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Abstract. We prove constructively (in the style of Bishop) that every
monotone continuous function with a uniform modulus of increase has
a continuous inverse. The proof is formalized, and a realizing term
extracted. It turns out that even in the logical term language – a version
of Gödel’s T – evaluation is reasonably efficient.

There have been many attempts to formalize constructive analysis as
presented in the classic textbook of Bishop (1967). One reason to do this
is to uncover the computational content of constructive proofs. Here we
describe a rather explicit formalization, from the point of view of later term
extraction by a realizability interpretation. In particular, we deal with the
existence of a continuous inverse to a monotonically increasing continuous
function. The proof uses the Intermediate Value Theorem.

Some optimizations in definitions and proofs are necessary to produce ex-
tracted terms that can be evaluated efficiently. These are (a) addition of ex-
ternal code to the definition of arithmetical operations, which is used (based
on the corresponding function of the programming language) when the argu-
ments are numerals; (b) introduction of the let-construct in extracted terms;
(c) the “non-computational” quantifiers of Ulrich Berger (1993, 2005b).

Related work. The fact that every continuous function with a “modulus
of uniform strict monotonicity” has a uniformly continuous inverse has been
proved constructively by Mandelkern (1982). A different proof has been
given by Kohlenbach (1995); there, the complexity of realizers is discussed,
from a rather general point of view. More recently, Josef Berger (2005a) in-
troduced a concept he called “exact representation of continuous functions”,
and based on this gave a construction converting one such representation of
an increasing function into another one of its inverse.

The desire to machine extract the computational content of constructive
existence proofs has been one of the motivations of the FTA project Geuvers
et al. (2000), where Kneser’s constructive proof of the fundamental theorem
of algebra was formalized in Coq. This work has recently been extended to
build a “Constructive Coq Repository (C-CoRN)” at Nijmegen (Barendregt,
Geuvers, Wiedijk, Cruz-Filipe). However, extraction of reasonable programs
from proofs in this setup turned out to be problematic. One reason is that
witnesses were missing from computational meaningful axioms (e.g., strong
extensionality ∀x,y(f(x)#f(y) → x#y)), another one that the Set, Prop
distinction in Coq was found to be insufficient (cf. Cruz-Filipe (2004)).

The rest of the paper is organized as follows. In Section 1 we review
Kreisel’s (modified) realizability interpretation (1959), for an appropriate
version of Heyting’s arithmetic HAω in finite types. Section 2 presents an
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informal proof of the existence of a continuous inverse function. Section 3
discusses a formalization of this proof, from the point of view of a planned
extraction of realizing terms. In Section 4 the extracted terms are presented
and discussed, and also some numerical experiments are carried out. Sec-
tion 5 concludes.

1. Realizability Interpretation

We first describe some proof-theoretic background on term extraction, as
it is implemented in the Minlog proof assistant (www.minlog-system.de).
It is based on modified realizability introduced by Kreisel (1959): from every
constructive proof M (in natural deduction) of a formula A with compu-
tational content one extracts a term [[M ]] “realizing” A. This term usually
is much shorter than the proof it came from, because in the process all
subproofs of formulas without computational content can be ignored. The
extracted term has a type τ(A), which depends on the logical shape of the
proven formula A only.

An important aspect of this “internal” term extraction (compared with
say the extraction of OCaml programs in Coq (Letouzey, 2003)) is that one
stays within the language of the logical theory, and hence – for a particular
proof M – can prove within the system that the extracted term indeed
realizes the formula A (the “Soundness Theorem”).

Of course, there is a good reason to extract programs rather than terms:
running programs is much faster than evaluating (closed) terms. However,
the point just made is a strong argument for term extraction, particularly in
safety critical applications. Moreover, as should become clear from what is
done in the present paper, with some care one may well design proofs (and
the underlying data types) in such a way that the extracted terms are short
and easy to read and evaluate. One can then go on and (automatically)
translate these terms into code of a functional programming language, for
faster evaluation.

