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Abstract. We prove constructively (in the style of Bishop) that every
monotone continuous function with a uniform modulus of increase has
a continuous inverse. The proof is formalized, and a realizing term
extracted. This term can be applied to concrete continuous functions
and arguments, and then normalized to a rational approximation of say
a zero of a given function. It turns out that even in the logical term
language “normalization by evaluation” is reasonably efficient.

1. Introduction

There have been many attempts to formalize constructive analysis as
presented in Bishop’s classic [6]. One reason to do this is to uncover the
computational content of constructive proofs, an aspect that has been one
of the motivations of the FTA project [8], where Kneser’s constructive proof
of the fundamental theorem of algebra was formalized in Coq. This work has
recently been extended to build a “Constructive Coq Repository (C-CoRN)”
at Nijmegen (Barendregt, Geuvers, Wiedijk, Cruz-Filipe [7]). However, ex-
traction of reasonable program from proofs in this setup turned out to be
problematic. One reason is that witnesses were missing from compuational
meaningful axioms (e.g., strong extensionality ∀x,y.f(x)#f(y) → x#y), an-
other one that the Set, Prop distinction in Coq was found to be insufficient
(cf. [7]). Here we desribe a different formalization of constructive analysis,
from the point of view of later term extraction. In particular, we deal with
the existence of a continuous inverse to a monotonically increasing continu-
ous function. The proof uses the Intermediate Value Theorem IVT.

Some optimizations in definitions and proofs are necessary to produce
extracted terms that can be evaluated efficiently. These are (a) addition
of external code to the definitions of arithmetical operations, which is used
(based on the corresponding function of the programming language) when
the arguments are numerals; (b) introduction of the let-construct in ex-
tracted terms; (c) “non-computational” quantifiers [3].

The paper extends [15] by a formalization of and term extraction from the
theorem on the existence of inverse functions. It turns out that in spite of
the harder theorem (compared with IVT) one obtains even better extracted
terms. – I have tried to make this paper readable independently of [15].

2. Inverse Functions

We prove that every continuous function with a uniform modulus of in-
crease has a continuous inverse. A constructive proof of this fact has been
given by Mandelkern [13]. More recently, J. Berger [2] introduced a concept
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he called “exact representation of continuous functions”, and based on this
gave a construction converting one such representation of an increasing func-
tion into another one of its inverse. The proof below is based on a particular
concept of a continuous function, as a type-1 object (using separability of
the real numbers).

The setup of constructive analysis is essentially the one of Bishop [6], and
is only sketched here. More detailed elaborations can be found in [1, 15].

We view a real x as a Cauchy sequence (an)n of rationals with a separately
given modulus M . When comparing two reals, x < y needs a witness,
but x ≤ y doesn’t; in fact, we can prove x 6< y ↔ y ≤ x. For reals
x = ((an)n,M) and y := ((bn)n, N), define x <k y to mean 1/2k ≤ bp − ap,
for p := max(M(k + 2), N(k + 2)).

Constructively we cannot compare two reals, but we can compare a real
with a proper interval:

Lemma (ApproxSplit). Let x, y, z be given and assume x < y. Then either
z ≤ y or x ≤ z.

Proof. Let x := ((an)n,M), y := ((bn)n, N), z := ((cn)n, L). Assume x <k y,
and let q := max(p, L(k + 2)) and d := (bp − ap)/4.

Case cq ≤ ap+bp

2 . We show z ≤ y. It suffices to prove cn ≤ bn for n ≥ q.
To see this, observe

cn ≤ cq +
1

2k+2
≤ ap + bp

2
+

bp − ap

4
= bp −

bp − ap

4
≤ bp −

1
2k+2

≤ bn

Case cq 6≤ ap+bp

2 . We show x ≤ z, via an ≤ cn for n ≥ q.

an ≤ ap +
1

2k+2
≤ ap +

bp − ap

4
≤ ap + bp

2
− bp − ap

4
≤ cq −

1
2k+2

≤ cn.

