; V .Proof by simultaneous induction on M (standard). �



De�nition. f >mon g () for all ~x 2M[ f0; 1g; f(~x) > g(~x).Remark . Gandy's de�nition of hereditarily monotonic functionals from [1] hasthe following form. For any type � he de�nes the set G� � T� of hereditarilymonotonic functionals of type � and simultaneously a relation >Gandy on T� by(i) f 2 G () for all ~x; ~y 2 G; if ~x >Gandy ~y; then f(~x) > f(~y). Here~x >Gandy ~y means that at least once we have xi >Gandy yi and otherwisexj = yj .(ii) f >Gandy g () for all ~x 2 G; f(~x) > g(~x).This de�nition is not well suited for termination proofs. Consider e.g. the termxz(�y 0), where x is interpreted by x 2 G. Then also in the case [[M ]] >Gandy [[N ]]one cannot conclude [[xM(�y 0)]] > [[xN(�y 0)]], since [[�y 0]] 62 G. Hence Gandy in[1] had to restrict himself to �{I{terms. As an alternative it is tempting to replace\for all ~x; ~y 2 G" in (i) by \for all ~x; ~y 2M". Furthermore it turns out to be usefulto add f 2M to the right hand side of (i) and also f � g to the right hand side of(ii). On pairs, the order >Gandy is de�ned pointwise in [1]. We propose a changeto obtain a more well suited order for termination proofs. If in a pair hM;Ni, Mrewrites to M 0, with [[M ]] > [[M 0]], one wants to conclude that the correspondinginterpretation gets smaller. These considerations motivate the following de�nition:De�nition. For any type � we de�ne the set S� � M� of strict functionals oftype � and simultaneously a relation >str on T�.(i) f 2 S () f 2 M; and for all ~x; ~y 2 M[ f0; 1g; if ~x >str ~y; then f(~x) >f(~y). Here ~x >str ~y means that at least once we have xi >str yi and otherwisexj � yj .(ii) f >str g () f � g and(a) (base type) f > g; or(b) (arrow type) for all x 2 S; f(x) >str g(x); or(c) (product type) f(0) >str g(0) or f(1) >str g(1).Remark . In [7] a very similar modi�cation of Gandy's de�nition is used. In apreliminary version, the requirement f � g in (ii) was missing. For the examplesconsidered in [7], which only concern rewrite rules for constants of level � 2, thismakes no di�erence. However, if one considers higher order rewrite rules like thosefor the primitive recursion operators in G�odel's T , then it is necessary to be able toinfer f � g from f >str g. This property is not satis�ed without this requirement.(For the proof consider two functionals f ;g of level 2 satisfying for all x 2 Sthe inequality f(x) > g(x). Now modify these functionals on the non{strict, butmonotonic functions, e.g. by giving f on [[�z 0]] the value 0 and g on [[�z 0]] the value1.) From the de�nition it is clear that from f 2 S and x 2 M [ f0; 1g we canconclude f(x) 2 S. Furthermore from S � M we get immediately f >mon g =)f >str g:



Theorem. Let M be a term in � normal form and � 2 FV(M). Then for anystrict environment U and all f ;g 2 Mf >mon g =) [[M ]]U [�7!f ] >str [[M ]]U [�7!g]:Proof by induction on M . Let M be in long normal form. Let f ;g 2 M withf >mon g be given. Then � holds by Lemma 1(ii).Case �~x:� ~M . Let ~x 2 S and V := U [~x 7! ~x]. From f >mon g we getf([[ ~M ]]V [�7!f ]) >mon g([[ ~M ]]V [�7!f ])and therefore also >str. Furthermore from f >mon g we obtain f � g, hence[[ ~M ]]V [�7!f ] � [[ ~M ]]V [�7!g]. Now g([[ ~M ]]V [�7!f ]) � g([[ ~M ]]V [�7!g]) follows becauseg 2M.Case �~x:y ~M with y 6= �. Let ~x 2 S and V := U [~x 7! ~x]. For any i with� 2 FV(Mi) we have [[Mi]]V [�7!f ] >str [[Mi]]V [�7!g] by IH, hence [[ ~M ]]V [�7!f ] >str[[ ~M ]]V [�7!g]. Since V (y) 2 S, we obtain [[y ~M ]]V [�7!f ] > [[y ~M ]]V [�7!g].Case �~x:hM0;M1i. Then � 2 FV(Mi) for some i 2 f0; 1g. Let ~x 2 S andV := U [~x 7! ~x]. By IH [[Mi]]V [�7!f ] >str [[Mi]]V [�7!g] for this i. �This theorem shows that the strict functionals form an interesting class. In