1.1. Data types, typed λ-terms. When formalizing mathematical argu-
ments with a planned extraction of realizing terms in mind, it is clearly
important to represent the underlying objects in an appropriate way.

In our subject of elementary constructive analysis it is tempting to start
with groups, rings, fields etc. (as in (Geuvers et al., 2000; Cruz-Filipe, 2004)).
However, it turned out that in such a general approach it is hard to control
the computational content of the proofs, and hence its extracted terms. This
does not mean that an abstract approach is impossible for our task, but for
the moment we prefer the more “concrete” setup, with explicit constructions
of the objects.

• Positive natural numbers are written in binary; we take them as
generated from 1 by two successors n 7→ 2n and n 7→ 2n + 1. In the
corresponding free algebra we have the constructors One, SZero and
SOne.
• An integer is either a positive number, or zero, or a negative number.
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• A rational is a pair of an integer and a positive, written i#n. Notice
that equality of rationals is not the literal one, but given by the usual
equivalence relation.
• A real is a pair of a Cauchy sequence of rationals and a modulus. We

view the reals as a data type (i.e., no properties), with constructor
RealConstr as M, whose components are written x seq and x mod.
Within this data type we inductively define the predicate Real x,
meaning that x is a (proper) real.
• A continuous function is viewed as an element of a data type with

constructor ContConstr, whose fields are written f doml, f domr
(for the left and right end point of its domain), f approx (for the
approximating function), f uMod (for the uniform Cauchy modulus)
and f uModCont (for the modulus of uniform continuity). Within
this data type we have an inductively defined predicate Cont f,
meaning that f is a (proper) continuous function.

From this material we can now build typed λ terms, as usual. They are
terms in the sense of Gödel’s T (1958), that is, contain (structural) recursion
operators for every data type (i.e., free algebra), with arbitrary value types.
These terms are the basis of our logical (better: arithmetical) system, which
contains an induction scheme (w.r.t. arbitrary formulas) for every data type.

1.2. Heyting arithmetic HAω in finite types. For our present purpose
it suffices to only allow decidable atomic formulas. So the atomic formulas
are atom(rboole), indicating that the argument is true. Here r is a term
of type boole, for instance of the form =(s, t) with = a constant of type
nat ⇒ nat ⇒ boole. Notice that there is no need for (logical) falsity ⊥,
since we can take the atomic formula F := atom(ff) – called arithmetical
falsity – built from the boolean constant ff instead. The formulas of HAω

are built from atomic ones by the connectives →, ∀, ∧ and ∃. We define
negation ¬A by A→ F .

We use Gentzen’s natural deduction calculus for logical derivations con-
sisting of the well-known rules→+,→−, ∀+ and ∀−. It will be convenient to
write derivations as terms, where the derived formula is viewed as the type
of the term. This representation is known under the name Curry-Howard
correspondence.

We give an inductive definition of derivation terms in table 1, where for
clarity we have written the corresponding derivations to the left. For the
universal quantifier ∀ there is an introduction rule ∀+x and an elimination
rule ∀−, whose right premise is the term r to be substituted. The rule ∀+x
is subject to the following (Eigen-) variable condition: The derivation term
M of the premise A should not contain any open assumption with x as a
free variable.

The logical axioms are the truth axiom Axtt : atom(tt), the introduction
and elimination axioms ∃+ and ∃− for existence and ∧+, ∧− for conjunction:

∃+ : ∀x(A→ ∃xA),

∃− : ∃xA→ ∀x(A→ B)→ B (x /∈ FV(B)),

∧+ : A→ B → A ∧B,
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derivation term

u : A uA

[u : A]
|M
B →+uA→ B

(λuAMB)A→B

|M
A→ B

| N
A →−

B

(MA→BNA)B

|M
A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

|M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

∧− : A ∧B → (A→ B → C)→ C,

and the induction axioms, say for the booleans, the unary natural numbers,
the positive natural numbers written in binary, and pairs:

Indp,A : A(tt)→ A(ff)→ ∀pboole A(p),

Indn,A : A(0)→ ∀n(A(n)→ A(Sn))→ ∀nnat A(n),

Indb,A : A(1)→ ∀b(A(b)→ A(S0b))→ ∀b(A(b)→ A(S1b))→ ∀bbin A(b),

Indxρ×σ ,A : ∀yρ,zσA(〈y, z〉)→ ∀xρ×σA(x).