This concludes the proof. �

A continuous function f : I → R on a compact interval I with rational
end points is given by
(a) an approximating map hf : (I∩Q)×N → Q and a map αf : N → N such

that (hf (a, n))n is a Cauchy sequence with (uniform) modulus αf ;
(b) a modulus ωf : N → N of (uniform) continuity, which satisfies

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k for n ≥ αf (k);

αf and ωf are required to be weakly increasing. One may also add a lower
bound Nf and an upper bound Mf for all hf (a, n).

Notice that a continuous function is given by objects of type level ≤ 1
only. This is due to the fact that it suffices to define its values on rational
numbers.

To prove the Intermediate Value Theorem, we begin with an auxiliary
lemma, which from a “correct” interval c < d (that is, f(c) ≤ 0 ≤ f(d) and
2−n ≤ d− c) constructs a new one c1 < d1 with d1 − c1 = 2

3(d− c).
We say that l ∈ N is a uniform modulus of increase for f : [a, b] → R if

for all c, d ∈ [a, b] and all m ∈ N

2−m ≤ d− c → f(c) <m+l f(d).
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Lemma (IVTAux). Let f : [a, b] → R be continuous, and with a uniform
modulus l of increase. Assume a ≤ c < d ≤ b, say 2−n < d − c, and
f(c) ≤ 0 ≤ f(d). Then we can construct c1, d1 with d1− c1 = 2

3(d− c), such
that again a ≤ c ≤ c1 < d1 ≤ d ≤ b and f(c1) ≤ 0 ≤ f(d1).

Proof. Let c0 = c+ d−c
3 = 2c+d

3 and d0 = c+ 2(d−c)
3 = c+2d

3 . From 2−n < d−c

we obtain 2−n−2 ≤ d0 − c0, so f(c0) <n+2+l f(d0). Now compare 0 with
this proper interval, using ApproxSplit. In the first case we have 0 ≤ f(d0);
then let c1 = c and d1 = d0. In the second case we have f(c0) ≤ 0; then let
c1 = c0 and d1 = d. �

Theorem (IVT). If f : [a, b] → R is continuous with f(a) ≤ 0 ≤ f(b), and
with a uniform modulus of increase, then we can find x ∈ [a, b] such that
f(x) = 0.

Proof. Iterating the construction in the auxiliary lemma IVTAux above, we
construct two sequences (cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f(cn) ≤ 0 ≤ f(dn),

dn − cn =
(
2/3

)n(b− a).

Let x, y be given by the Cauchy sequences (cn)n and (dn)n with the obvious
modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y. �

From the Intermediate Value Theorem we obtain

Theorem (Inv). Let f : [a, b] → R be continuous with a uniform modulus
of increase, and assume f(a) ≤ a′ < b′ ≤ f(b). We can find a continuous
g : [a′, b′] → R such that f(g(y)) = y for every y ∈ [a′, b′] and g(f(x)) = x
for every x ∈ [a, b] such that a′ ≤ f(x) ≤ b′.

Proof. Let f : [a, b] → R be continuous with a uniform modulus of increase,
that is, some l ∈ N such that for all c, d ∈ [a, b] and all m ∈ N

2−m ≤ d− c → f(c) <m+l f(d).

Let f(a) ≤ a′ < b′ ≤ f(b). We construct a continuous g : [a′, b′] → R.
Let u ∈ [a′, b′] be rational. Using f(a)− u ≤ a′ − u ≤ 0 and 0 ≤ b′ − u ≤

f(b)−u, the IVT gives us an x such that f(x)−u = 0, as a Cauchy sequence
(cn). Let hg(u, n) := cn. Define the modulus αg such that for n ≥ αg(k),
(2/3)n(b − a) ≤ 2−ωf (k+l+2). For the uniform modulus ωg of continuity
assume a′ ≤ u < v ≤ b′ and k ∈ N. We claim that with ωg(k) := k + l + 2
(l from the hypothesis on the slope) we can prove the required property

|u− v| ≤ 2−ωg(k)+1 → |hg(u, n)− hg(v, n)| ≤ 2−k (n ≥ αg(k)).