therest of this section we will explore the strict functionals and in the next sectionit will be shown how to use them in termination proofs. The �rst question is ofcourse, whether there exist such functionals at all. To construct strict functionals,we surely need them on the base types. Hence we assume that for any tuple�1; : : : ; �n; � of base types we are given a strict function + of type �1 ! : : : ! �n ! �(written in in�x notation, or as pre�x P; we will write 0� for +�.) Using this+, we simultaneously de�ne special functionals S� (a strict functional of type �for any �) and M� (a measure functional of type � ! o), where o is one of thebase types. In this de�nition, ~S~� denotes S�1 ; � � � ;S�n , and ~M(~f) is to be read asM(fi1); � � � ;M(fik), where fi1 ; � � � ; fik are the proper arguments among ~f , i.e. notthe 0 and 1 used for projections. These shortcuts will be used frequently. In thelast equation S�(~f) is to be of base type.De�nition. M~�!�(f) := +�!o(f(~S~�))M~�!��� (f) := M�(f(~S~� ; 0)) +M� (f(~S~� ; 1))S�(~f ) := X ~M(~f)In examples, we assume that the +~�!� are chosen in such a way that 0�1 + � � �+0�n = 0� holds for any combination of base types and +�!� is the identity. Forinstance, we may take 0 in N with usual order and addition, or else take the emptylist in N� and let + be concatenation and > be the comparison of lengths. Under



these assumptionsM� = S�!o. By induction on the types one can see immediatelythat M(S) = 0.Here are some examples: S� = 0�;S�!�(x) = x;S(�!�)!�(f) = f(0);S((�!�)!�!�)!(�!�)!�!�(F; f ;x) = F(S�!�; 0) + f(0) + x;S���!�hx;yi = x+ y;S���!���hx;yi = hx+ y;x+ yi;S��� = hS� ;S� i:Lemma 2. For any type �, both M� and S� are strict.Proof by simultaneous induction on the type �. If � is a base type, then S� = 0�and M�(n) = +�!o(n). Strictness is clear. So let � be some compound type.Let ~x; ~y 2 M[ f0; 1g be given, with ~x � ~y and S�(~x) of base type. The ~M in~M(~x) all have type smaller than �, so they are strict by IH, hence monotonic. Thisyields that ~M(~x) � ~M(~y), so also P ~M(~x) �P ~M(~y). This proves monotonicityof S�. Next, assume that ~x >str ~y holds. Then � holds, and for some i, xi >str yi.By IH M(xi) >M(yi), so P ~M(~x) >P ~M(~y). This proves that S� is strict.Next we prove strictness of M�. Let � = ~�! � , with � not an arrow type. Letf ;g 2M� be given. Note that the ~S~� are strict by IH, hence they are monotonic too.So if f � g, then f(~S~�) � g(~S~�). Moreover, if f >str g then f(~S~�) >str g(~S~�). In case� is a base type, this proves both monotonicity and strictness of M�. Otherwise,� = �0 � �1, and we use that M�0 and M�1 are strict by IH, and hence monotonictoo. The monotonicity of M� then follows from monotonicity of the projectionsand +. For strictness, note that either f(~S; 0) >str g(~S; 0) or f(~S; 1) >str g(~S; 1).For the other component � holds. Now strictness of M� follows from strictness ofthe M�i and of +o!o!o. �The success of the method, to be developed in Section 2, depends on �ndingstrict functionals. By now, we have only seen the S functionals as examples. Thefollowing lemma enables us to �nd a lot more strict functionals:Lemma 3. For any strict functional G and monotonic functional H, the func-tional F de�ned by F(~x) := G(~x) +H(~x), is strict.Proof. Let ~x >str ~y for some monotonic ~x and ~y. Then G(~x) > G(~y) (by strictnessof G). By the de�nition of >str, we obtain ~x � ~y, hence by monotonicity of H,H(~x) � H(~y). This yields F(~x) > F(~y). �Note that this result doesn't hold if one drops the requirement f � g in thede�nition of f >str g. So this addition is motivated by the fact that it enables us to�nd more strict functionals easily. We proceed with showing that one cannot getsmaller strict functionals.