The final axiom expresses that every object of a pair type is in fact a pair;
it is sometimes called pair elimination axiom.

Using boolean induction Indp,A we can derive the arithmetical form of
ex-falso-quodlibet, that is, F → atom(p) (recall F := atom(ff)), and then
F → A for arbitrary formulas A.

Let Heyting arithmetic HAω in finite types be the theory based on the
axioms above including the induction axioms, and MLω be the (many-sorted)
minimal logic, where the induction axioms are left out.
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1.3. The type of a realizer. We assign to every formula A an object τ(A)
(a type or the “nulltype” symbol ε). τ(A) is intended to be the type of the
program to be extracted from a proof of A. In case τ(A) = ε proofs of A
have no computational content; such formulas A are called Harrop formulas.
The definition can be conveniently written if we extend the use of ρ ⇒ σ
and ρ× σ to the nulltype symbol ε:

(ρ⇒ ε) := ε,

(ε⇒ σ) := σ,

(ε⇒ ε) := ε,

(ρ× ε) := ρ,

(ε× σ) := σ,

(ε× ε) := ε.

With this understanding of ρ⇒ σ and ρ× σ we can simply write

τ(P (~s )) := ε,

τ(∃xρA) := (ρ× τ(A)),

τ(∀xρA) := (ρ⇒ τ(A)),

τ(A ∧B) := (τ(A)× τ(B)),

τ(A→ B) := (τ(A)⇒ τ(B)).

1.4. Extracted terms. We define the extracted term [[M ]], for a derivation
M using the axioms ∃±, ∧± and induction axioms.

Assume first that M derives a formula A with τ(A) 6= ε. Then its extracted
term [[M ]] of type τ(A) is

[[uA]] := xτ(A)
u (xτ(A)

u uniquely associated with uA),

[[λuAM ]] :=

{
[[M ]] if τ(A) = ε

λx
τ(A)
u [[M ]] otherwise,

[[MA→BN ]] :=

{
[[M ]] if τ(A) = ε

[[M ]][[N ]] otherwise,

[[(λxρM)∀xA]] := λxρ[[M ]],

[[M∀xAt]] := [[M ]]t.

We also need extracted terms for the axioms mentioned above; these will
be defined below. For derivations MA where τ(A) = ε (i.e., A is a Harrop
formula) we define [[M ]] := ε (ε some new “nullterm” symbol).

For the axioms ∃±, ∧± the extracted terms are easy to write down. The
extracted term of an induction axiom is defined to be the corresponding
recursion operator. For example, for the induction scheme

Indn,A : A(0)→ ∀n(A(n)→ A(n + 1))→ ∀nA(n)

we have
[[Indn,A]] := Rτ

nat : τ ⇒ (nat⇒ τ ⇒ τ)⇒ nat⇒ τ,

where τ := τ(A) 6= ε.

1.5. Realizability. We define the notion of (modified) realizability . The
term “modified” is used for historical reasons, to distinguish this form of
realizability from the (earlier) Kleene-style realizability. More precisely, we
define formulas r mr A, where A is a formula and r is either a term of type



6 HELMUT SCHWICHTENBERG

τ(A) if the latter is a type, or the symbol ε if τ(A) = ε.

r mr P (~s ) := P (~s ),

r mr (∃xA(x)) :=

{
ε mr A(r) if τ(A) = ε

r1 mr A(r0) otherwise,
(r0, r1 components of r)

r mr (∀xA) :=

{
∀x ε mr A if τ(A) = ε

∀x rx mr A otherwise,

r mr (A ∧B) :=


(ε mr A) ∧ (r mr B) if τ(A) = ε

(r mr A) ∧ (ε mr B) if τ(B) = ε

(r0 mr A) ∧ (r1 mr B) otherwise,

r mr (A→ B) :=


ε mr A → r mr B if τ(A) = ε

∀x(x mr A → ε mr B) if τ(A) 6= ε = τ(B)
∀x(x mr A → rx mr B) otherwise.