Let a′ ≤ u < v ≤ b′ and n ≥ αg(k). For c
(u)
n := hg(u, n) and c

(v)
n := hg(v, n)

assume that |c(u)
n − c

(v)
n | > 2−k; we must show |u− v| > 2−ωg(k)+1.

By the proof of the Intermediate Value Theorem we have

d(u)
n − c(u)

n ≤ (2/3)n(b− a) ≤ 2−ωf (k+l+2) for n ≥ αg(k).



4 HELMUT SCHWICHTENBERG

Using f(c(u)
n ) − u ≤ 0 ≤ f(d(u)

n ) − u, the fact that a continuous function f
has ωf as a modulus of uniform continuity gives us

|f(c(u)
n )− u| ≤ |(f(d(u)

n )− u)− (f(c(u)
n )− u)| = |f(d(u)

n )− f(c(u)
n )| ≤ 2−k−l−2

and similarly |f(c(v)
n )−v| ≤ 2−k−l−2. Hence, using |f(c(u)

n )−f(c(v)
n )| ≥ 2−k−l

(which follows from |c(u)
n − c

(v)
n | > 2−k by the hypothesis on the slope),

|u− v| ≥ |f(c(u)
n )− f(c(v)

n )| − |f(c(u)
n )− u| − |f(c(v)

n )− v| ≥ 2−k−l−1.

Now f(g(u)) = u follows from

|f(g(u))− u| = |hf (cn, n)− u| ≤ |hf (cn, n)− hf (cn,m)|+ |hf (cn,m)− u|,

which is ≤ 2−k for n, m ≥ αf (k + 1). Since continuous functions are deter-
mined by their values on the rationals, we have f(g(y)) = y for y ∈ [a′, b′].

For every x ∈ [a, b] with a′ ≤ f(x) ≤ b′, from g(f(x)) < x we obtain the
contradiction f(x) = f(g(f(x))) < f(x) by the hypothesis on the slope, and
similarly for >. Using u 6< v ↔ v ≤ u we obtain g(f(x)) = x. �

As an example, consider the squaring function f : [1, 2] → [1, 4], given by
the approximating map hf (a, n) := a2, constant Cauchy modulus αf (k) :=
1, and modulus ωf (k) := k + 1 of uniform continuity. The modulus of
oncrease is l := 0, because for all c, d ∈ [1, 2]

2−m ≤ d− c → c2 <m d2.

Then hg(u, n) := c
(u)
n , as constructed in the IVT for x2−u, iterating IVTAux.

The Cauchy modulus αg is such that (2/3)n ≤ 2−k+3 for n ≥ αg(k), and the
modulus of uniform continuity is ωf (k) := k + 2.

3. Formalization

We now aim at formalizing the proof above, with the planned extraction of
realizing terms in mind. For this purpose it is clearly important to represent
the underlying mathematical objects in an appropriate way.

It is tempting to start with groups, rings, fields etc. (as in [8, 7]). How-
ever, it turned out that in such a general approach it is hard to control the
computational content of the proofs, and hence its extracted terms. This
does not mean that an abstract approach is impossible for our task, but for
the moment we prefer the more “concrete” setup, with explicit constructions
of the objects.

• Positive natural numbers are written in binary; we take them as
generated from 1 by two successors n 7→ 2n and n 7→ 2n + 1. In the
corresponding free algebra we have the constructors One, SZero and
SOne.

• An integer is either a positive number, or zero, or a negative number.
• A rational is a pair of an integer and a positive, written i#n. Notice

that equality of rationals is not the literal one, but given by the usual
equivalence relation.

• A real is a pair of a Cauchy sequence of rationals and a modulus. We
view the reals as a data type (i.e., no properties), with constructor
RealConstr as M, whose components are written x seq and x mod.
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Within this data type we inductively define the predicate Real x,
meaning that x is a (proper) real.