Lemma 4. Consider the special case that the only ground domain is N with usualordering and addition. Then for any f 2 S�, f � S� .Proof . We use an operation L� (lower by 1) on functionals, de�ned by inductionon the type. L� takes two arguments, a functional f of type � and a sequence ~a inM[f0; 1g, such that f(~a) is of base type. The result of L�(f ; ~a) will be of type �.We will write L~a(f) for L�(f ; ~a).L"(n) := � 0 if n = 0n� 1 otherwiseLha;~ai(f ;x) := L~a(f(x))Lh0;~ai(hx;yi) := hL~a(x);yiLh1;~ai(hx;yi) := hx;L~a(y)i:Note that the ~a is only used to know which of the components of a product tolower. With induction on the types, it is easy to see that for any ~a and monotonicx,(i) L~a is monotonic, and(ii) M(L~a(x)) = L"(M(x)).We now prove the lemma by a main induction on �. For the base type, we haveto show that m � 0 for m 2 N, which clearly holds. If � = �� � , observe that byIH, for any strict pair hx;yi, hx;yi � hS�;S� i, and that the latter equals S� . If� = � ! � , we have to prove that for monotonic x, f(x) � S�(x). This is provedwith induction on M(x).If M(x) = 0, we use that f(x) is strict, hence f(x) � S� (main IH). Now formonotonic ~x we obtain f(x; ~x) � S� (~x) =M(x) + S� (~x) = S�(x; ~x).If M(x) = n + 1, we can �nd ~a with elements among S and 0 and 1, such thatx(~a) � 1. De�ne y := L~a(x). By (i) above, y is monotonic. We �rst show, thatx >str y. It su�ces to show that x(~z) > y(~z), where ~z is obtained from ~a byreplacing the real arguments by arbitrary strict functionals. (i.e. the 0 and 1s forprojections are not replaced.) By IH, we have that ~z � ~S, hence x(~z) � x(~a) � 1.Hence y(~z) = x(~z) � 1.Now we show that for monotonic ~x, f(x; ~x) � S�(x; ~x). Note that f(x; ~x) >f(y; ~x), because f is strict. By (ii) above M(y) = n. Hence we can apply the innerIH, and obtain f(y; ~x) � S�(y; ~x) = n + S(~x), hence f(x; ~x) � n + 1 + S(~x) =S�(x; ~x). �So we have found out that S(~x) + H(~x) is strict in ~x for monotonic H andthat S is a minimal strict one. One might wonder if all strict functionals havethe form S + monotonic. However, this is not the case. Consider F(f) := f(1),of type (o ! o) ! o. This is clearly strict. But the di�erence between F and Sis not monotonic: Put f(n) := max(1; n) and g(n) := n. Then f and g are bothmonotonic, and f � g. But g(1) � g(0) > f(1) � f(0).