The ∃-free formulas play a special role in this context. Their crucial property
is that for an ∃-free formula A we have (ε mr A) = A. Notice also that every
formula r mr A is ∃-free.

The natural question under what conditions a formula A and its modified
realizability interpretation ∃x x mr A are equivalent has been answered by
Troelstra. For the formulation we need the axioms of choice and indepen-
dence of premise. The axiom of choice (AC) is the scheme

∀xρ∃yσA(x, y)→ ∃fρ⇒σ∀xρA(x, f(x)).

The independence of premise scheme (IPC), relative to a set C of formulas,
is

(A→ ∃xρB)→ ∃xρ(A→ B) with A ∈ C and x /∈ FV(A).

We will need (IP∃-free) for the set of ∃-free formulas, and (IPε) for the set of
Harrop formulas.

Theorem (Characterization; cf. (Troelstra, 1973, 3.4.8)).

HAω + AC + IP∃-free ` A↔ ∃x x mr A.

The direction “←” can be proved in MLω alone, provided A has only ∃-free
premises.

Proof. Induction on A; we only treat the case A → B with τ(A) 6= ε and
τ(B) 6= ε.

(A→ B)↔ (∃x x mr A→ ∃y y mr B) by IH

↔ ∀x(x mr A→ ∃y y mr B) by MLω

↔ ∀x∃y(x mr A→ y mr B) by (IP∃-free)

↔ ∃f∀x(x mr A→ f(x) mr B) by (AC)

↔ ∃ff mr (A→ B).
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Now assume that we only have ∃-free premises.

∃y y mr (A→ B)→ ∃y(ε mr A→ y mr B)

→ ∃y(A→ y mr B)

→ (A→ ∃y y mr B)

→ (A→ B),

by IH. �

By induction on derivations one can prove (cf. (Troelstra, 1973, 3.4.5))

Theorem (Soundness). Let M be a derivation

HAω + AC + IPε ` A

from assumptions ui : Ci (i = 1, . . . , n). Then we can find a derivation µ(M)

HAω ` [[M ]] mr A

from assumptions ūi : xui mr Ci.

Recall that (ε mr A) = A for every ∃-free formula A. So for a formula
∀xρ∃yσA(x, y) with ∃-free A(x, y) we have τ(∀x∃yA(x, y)) = (ρ⇒ σ) and

t mr ∀x∃yA(x, y) = ∀xA(x, tx).

Hence as a corollary to the Soundness Theorem we immediately obtain the
following. Let M be a closed derivation HAω+AC+IPε ` ∀x∃yA(x, y), where
A(x, y) is ∃-free. Then HAω ` ∀xA(x, [[M ]](x)). Using the Characterization
Theorem, we can extend this observation to arbitrary formulas ∀x∃yA(x, y).
Clearly we can also add arbitrary Harrop formulas as axioms.

Theorem (Extraction). Assume

HAω + AC + IPε + Axε ` ∀x∃yA(x, y)

with A(x, y) an arbitrary formula containing at most the displayed variables
free. Then we can find a closed HAω-term t such that

HAω + AC + IP∃-free + Axε ` ∀xA(x, tx).

In fact,

t =

{
λx.[[M ]]x0 if τ(A(x, y)) 6= ε

[[M ]] otherwise.

Proof. We assume τ(A(x, y)) 6= ε; otherwise the proof is even easier. HAω +
Axε proves

[[M ]] mr ∀x∃yA(x, y) by the Soundness Theorem

∀x([[M ]]x mr ∃yA(x, y))

∀x([[M ]]x1 mr A(x, [[M ]]x0))

∀x∃y y mr A(x, [[M ]]x0).

Hence HAω + AC + IP∃-free + Axε ` ∀xA(x, [[M ]]x0) by the Characterization
Theorem. �
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2. Inverse Functions

We prove that every continuous function with a uniform modulus of in-
crease has a continuous inverse. The proof below is based on a particular
concept of a continuous function, as a type-1 object (using separability of
the real numbers).