• A continuous function is viewed as an element of a data type with
constructor ContConstr, whose fields are written f doml, f domr
(for the left and right end point of its domain), f approx (for the
approximating function), f uMod (for the uniform Cauchy modulus)
and f uModCont (for the modulus of uniform continuity). Within
this data type we have an inductively defined predicate Cont f,
meaning that f is a (proper) continuous function.

From this material we can now build typed lambda terms, as usual. They
are terms in the sense of Gödel’s T [9], that is, contain (structural) recursion
operators for every data type (i.e., free algebra), with arbitrary value types.
These terms are the basis of our logical (better: arithmetical) system, which
contains an induction scheme (w.r.t. arbitrary formulas) for every data type.

The formalization itself is (tedious but) straightforward; proof scripts are
available at www.minlog-system.de, in the directory examples/analysis.

4. Terms and their evaluation

4.1. Computation rules. Computable functionals are defined by “compu-
tation rules” [5, 4]; these rules are added to the standard conversion rules
of typed λ-calculus. To simplify equational reasoning, terms with the same
normal form are identified.

A system of computation rules for a defined constant D consists of finitely
many equations D ~Pi = Qi (i = 1, . . . , n) with constructor patterns ~Pi, such
that ~Pi and ~Pj (i 6= j) are non-unifiable. Constructor patterns are lists
of applicative terms with distinct variables, defined inductively as follows
(we write ~P (~x ) to indicate all variables in ~P ; all expressions must be type-
correct):

• x(x) is a constructor pattern.
• If C is a constructor and ~P (~x ) a constructor pattern, then (C ~P )(~x )

is a constructor pattern.
• If ~P (~x ) and Q(~y ) are constructor patterns whose variables ~x and ~y

are disjoint, then (~P ,Q)(~x, ~y ) is a constructor pattern.
One instance of such rules is the definition of the fixed point operator Yρ

of type (ρ ⇒ ρ) ⇒ ρ, by Yρf = f(Yρf), which clearly defines a partial
functional. Another important example are the (Gödel) structural recursion
operators.

However, in practice one wants to define computable functionals by recur-
sion equations, and if possible consider total functionals only. This can be
achieved if the patterns on the lhs are “complete” (as for the structural recu-
sion operator) and moreover the rules terminate (as for Gödel’s T [9]). Then
every closed term of ground type reduces to a “numeral” (or a “canonical
term”), that is, a term built from constructors only.

For example, addition for rational numbers is defined by the computation
rule converting (i1#k1)+(i2#k2) into i1*k2+i2*k1#k1*k2.

4.2. External code as part of arithmetical constants. A problem
when computing on rationals with the rule above is that the gcd is not
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cancelled out automatically. Therefore we add “external code” to the inter-
nal representation of the function. It works as follows: whenever addition
for rationals is called with numerical arguments, these arguments are con-
verted into Scheme rationals, then added with the rational addition function
of Scheme, and the result is converted back into the internal representation
(using the #-constructor) of a rational.

4.3. Cleaning of Reals. After some computations involving real numbers
it is to be expected that the rational numbers occurring in the Cauchy
sequences may become rather complex. Hence under computational aspects
it is necessary to be able to clean up a real, as follows.

Lemma 4.1. For every real x = ((an)n,M) we can construct an equivalent
real y = ((bn)n, N) where the rationals bn are of the form cn/2n with integers
cn, and with modulus N(k) = k + 2.

Proof. Let cn := baM(n) · 2nc and bn := cn · 2−n, hence

cn

2n
≤ aM(n) <

cn

2n
+

1
2n

with cn ∈ Z.

Then for m ≤ n

|bm − bn| = |cm · 2−m − cn · 2−n|
≤ |cm · 2−m − aM(m)|+ |aM(m) − aM(n)|+ |aM(n) − cn · 2−n|
≤ 2−m + 2−m + 2−n

< 2−m+2,

hence |bm − bn| ≤ 2−k for n ≥ m ≥ k + 2 =: N(k), so (bn)n is a Cauchy
sequence with modulus N .