2. TerminationTo be able to apply the theorem above to prove termination we of course need toknow that >str is a well{founded partial ordering on any T�. This can be provedif we assume that for the base types � we are given domains T� together with well{founded (partial) orderings >�.Proposition. >str is well-founded on any T�.Proof. Let (xi)i2N of type � be given. Consider (M�(xi))i2N. �Following [7] we de�ne a higher order term rewrite system (HRS) to be givenby rules L 7! R with closed terms L;R of the same type �. Then M1 ! M2(M1 rewrites to M2) is de�ned to mean that we have a �{normal term M with� 2 FV(M) such that for some rule L 7! RM1 =M [L=�]#� and M2 =M [R=�]#�:Here N#� denotes the �{normal form of the term N ; � is de�ned as usual for arrowtypes, and for product types by the two rules �ihM0;M1i 7!Mi.Note that we only require from L;R that they are closed terms of the sametype. Closedness is not a restriction, but it avoids substitutions in the de�nition ofa rewrite step. If L and R are not closed, one can simulate the stepM [L�]!M [R�]by M [(�~x:L)~x� ] ! M [(�~x:R)~x� ], where ~x is the list of variables occurring in l orr. Hence this notion of an HRS is quite liberal (and e.g. strictly includes the onegiven by Nipkow in [4]). The reason for this liberality is of course that terminationresults get stronger that way. See [8] for a comparison with other higher-orderrewrite formats.Example. Consider the rule �x:x + x 7! �xx. Then�u; v:c(�w:wu +wu)(v + v)! �u; v:c(�w:wu)vusing the term M := �u; v:c(�w:�(wu))(�v).Now we obtain as in [7] the following method to prove termination of higherorder rewrite systems.(1) For the base types � choose domains T� together with well{founded (partial)orders >�. Furthermore �nd for any tuple �1; : : : ; �n; � of base types a strictfunction + of type �1 ! : : : ! �n ! �.(2) Find an appropriate strict interpretation of the constants.(3) For any rule L 7! R of the higher order rewrite system show that[[L]] >mon [[R]]:Theorem. Any HRS satisfying (1){(3) is terminating.



Proof. Assume that we have (Mi)i2N such that Mi !Mi+1 for all i 2 N. Let U bea strict interpretation. Then we obtain[[Mi]]U = [[M [L=�]]]U= [[M ]]U [�7![[L]]]>str [[M ]]U [�7![[R]]] since [[L]] >mon [[R]]= [[M [R=�]]]U= [[Mi+1]]U :This contradicts the well{foundedness of >str. �In Section 3, termination of G�odel's T is proved using this method. Section 4contains a termination proof for the proper reductions and permutative conversionson derivation terms of �rst order logic. We �rst treat a well known small example,to illustrate the use of the proposed strategy to prove termination of HRSs.Consider terms built up from the constantsnil : ocons : o! o! o append : o! o! omap : (o! o)! o! o:The types are chosen such that e.g. map(�x append(x; x); `) is well typed. Termsof type o represent �nite lists of lists. The functions map and append are de�nedvia the following rewrite rules (for readability, we drop the initial �s):append(nil; `) 7! ` (i)append(cons(k; `);m) 7! cons(k; append(`;m)) (ii)map(f;nil) 7! nil (iii)map(f; cons(k; `)) 7! cons(f(k);map(f; `)) (iv)append(append(k; `);m) 7! append(k; append(`;m)) (v)map(f; append(`; k)) 7! append(map(f; `);map(f; k)) (vi)To prove termination, we have to satisfy (1), (2) and (3) above. For the grounddomain, we choose N, with the usual order and addition. The interpretation of theconstants is speci�ed in the following way:[[nil]] := 1[[cons]](m;n) := m+ n+ 1[[append]](m;n) := 2m+ n + 2 [[map]](f; n) :=Pni=0 f(i) + 3n+ 1The interpretations of nil, cons and append are obviously strict. Strictness of [[map]]follows e.g. by Lemma 3, if we write its de�nition as�f(0) + n�+ � nXi=1 f(i) + 2n+ 1�:Hence (1) and (2) are ful�lled. We still have to check (3). In the sequel k, `,m, f are arbitrary values for the corresponding variables. Note that f ranges over