The setup of constructive analysis is essentially the one of Bishop (1967),
and is only sketched here. More detailed elaborations can be found in (An-
dersson, 2001; Schwichtenberg, 2006).

We view a real x as a Cauchy sequence (an)n of rationals with a separately
given modulus M .

Definition. A real number x is a pair ((an)n∈N,M) with an ∈ Q and
M : N→ N such that (an)n is a Cauchy sequence with modulus M , that is

|an − am| ≤ 2−k for n, m ≥M(k).

and M is weakly increasing. M is called Cauchy modulus of x.

We shall loosely speak of a real (an)n if the Cauchy modulus M is clear
from the context or inessential. Every rational a is tacitly understood as the
real represented by the constant sequence an = a with the constant modulus
M(k) = 0.

When comparing two reals, x < y needs a witness, but x ≤ y doesn’t;
in fact, we can prove x 6< y ↔ y ≤ x. For reals x = ((an)n,M) and
y := ((bn)n, N), define x <k y to mean 1/2k ≤ bp − ap, for p := max(M(k +
2), N(k + 2)).

Constructively we cannot compare two reals, but we can compare a real
with a proper interval:

Lemma (ApproxSplit). Let x, y, z be given and assume x < y. Then either
z ≤ y or x ≤ z.

Proof. Let x := ((an)n,M), y := ((bn)n, N), z := ((cn)n, L). Assume x <k y,
and let q := max(p, L(k + 2)) and d := (bp − ap)/4.

Case cq ≤ ap+bp

2 . We show z ≤ y. It suffices to prove cn ≤ bn for n ≥ q.
To see this, observe

cn ≤ cq +
1

2k+2
≤ ap + bp

2
+

bp − ap

4
= bp −

bp − ap

4
≤ bp −

1
2k+2

≤ bn

Case cq 6≤ ap+bp

2 . We show x ≤ z, via an ≤ cn for n ≥ q.

an ≤ ap +
1

2k+2
≤ ap +

bp − ap

4
≤ ap + bp

2
− bp − ap

4
≤ cq −

1
2k+2

≤ cn. �

A continuous function f : I → R on a compact interval I with rational
end points is given by

(a) an approximating map hf : (I∩Q)×N→ Q and a map αf : N→ N such
that (hf (a, n))n is a Cauchy sequence with (uniform) modulus αf ;

(b) a modulus ωf : N→ N of (uniform) continuity, which satisfies

|a− b| ≤ 2−ωf (k)+1 → |hf (a, n)− hf (b, n)| ≤ 2−k for n ≥ αf (k);
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αf and ωf are required to be weakly increasing. One may also add a lower
bound Nf and an upper bound Mf for all hf (a, n).

Notice that a continuous function is given by objects of type level ≤ 1
only. This is due to the fact that it suffices to define its values on rational
numbers.

To prove the Intermediate Value Theorem, we begin with an auxiliary
lemma, which from a “correct” interval c < d (that is, f(c) ≤ 0 ≤ f(d) and
2−n ≤ d− c) constructs a new one c1 < d1 with d1 − c1 = 2

3(d− c).
We say that l ∈ N is a uniform modulus of increase for f : [a, b] → R if

for all c, d ∈ [a, b] and all m ∈ N

2−m ≤ d− c→ f(c) <m+l f(d).

Lemma (IVTAux). Let f : [a, b] → R be continuous, and with a uniform
modulus l of increase. Assume a ≤ c < d ≤ b, say 2−n < d − c, and
f(c) ≤ 0 ≤ f(d). Then we can construct c1, d1 with d1− c1 = 2

3(d− c), such
that again a ≤ c ≤ c1 < d1 ≤ d ≤ b and f(c1) ≤ 0 ≤ f(d1).