To prove that x is equivalent to y := ((bn)n, N), observe

|an − bn| ≤ |an − aM(n)|+ |aM(n) − cn · 2−n|

≤ 2−k−1 + 2−n for n, M(n) ≥ M(k + 1)

≤ 2−k if in addition n ≥ k + 1.

Hence |an−bn| ≤ 2−k for n ≥ max(k+1,M(k+1)), and therefore x = y. �

5. Extracted terms

5.1. Realizability. We first describe some proof-theoretic background on
term extraction, as it is implemented in the Minlog proof assistant (www.
minlog-system.de). It is based on modified realizability as introduced by
Kreisel [11]: from every constructive proof M (in natural deduction) of a
formula A with computational content one extracts a term [[M ]] “realizing”
A. This term usually is much shorter than the proof it came from, because in
the process all subproofs of formulas without computational content can be
ignored. The extracted term has a type τ(A) which depends on the logical
shape of the proven formula A only.

An important aspect of this “internal” term extraction (compared with
say the extraction of OCaml programs in Coq [12]) is that one stays within
the language of the logical theory, and hence – for a particular proof M
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– can prove within the system that the extracted term indeed realizes the
formula A (the “Soundness Theorem”).

Of course, there is a good reason to extract programs rather than terms:
running programs is much faster than evaluating (closed) terms. However,
the point made in the previous paragraph is a strong argument for term
extraction, particularly in safety critical applications. Moreover, as should
become clear from what is done in the present paper, with some care one
may well design proofs (and the underlying data types) in such a way that
the extracted terms are short and easy to read and evaluate. One can then
go on and (automatically) translate these terms into code of a functional
programming language, for faster evaluation (cf. [15] for an example).

5.2. Quantifiers without computational content. Besides the usual
quantifiers, ∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc

and ∃nc, which allow for the extraction of simpler terms. The nc-quantifiers,
which were first introduced in [3], can be viewed as a refinement of the
Set/Prop distinction in constructive type systems like Coq or Agda. Intu-
itively, a proof of ∀nc

x A(x) (A(x) non-Harrop, i.e., with a strictly positive
occurrence of an existential quantifier) represents a procedure that assigns
to every x a proof M(x) of A(x) where M(x) does not make “computational
use” of x, i.e., the extracted term [[M(x)]] does not depend on x. Dually,
a proof of ∃nc

x A(x) is a proof of M(x) for some x where the witness x is
“hidden”, that is, not available for computational use. Consequently, the
types of extracted terms for nc-quantifiers are τ(∀nc

xρA) = τ(∃nc
xρA) = τ(A)

as opposed to τ(∀xρA) = ρ ⇒ τ(A) and τ(∃xρA) = ρ × τ(A). The extrac-
tion rules are, for example in the case of ∀nc-introduction and -elimination,
[[(λx.MA(x))∀

nc
x A(x)]] = [[M ]] and [[(M∀nc

x A(x)t)A(t)]] = [[M ]] as opposed to
[[(λx.MA(x))∀xA(x)]] = [[λxM ]] and [[(M∀xA(x)t)A(t)]] = [[Mt]]. In order for
the extracted terms to be correct the variable condition for ∀nc-introduction
needs to be strengthened by requiring in addition the abstracted variable x
not to occur in the extracted term [[M ]]. Note that for a Harrop formula
A the formulas ∀nc

x A and ∀xA are equivalent; similarly, ∃nc
x A and ∃xA are

equivalent.

5.3. Animation. Suppose a proof of a theorem uses a lemma. Then the
proof term contains just the name of the lemma, say L. In the term extracted
from this proof we want to preserve the structure of the original proof as
much as possible, and hence we use a new constant cL at those places where
the computational content of the lemma is needed. When we want to ex-
ecute the program, we have to replace the constant cL corresponding to a
lemma L by the extracted program of its proof. This can be achieved by
adding computation rules for cL and cGA. We can be rather flexible here and
enable/block rewriting by using animate/deanimate as desired.