monotonic functionals. For rule (v) e.g. the check boils down to the true inequality2 � (2`+ k + 2) +m+ 2 > 2`+ (2k +m+ 2) + 2. We don't present all calculationshere, but let us yet verify the most di�cult one, rule (vi):[[map(f; append(`; k))]]= 2`+k+2Xi=0 f(i) + 3 � (2`+ k + 2) + 1= X̀i=0 f(i) + 2`+1Xi=`+1 f(i) + 2`+k+2Xi=2`+2 f(i) + 6`+ 3k + 7> X̀i=0 f(i) + X̀i=0 f(i) + kXi=0 f(i) + 6`+ 3k + 5 because f is monotonic= 2 � (X̀i=0 f(i) + 3`+ 1) + ( kXi=0 f(i) + 3k + 1) + 2= [[append(map(f; `);map(f; k))]]For all rules, this relation between left- and right hand side hold. Therefore theHRS under consideration is terminating.3. Example: Higher order primitive recursionWe now apply this method to prove termination for the canonical rules associatedwith higher order primitive recursion from G�odel's T . These are based on constantsRec of type �! (o! �! �)! o! �, for any type �.Rec(g; h; 0) 7! g;Rec(g; h; s(x)) 7! h(x;Rec(g; h; x)):As ground domain we choose N with the usual addition + and the usual ordering>. Then (1) is clearly satis�ed. For (2) we choose a strict interpretation of theconstants Rec, as follows.[[Rec]](g;h; 0; ~x) = g(~x) + S(g;h; ~x) + 1;[[Rec]](g;h; n + 1; ~x) = h(n; [[Rec]](g;h; n); ~x) + [[Rec]](g;h; n; ~x) + 1:The strictness of [[Rec]] can be seen as follows.First we show that [[Rec]](g;h; n) for g;h 2 M and any n is monotonic, byinduction on n. Case 0. [[Rec]](g;h; 0) is monotonic, since g is. Case n + 1.[[Rec]](g;h; n + 1) is monotonic, since [[Rec]](g;h; n) and h are monotonic.Hence we get [[Rec]] 2M as follows. Let g;h; n; ~x 2M. It su�ces to show thatby decreasing these arguments inM in the sense of � the value [[Rec]](g;h; n; ~x) willget at most smaller. This clearly holds if n is decreased. For the other possibilitieswe �x n. In the case n = 0 the claim is obvious, in case n + 1 we need themonotonicity of [[Rec]](g;h; n).



Now we can show that [[Rec]] is strict. [[Rec]] 2 M has already been proved.Let g;h; n; ~x 2 M. It remains to show that by decreasing exactly one of thesearguments inM in the sense of >str the value [[Rec]](g;h; n; ~x) gets strictly smaller.This again clearly holds if n is decreased. For the other possibilities we �x n anduse Lemma 3:First note that [[Rec]](g;h; n; ~x) = S(g;h; ~x)+H(g;h; n; ~x), where H is de�nedby H(g;h; 0; ~x) = g(~x) + 1;H(g;h; n + 1; ~x) = h(n;S(g;h) �H(g;h; n); ~x) +H(g;h; n; ~x) + 1;here we have written x�y for the functional which takes the value x(~z) + y(~z) on~z. This can be proved easily by induction on n. Since H 2 M can be proved justas we proved [[Rec]] 2 M above, it follows from Lemma 3 that [[Rec]](g;h; n; ~x) isstrict for �xed n.For the proof of (3) let us �rst consider the rule Rec(g; h; 0) 7! g. We have toshow that for monotonic g;h; ~x we have[[Rec]](g;h; 0; ~x) > g(~x):This holds because of the summand 1 in the �rst de�ning equation for [[Rec]]. Forthe rule Rec(g; h; s(x)) 7! h(x;Rec(g; h; x)) we have to show that for monotonicg;h; ~x we have [[Rec]](g;h; n + 1; ~x) > h(n; [[Rec]](g;h; n); ~x):This clearly holds because of the summand 1 in the second equation of the de�nitionfor [[Rec]].4. Example: Permutative ConversionsThe next example comes from proof theory in the style of Prawitz. In [5] severalreductions are given, to bring proofs into a certain normal form. These are dividedin proper reductions and permutative conversions. Strong normalization is thenproved via a re�ned notion of strong computability, strong validity. In [1] alsoexamples taken from proof theory