Proof. Let c0 = c+ d−c
3 = 2c+d

3 and d0 = c+ 2(d−c)
3 = c+2d

3 . From 2−n < d−c

we obtain 2−n−2 ≤ d0 − c0, so f(c0) <n+2+l f(d0). Now compare 0 with
this proper interval, using ApproxSplit. In the first case we have 0 ≤ f(d0);
then let c1 = c and d1 = d0. In the second case we have f(c0) ≤ 0; then let
c1 = c0 and d1 = d. �

Theorem (IVT). If f : [a, b] → R is continuous with f(a) ≤ 0 ≤ f(b), and
with a uniform modulus of increase, then we can find x ∈ [a, b] such that
f(x) = 0.

Proof. Iterating the construction in the auxiliary lemma IVTAux above, we
construct two sequences (cn)n and (dn)n of rationals such that for all n

a = c0 ≤ c1 ≤ · · · ≤ cn < dn ≤ · · · ≤ d1 ≤ d0 = b,

f(cn) ≤ 0 ≤ f(dn),

dn − cn =
(
2/3

)n(b− a).

Let x, y be given by the Cauchy sequences (cn)n and (dn)n with the obvious
modulus. As f is continuous, f(x) = 0 = f(y) for the real number x = y. �

From the Intermediate Value Theorem we obtain

Theorem (Inv). Let f : [a, b] → R be continuous with a uniform modulus
of increase, and assume f(a) ≤ a′ < b′ ≤ f(b). We can find a continuous
g : [a′, b′] → R such that f(g(y)) = y for every y ∈ [a′, b′] and g(f(x)) = x
for every x ∈ [a, b] such that a′ ≤ f(x) ≤ b′.

Proof. Let f : [a, b]→ R be continuous with a uniform modulus of increase,
that is, some l ∈ N such that for all c, d ∈ [a, b] and all m ∈ N

2−m ≤ d− c→ f(c) <m+l f(d).

Let f(a) ≤ a′ < b′ ≤ f(b). We construct a continuous g : [a′, b′]→ R.
Let u ∈ [a′, b′] be rational. Using f(a)− u ≤ a′ − u ≤ 0 and 0 ≤ b′ − u ≤

f(b)−u, the IVT gives us an x such that f(x)−u = 0, as a Cauchy sequence
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(cn). Let hg(u, n) := cn. We can easily define the modulus αg such that for
n ≥ αg(k), (2/3)n(b− a) ≤ 2−ωf (k+l+2): let

αg(k) := 2(k1 + ωf (k + l + 2)) with k1 such that b− a ≤ 2k1 .

For the uniform modulus ωg of continuity assume a′ ≤ u < v ≤ b′ and k ∈ N.
We claim that with ωg(k) := k + l + 2 (l from the hypothesis on the slope)
we can prove the required property

|u− v| ≤ 2−ωg(k)+1 → |hg(u, n)− hg(v, n)| ≤ 2−k (n ≥ αg(k)).

Let a′ ≤ u < v ≤ b′ and n ≥ αg(k). For c
(u)
n := hg(u, n) and c

(v)
n := hg(v, n)

assume that |c(u)
n − c

(v)
n | > 2−k; we must show |u− v| > 2−ωg(k)+1.

By the proof of the Intermediate Value Theorem we have

d(u)
n − c(u)

n ≤ (2/3)n(b− a) ≤ 2−ωf (k+l+2) for n ≥ αg(k).

Using f(c(u)
n ) − u ≤ 0 ≤ f(d(u)

n ) − u, the fact that a continuous function f
has ωf as a modulus of uniform continuity gives us

|f(c(u)
n )− u| = u− f(c(u)

n ) ≤ f(d(u)
n )− f(c(u)

n ) ≤ 2−k−l−2

and similarly |f(c(v)
n )−v| ≤ 2−k−l−2. Hence, using |f(c(u)

n )−f(c(v)
n )| > 2−k−l

(which follows from |c(u)
n − c

(v)
n | > 2−k by the hypothesis on the slope),

|u−v| ≥ |f(c(u)
n )−f(c(v)

n )|−|f(c(u)
n )−u|−|f(c(v)

n )−v| > 2−k−l−1 = 2−ωg(k)+1.