5.4. Removal of duplicated parts in terms. In machine generated terms
(e.g., those obtained by term extraction) it often happens that a subterm has
many occurrences in a term, which leads to unwanted recomputations when
evaluating it. A possible cure is to “optimize” the term after extraction,
and replace for instance M [x := N ] with many occurrences of x in M by
(λxM)N (or a corresponding “let”-expression). However, this can already
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be done at the proof level: When an object (value of a variable or realizer of
a premise) might be used more than once, make sure (if necessary by a cut)
that the goal has the form A → B or ∀xA. Now use the “identity lemma”
Id : P̂ → P̂ , whose predicate variable P̂ is then instantiated with A → B or
∀xA; its realizer has the form λf, x.fx. However, if Id is not animated, the
extracted term has the form cId(λxM)N , which is printed as [let x N M ].

5.5. Extracted terms. The term extracted from the proof of ApproxSplit
is
(Rec real=>real=>real=>pos=>boole)
([as4,M5]

(Rec real=>real=>pos=>boole)
([as9,M10]
(Rec real=>pos=>boole)
([as13,M14,n15]

as13(M5(S(S n15))max M10(S(S n15))max M14(S(S n15)))<=
(as4(M5(S(S n15))max M10(S(S n15)))+
as9(M5(S(S n15))max M10(S(S n15))))/2)))

of type real=>real=>real=>pos=>boole. It takes three reals x, y, z with
moduli M,N,K (here given by their Cauchy sequences as4, as9, as13 and
moduli M5, M10, M14) and a positive number k (here n15), and computes
p := max(M(k + 2), N(k + 2)) and q := max(p, L(k + 2)). Then the choice
whether to go right or left is by computing the boolean value cq ≤ ap+bp

2 .
For the auxiliary lemma IVTAux we obtain the extracted term

[f0,n1,n2]
(cId rat@@rat=>rat@@rat)
([cd4]

[let cd5
((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (cApproxSplit(RealConstr(f0 approx left cd5)

([n6]f0 uMod(S(S n6))))
(RealConstr(f0 approx right cd5)

([n6]f0 uMod(S(S n6))))
0
(S(S(n2+n1))))

(left cd4@right cd5)
(left cd5@right cd4)]])

of type cont=>pos=>pos=>rat@@rat=>rat@@rat. As in the informal proof,
it takes a continuous f (here f0), a uniform modulus l of increase (here n1),
a positive number n (here n2) and two rationals c, d (here the pair cd4)
such that 2−n < d − c. Let c0 := 2c+d

3 and d0 := c+2d
3 (here the pair cd5,

introduced via let because it is used four times). Then ApproxSplit is
applied to f(c0), f(d0), 0 and the witness n + 2 + l (here S(S(n2+n1))) for
f(c0) < f(d0). In the first case we go left, that is c1 := c and d1 := d0, and
in the second case we go right, that is c1 := c0 and d1 := d.

In the proof of the Intermediate Value Theorem, the construction step in
IVTAux (from a pair c, d to the “better” pair c0, d0) had to be iterated, to
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produce two sequences (cn)n and (dn)n of rationals. This is the content of
a separate lemma IVTcds, whose extracted term is

[f0,n1,n2](cDC rat@@rat)(f0 doml@f0 domr)
([n4]cIVTAux f0 n1(n2+n4))

of type cont=>pos=>pos=>pos=>rat@@rat. It takes a continuous f : [a, b] →
R (here f0), a uniform modulus l of increase (here n1), and a positive number
k0 (here n2) such that 2−k0 < b − a. Then the axiom of dependent choice
DC is used, to construct from an initial pair (c0, d0) = (a, b) of rationals
(here f0 doml@f0 domr) a sequence of pairs of rationals, by iterating the
computational content cIVTAux of the lemma IVTAux.