occur. There a normalization proof is given viahereditarily monotonic functionals, but the permutative conversions are not dealtwith. We also refer to [2] for another adaptation of Gandy's approach, which canbe extended to the full calculus including permutative conversions (See [2, Exc.2.C.10]). Instead of bounding reduction lengths by functionals, Girard uses thelength of a speci�c reduction path, given by a weak normalization theorem for thefull calculus.We present a termination proof for the whole calculus, including the permutativeconversions. However, for simplicity we don't include disjunction. We �rst reducethe calculus with derivation terms to an HRS. Termination of this HRS is proved



using the method of Section 2. The translation to an HRS is such that terminationof the derivation terms immediately follows.De�nition. Derivation terms are de�ned simultaneously with the set of free as-sumption variables (FA) occurring in them. We use A;B;C for formulae; d; e; ffor derivation terms; r; s for object terms; x; y for object variables and u; v forassumption variables; i ranges over 0, 1.uA(�uA dB)A!B(dA!BeA)BhdA; eBiA^B�i(dA0^A1 )Ai (�xdA)8xA;provided x =2 FV(B) for any uB 2 FA(d)(d8xA(x)r)A(r)hr; dA(r)i9xA(x)("xuA:d9xAeB)B ; provided x =2 FV(B) andx =2 FV(C) for any vC 2 FA(e) n fug.We de�ne FA("xu:de) := FA(d) [ (FA(e) n fug). In the other cases the set of freeassumption variables is de�ned as usual.The following conversion rules are taken from [5]. The �rst four are the properreductions, the last four are called permutative conversions. Again i ranges over 0,1. (�ud)e 7! d[u := e]�ihd0; d1i 7! di(�xd)r 7! d[x := r]"xu:(hr; die) 7! e[x; u := r; d] ("xu:de)f 7! "xu:d (ef)�i("xu:de) 7! "xu:d �i(e)("xu:de)r 7! "xu:d (er)"xu:("yv:de)f 7! "xu:d "yv:efTo translate this calculus into an HRS, we �rst have to transform formulae intotypes. This is done by removing the dependencies on object terms, also calledcollapsing. This technique is also used in [6, p. 560]. Collapsing A will be denotedby A�. In the following de�nition, P is a predicate symbol.P (~t)� = o(A! B)� = A� ! B�(A ^B)� = A� �B� (9xA)� = o�A�(8xA)� = o! A�Clearly, A� is a type for any formula A. The di�erence between implication andquanti�cation disappears. Existential quanti�ers and conjunctions are translatedinto product types.The derivation terms are translated too. We introduce a new constant 9�to model the "-construct. In the de�nition of a rewrite step, �-normalization isperformed implicitly. To avoid these implicit steps, we introduce another constantI, to block the �-redexes. So for any type � (and �) we have the following constants,which make the signature of the HRS we are constructing:I� : � ! � 9��;� : o� � ! (o! � ! �)! �To describe the translation precisely, we extend the collapse function on derivation



terms: (uA)� = uA�(�uA d)� = �uA� d�hd; ei� = hd�; e�i(�xd)� = �xo d�hr; di� = hr; d�i (dA!Be)� = IA�!B�(d�; e�)�i(dA^B)� = IA�^B�(d�; i)(d8xAr)� = Io!A�(d�; r)("xuA:deB)� = 9�A�;B�(d�; �xouA� :e�)Clearly (dA)� gives a term of type A� for any derivation term d. Due to the blockingI, d� cannot contain subtermsMN , withM an assumption variable, an abstractionor a pair. So d� is in �-normal form, even after substituting �-normal terms for freeassumption variables. Furthermore, it is easy to see that (d[u := e])� = d�[u := e�].Finally, we present the rewrite rules of the HRS. These are all well typed in-stances of the following schemata; i ranges over 0, 1.I�(x) 7! x (i)9��;� (hr; di; e) 7! e(r; d) (ii)I�!� (9��;�!� (d; e); f) 7! 9��;� (d; �xo u�:I�!� (e(x; u); f)) (iii)�i(I�0��1(9��;�0��1(d; e))) 7! 9��;�i (d; �xo u�:�i(I�0��1(e(x; u)))) (iv)9��;� (9��;o��(d; e); f) 7! 