So we have a continuous g : [a′, b′]→ R.
The equation f(g(u)) = u now follows from u = f(x) and the fact that

g(u) is represented by the sequence hg(u, n) = cn, and x is given by (cn)
as well. Since continuous functions are determined by their values on the
rationals, we have f(g(y)) = y for y ∈ [a′, b′].

For every x ∈ [a, b] with a′ ≤ f(x) ≤ b′, from g(f(x)) < x we obtain the
contradiction f(x) = f(g(f(x))) < f(x) by the hypothesis on the slope, and
similarly for >. Using u 6< v ↔ v ≤ u we obtain g(f(x)) = x. �

As an example, consider the squaring function f : [1, 2]→ [1, 4], given by
the approximating map hf (a, n) := a2, constant Cauchy modulus αf (k) :=
1, and modulus ωf (k) := k + 3 of uniform continuity. The modulus of
increase is l := 0, because for all c, d ∈ [1, 2]

2−m ≤ d− c→ c2 <m d2.

Then hg(u, n) := c
(u)
n , as constructed in the IVT for x2−u, iterating IVTAux.

The Cauchy modulus is αg(k) = 2(k + 5), and the modulus of uniform
continuity is ωg(k) := k + 2.

3. Formalization

We now aim at formalizing the proof above, with the planned extrac-
tion of realizing terms in mind. The formalization itself is (tedious but)
straightforward; proof scripts are available at www.minlog-system.de, in
the directory examples/analysis. We do not give details here, but rather
comment on some crucial issues that need to be addressed when one wants
to machine extract realizers whose evaluation can be done efficiently.
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3.1. Computation rules. Computable functionals are defined by “compu-
tation rules” (Berger et al., 2003; Berger, 2005b); these rules are added to
the standard conversion rules of typed λ-calculus. To simplify equational
reasoning, terms with the same normal form are identified.

A system of computation rules for a defined constant D consists of finitely
many equations D ~Pi = Qi (i = 1, . . . , n) with constructor patterns ~Pi, such
that ~Pi and ~Pj (i 6= j) are non-unifiable. Constructor patterns are lists
of applicative terms with distinct variables, defined inductively as follows
(we write ~P (~x ) to indicate all variables in ~P ; all expressions must be type-
correct):

• x(x) is a constructor pattern.
• If C is a constructor and ~P (~x ) a constructor pattern, then (C ~P )(~x )

is a constructor pattern.
• If ~P (~x ) and Q(~y ) are constructor patterns whose variables ~x and ~y

are disjoint, then (~P ,Q)(~x, ~y ) is a constructor pattern.

Important examples are the (Gödel) structural recursion operators. How-
ever, in practice one wants to define computable functionals by recursion
equations, and if possible consider total functionals only. This can be
achieved if the patterns on the lhs are “complete” (as for the structural recu-
sion operators) and moreover the rules terminate (as for Gödel’s T (1958)).
Then every closed term of ground type reduces to a “numeral” (or a “canon-
ical term”), that is, a term built from constructors only.

For example, addition for rational numbers is defined by the computation
rule converting (i1#k1)+(i2#k2) into i1*k2+i2*k1#k1*k2.

3.2. External code as part of arithmetical constants. A problem
when computing on rationals with the rule above is that the gcd is not
cancelled out automatically. Therefore we add “external code” to the inter-
nal representation of the function. It works as follows: whenever addition
for rationals is called with numerical arguments, these arguments are con-
verted into Scheme rationals, then added with the rational addition function
of Scheme, and the result is converted back into the internal representation
(using the #-constructor) of a rational.

3.3. Cleaning of reals. After some computations involving real numbers
it is to be expected that the rational numbers occurring in the Cauchy
sequences may become rather complex. Hence under computational aspects
it is necessary to be able to clean up a real, as follows.

Lemma. For every real x = ((an)n,M) we can construct an equivalent real
y = ((bn)n, N) where the rationals bn are of the form cn/2n with integers cn,
and with modulus N(k) = k + 2.