The proof of the Inversion Theorem does not use the Intermediate Value
theorem directly, but its essential ingredient IVTcds. Its extracted term is

[f0,n1,n2,n3,a4,a5]
ContConstr a4 a5
([a6,n7]

left((cACT rat pos=>rat@@rat)
([a8]
(cIPT pos=>rat@@rat)
((cIPT pos=>rat@@rat)
(cIVTcds
(ContConstr f0 doml f0 domr
([a12,n13]f0 approx a12 n13-a8)
f0 uMod
f0 uModCont)
n1
n2)))

a6
n7))

([n6]n3+f0 uModCont(S(S(n6+n1))))
([n6]S(S(n6+n1)))

It takes a continuous function f (here f0), a uniform modulus l of increase
(here n1), positive numbers k0, k1 (here n2, n3) such that 2−k0−1 < b− a <
2k1 and two rationals a1 < a2 (here a4, a5) in the range of f . Then the
continuous inverse g is constructed (via ContConstr) from

• an approximating map,
• a uniform Cauchy modulus (involving the one from f), and
• an easy and explicit modulus of uniform continuity.

The approximating map takes a, u (here a6, n7). Ignoring the computational
content cACT, cIPT of ACT, IPT (which are identities), it yields the left
component (i.e., the Cauchy sequence) of the result of applying cIVTcds to
a continuous function close to the original f .

To compute numerical approximations of values of an inverted function
we need RealApprox, stating that every real can be approximated by a
rational. Its extracted term is

(Rec real=>pos=>rat)([as2,M3,n4]as2(M3 n4))
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of type real=>pos=>rat. It takes a real x (here given by the Cauchy se-
quence as2 and modulus M3) and a positive number k (here n4), and com-
putes a rational a such that |x − a| ≤ 2−k. Notice that the Rec-operator
is somewhat trivial here: it just takes the given real apart. This is because
the data type of the reals has no inductive constructor.

To compose Inv with RealApprox, we prove a proposition InvApprox
stating that given an error bound, we can find a rational approximating
the value of the inverted function g up to this bound. Clearly we need to
refer to this value and hence the inverted function g in the statement of the
theorem, but on the other hand we do not want to see a representation of g in
the extracted term, but only the construction of the rational approximation
from the error bound. Therefore in the statement of InvApprox we use the
non-computational quantifier ∃nc (see Section 5.2), for the inversion g of the
given continuous f . The extracted term of InvApprox then simply is
[f0,n1,n2,n3,a4,a5,a6]
cRealApprox
(RealConstr((cInv f0 n1 n2 n3 a4 a5)approx a6)
([n8](cInv f0 n1 n2 n3 a4 a5)uMod(S(S n8))))

of type cont=>pos=>pos=>pos=>rat=>rat=>rat=>pos=>rat.
Now we “animate” the auxiliary lemmas, that is, add computation rules

for all constants with “c” in front of name of the lemma. For InvApprox
this gives
[f0,n1,n2,n3,a4,a5,a6,n7]
left((cDC rat@@rat)(f0 doml@f0 domr)

([n8]
(cId rat@@rat=>rat@@rat)
([cd10]
[let cd11
((2#3)*left cd10+(1#3)*right cd10@
(1#3)*left cd10+(2#3)*right cd10)
[if (0<=(f0 approx left cd11

(f0 uMod(S(S(S(S(S(S(n2+n8+n1))))))))-
a6+
(f0 approx right cd11
(f0 uMod(S(S(S(S(S(S(n2+n8+n1))))))))-
a6))/2)

(left cd10@right cd11)
(left cd11@right cd10)]]))

(n3+f0 uModCont(S(S(S(S(n7+n1)))))))

Let us now use this term to compute numerical approximations of values
of an inverted function. First we construct the continuous function x 7→ x2

on [1, 2], with its (trivial) uniform Cauchy modulus and modulus of uniform
continuity, and give it the name sq:
(define sq (pt "contConstr 1 2([a0,n1]a0*a0)([n0]1)S"))

We now apply the extracted term of theorem InvApprox to
• the continuous sq to be inverted,
• a uniform modulus l of increase,
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• a positive number k0 such that 2−k0−1 < b−a, and a positive number
k1 such that b− a < 2k1 (which all happen to be 1 in this case),