9��;� (d; �xo u�:9��;� (e(x; u); f)) (v)It is not di�cult to check that if d ! e for derivation terms d and e, then alsod� ! e� with the rules just described. The �rst rule deals with proper reductionsfor !, ^ and 8; the second with the proper 9{reduction. The third takes care ofpermutative conversions with ! and 8, the fourth with ^ and the last rule dealswith the permutative conversion for 9. We give as an example the proper !{reduction. Consider the rewrite step (�ud)e! d[u := e]. The �rst derivation termtranslates to I(�ud�; e�). Now rule (i) is applicable. Literal replacement yields(�ud�)e�, which has to be rewritten to �-normal form, due to the de�nition of arewrite step. This normal form is d�[u := e�], which is exactly the translation ofthe second derivation term.Next we prove termination of the HRS, by carrying out the strategy of Sec-tion 2. As domain we (again) choose N (with standard order and addition). Theinterpretation of I is de�ned by[[I]](f ;~z) := S(f ;~z) + f(~z) + 1:This is strict by Lemma 3, and clearly [[I]](x) >mon x for any monotonic x. Thisalready proves termination of the proper reduction rules for !, ^ and 8 and inparticular of the simply typed lambda calculus with products. (Note however,that we used the unique �-normal form of simply typed terms. In fact, weaknormalization su�ces at meta{level.)Due to the presence of the permutative conversions, it is more di�cult to �nda well-suited interpretation of 9�. We �rst need auxiliary functionals A� of type� ! �, which calculate the price of repeated! and �{eliminations. Here the value



of the blocking constant has to be taken into account. This leads to the followingde�nition: Ao(n) := n+ 1;A�!� (f ;x) := A� ([[I]](f ;x));A�0��1(f ; i) := A�i([[I]](f ; i)); for i = 0; 1.With induction on the type and using strictness of [[I]], one easily checks that Ais strict. Also A(x) >mon x can be proved with induction. Let An(x) denote then{fold application of A on x. We write x � y for the functional which takes thevalue x(~z) + y(~z) on ~z. Now we can de�ne[[9��;� ]](d; e) = A2S(d)� (e(�0(d);S� � �1(d))):Let us �rst explain the intuition behind this interpretation. Due to the �-rulefor 9�, we need a subterm e(�0(d); �1(d)). The summand S� is added to achievestrictness in e. With a permutative conversion, the second argument of the 9� getsbigger. After an application of rule (iii), the argument f appears inside the 9�.Note however, that the type of the involved 9� goes down. So the value of an 9� ofhigher type has to count for the value of f , which is still raised by the value of theblocking I. This explains the occurrence of A (which is de�ned by induction on thetypes). The same intuition applies to rule (iv). The last permutative conversionis still more involved. Here the type doesn't go down. The only thing which goesdown is the left argument of the 9�{symbols involved. So the value of 9� hasto weigh its �rst argument rather high, to compensate for the increasing secondargument. This explains the 2S(d) in the previous de�nition.Monotonicity of [[9�]] follows from monotonicity of A. Next strictness is proved.Let e; f ;x;y be monotonic. If x >str y, then by monotonicity of e, e(�0(x);S ��1(x)) � e(�0(y);S��1(y)). Furthermore 2S(x) > 2S(y). BecauseA(x) >mon x forall x, it follows that [[9�]](x; e) >mon [[9�]](y; e). This proves strictness in the �rstargument. Next, assume that e >str f . Note that both �0(x) and S��1(x) are strict(the �rst is of base type, the second by Lemma 3). Hence e(�0(x);S � �1(x)) >strf(�0(x);S � �1(x)). Now [[9�]](x; e) >mon [[9�]](x; f ) follows from strictness of A.This proves strictness in the second argument. Strictness in the next argumentsdirectly follows from strictness of A.Now we verify condition (3) from Section 2 for the last three rules. First weshow this for the proper 9�{rule. Let r, d and e be monotonic. Then, usingA(x) >mon x for monotonic x, we get:[[9�]](hr;di; e) >mon e(r;S�d) � e(r;d):Hence, in any monotonic environment [[9�hr; die]] >mon [[erd]].Next we verify the same relation for rules (iii) and (iv), permutative conversionsfor !, 8 and ^. These two rules can be written as:I(9�(d; e); f) 7! 9�(d; �xu:I(e(x; u); f ));



where f is a term or 0 or 1 for the projections.Let d; e; f ;~z be monotonic. Put a := [[9�]](d; e); b(x;u) := [[I]](e(x;u); f) andc := e(�0(d);S � �1(d)). Note that a � A(c) >mon c. We have to show that[[I]](a; f ;~z) > [[9�]](d;b;~z).[[I]](a; f ;~z) = S(a; f ;~z) + a(f ;~z) + 1> [[9�]](d; e; f ;~z)= A2S(d)(c)(f ;~z):[[9�]](d;b;~z) = A2S(d)(b(�0(d);S � �1(d)))(~z)= A2S(d)([[I]](c; f))(~z):So it su�ces to prove that An+1(c)(f) � An+1([[I]](c; f)). This is proved by induc-tion on n. If n = 0, both terms are equal by de�nition of A. The successor caseuses that [[I]](x) >mon x, for all monotonic x:An+2(c)(f) = A(An+1(c); f )= A([[I]](An+1(c); f)) by de�nition of A> A(An+1(c)(f))� A(An+1([[I]](c; f))) by IH= An+2([[I]](c; f)):Finally, we have to prove condition (3) for the 9�9� permutative conversion,9��;� (9��;o��(d; e); f) 7! 9��;� (d; �xo u�:9��;� (e(x; u); f)):Let d; e; f be monotonic. Put a := [[9�]](d; e); b(x;u) := [[9�]](e(x;u); f ) andc := e(�0(d);S� �1(d)). We have to show that [[9�]](a; f ) >mon [[9�]](d;b). Againwe have a � A(c) >mon c, so S(a) > S(c). From the left hand side of the rule it isclear that a is of product type. Hence, S(a) = a(0)+S(a(1)). Because S(a(1)) > 0,we obtain S(a) > a(0) = A2S(d)(c)(0) � 2S(d) � S(d) + 1. Hence2S(a) � 2maxfS(d)+1;S(c)g+1 � 1 + 2S(d) + 2S(c):Now we can compute:[[9�]](a; f ) = A2S(a)(f(�0(a);S � �1(a)))>mon A2S(d)(A2S(c)(f(�0(a);S � �1(a))))� A2S(d)(A2S(c)(f(�0(c);S � �1(c))))= A2S(d)([[9�]](c; f ))= A2S(d)(b(�0(d);S � �1(d)))= [[9�]](d;b):We have shown that for all rules, the left hand side is greater than the righthand side. Hence the HRS is terminating. This directly implies termination for thecalculus with derivation terms presented at the beginning of this section.



References[1] Robin O. Gandy. Proofs of strong normalization. In J.P. Seldin and J.R. Hind-ley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculusand Formalism, pages 457{477. Academic Press, 1980.[2] Jean-Yves Girard. Proof Theory and Logical Complexity. Bibliopolis, Napoli,1987.[3] Gerard Huet and Derek Oppen. Equations and rewrite rules | a survey. InFormal Language Theory | Perspectives and Open Problems, pages 349{405.Academic Press, 1980.[4] Tobias Nipkow. Orthogonal higher{order rewrite systems are conuent. InM. Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications,volume 664 of Lecture Notes in Computer Science, pages 306{317, Berlin, 1993.Springer.[5] Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Pro-ceedings of the Second Scandinavian Logic Symposium, pages 235{307. North{Holland, Amsterdam, 1971.[6] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics. AnIntroduction, volume 121, 123 of Studies in Logic and the Foundations of Math-ematics. North{Holland, Amsterdam, 1988.[7] Jaco van de Pol. Termination proofs for higher{order rewrite systems. InJ. Heering, K. Meinke, B. M�oller, and T. Nipkow, editors, Higher{Order Al-gebra, Logic and Term Rewriting (HOA '93), volume 816 of Lecture Notes inComputer Science, pages 305{325, Berlin, 1994. Springer.[8] Vincent van Oostrom. Conuence for Abstract and Higher{Order Rewriting.PhD thesis, Vrije Universiteit, Amsterdam, 1994.