• two rational bounds a1, b1 for an interval in the range,

and normalize the result:

(define inv-sq-approx
(normalize-term
(apply mk-term-in-app-form

(list (proof-to-extracted-term
(theorem-name-to-proof "InvApprox"))

sq ;continuous function to be inverted
(pt "1") ;uniform modulus of increase
(pt "1") (pt "1") ;bounds for b-a
(pt "1") (pt "4") ;interval in range
))))

which prints as

[a0,n1]
left((cDC rat@@rat)(1@2)

([n2]
(cId rat@@rat=>rat@@rat)
([cd4]
[let cd5

((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (0<=(left cd5*left cd5-a0+

(right cd5*right cd5-a0))/2)
(left cd4@right cd5)
(left cd5@right cd4)]]))

(S(S(S(S(S(S(S n1))))))))

The term sqrt-two-approx has type rat=>pos=>rat, where the first argu-
ment is for the rational to be inverted and the second argument k is for the
error bound 2−k. We can now directly (that is, without first translating into
a programming language) use it to compute an approximation of say

√
3 to

20 binary digits. To do this, we need to “animate” Id and then normalize
the result of applying inv-sq-approx to 3 and 20 (we use normalization by
evaluation here, for efficiency reasons):

(animate "Id")
(pp (nbe-normalize-term-without-eta

(make-term-in-app-form sqrt-two-approx (pt "20"))))

The result (returned in .7 seconds) is the rational

4402608752054#2541865828329

or 1.7320382149943123, which differs from
√

3 = 1.7320508075688772 at the
fifth (decimal) digit.

5.6. Translation into Scheme expressions. For a further speed-up (be-
yond the use of external code; cf. Section 4.2), we can also translate this
internal term (where “internal” means “in our underlying logical language”,
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hence usable in formal proofs) into an expression of a programming language
(Scheme in our case), by evaluating (term-to-expr inv-sq-approx):
(lambda (a0)

(lambda (n1)
(car (((cdc (cons 1 2))

(lambda (n2)
(lambda (cd4)
(let ([cd5

(cons (+ (* 2/3 (car cd4))
(* 1/3 (cdr cd4)))

(+ (* 1/3 (car cd4))
(* 2/3 (cdr cd4))))])

(if (<= 0
(/ (+ (- (* (car cd5) (car cd5)) a0)

(- (* (cdr cd5) (cdr cd5)) a0))
2))

(cons (car cd4) (cdr cd5))
(cons (car cd5) (cdr cd4)))))))

(+ (+ (+ (+ (+ (+ (+ n1 1) 1) 1) 1) 1) 1) 1)))))

This Scheme program is very close to the internal term displayed above; we
have replaced the internal constant cDC (computational content of the axiom
of dependent choice) by the corresponding Scheme function (a curried form
of iteration):
(define cdc

(lambda (init)
(lambda (step)

(lambda (n)
(if (= 1 n)

init
((step n) (((cdc init) step) (- n 1)))))))),

the internal arithmetical functions +, *, /, <= by the ones from the program-
ming language and the internal pairing and unpairing functions by cons,
car and cdr. – It turns out that this code is reasonably fast: evaluating
(((ev (term-to-expr inv-sq-approx)) 3) 200)

gives the result in .5 seconds, with an accuracy of 200 binary digits.

6. Conclusion, future work

The present case study shows that it is possible – albeit after some for-
malization effort – to machine extract reasonable terms from proofs in con-
structive analysis, and that ordinary evaluation of these terms can be used to
numerically compute approximations to say reals whose existence is claimed
by the theorems, with a prescribed precision.

As for future work, an obvious canditate is to do the same for the Cauchy-
Euler construction of approximate solutions to ordinary differential equa-
tions. A particularly promising candiate is the treatment of ordinary differ-
ential equations in Chapter 1 of Hurewicz’s textbook [10], which can easily
be adapted to our constructive setting. It should also be possible to compare
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estimates for solutions of ordinary differential equations with the treatment
of the same problem in the interval analysis setting of Moore [14].
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