Proof. Let cn := baM(n) · 2nc and bn := cn · 2−n, hence

cn

2n
≤ aM(n) <

cn

2n
+

1
2n

with cn ∈ Z.
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Then for m ≤ n

|bm − bn| = |cm · 2−m − cn · 2−n|
≤ |cm · 2−m − aM(m)|+ |aM(m) − aM(n)|+ |aM(n) − cn · 2−n|
≤ 2−m + 2−m + 2−n

< 2−m+2,

hence |bm − bn| ≤ 2−k for n ≥ m ≥ k + 2 =: N(k), so (bn)n is a Cauchy
sequence with modulus N .

To prove that x is equivalent to y := ((bn)n, N), observe

|an − bn| ≤ |an − aM(n)|+ |aM(n) − cn · 2−n|

≤ 2−k−1 + 2−n for n, M(n) ≥M(k + 1)

≤ 2−k if in addition n ≥ k + 1.

Hence |an−bn| ≤ 2−k for n ≥ max(k+1,M(k+1)), and therefore x = y. �

3.4. Removal of duplicated parts in terms. In machine generated terms
(e.g., those obtained by term extraction) it often happens that a subterm has
many occurrences in a term, which leads to unwanted recomputations when
evaluating it. A possible cure is to “optimize” the term after extraction,
and replace for instance M [x := N ] with many occurrences of x in M by
(λxM)N (or a corresponding “let”-expression). However, this can already
be done at the proof level: When an object (value of a variable or realizer of
a premise) might be used more than once, make sure (if necessary by a cut)
that the goal has the form A → B or ∀xA. Now use the “identity lemma”
Id : P̂ → P̂ , whose predicate variable P̂ is then instantiated with A→ B or
∀xA; its realizer has the form λf, x.fx. However, if Id is not “animated”
(see Section 4.1 below), the extracted term has the form cId(λxM)N , which
is printed as [let x N M ].

3.5. Quantifiers without computational content. Besides the usual
quantifiers, ∀ and ∃, Minlog has so-called non-computational quantifiers, ∀nc

and ∃nc, which allow for the extraction of simpler terms. The nc-quantifiers,
which were first introduced by Berger (1993), can be viewed as a refinement
of the Set/Prop distinction in constructive type systems like Coq or Agda.
Intuitively, a proof of ∀nc

x A(x) (A(x) non-Harrop, i.e., with a strictly positive
occurrence of an existential quantifier) represents a procedure that assigns
to every x a proof M(x) of A(x) where M(x) does not make “computational
use” of x, i.e., the extracted term [[M(x)]] does not depend on x. Dually,
a proof of ∃nc

x A(x) is a proof of M(x) for some x where the witness x is
“hidden”, that is, not available for computational use. Consequently, the
types of extracted terms for nc-quantifiers are τ(∀nc

xρA) = τ(∃nc
xρA) = τ(A)

as opposed to τ(∀xρA) = (ρ⇒ τ(A)) and τ(∃xρA) = ρ× τ(A). The extrac-
tion rules are, for example in the case of ∀nc-introduction and -elimination,
[[(λx.MA(x))∀

nc
x A(x)]] = [[M ]] and [[(M∀nc

x A(x)r)A(r)]] = [[M ]] as opposed to
[[(λx.MA(x))∀xA(x)]] = [[λxM ]] and [[(M∀xA(x)r)A(r)]] = [[Mr]]. In order for
the extracted terms to be correct the variable condition for ∀nc-introduction
needs to be strengthened by requiring in addition the abstracted variable x
not to occur in the extracted term [[M ]]. Note that for a Harrop formula
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A the formulas ∀nc
x A and ∀xA are equivalent; similarly, ∃nc

x A and ∃xA are
equivalent.

4. Extracted terms

For the formalization of and term extraction from a moderately complex
proof (like the one of the Inversion Theorem above) it is indispensible to
organize it into some lemmata, and then combine its extracted term from
the ones for the lemmata. To make this work in practice, it is helpful to
have a mechanism to “animate” or “deanimate” lemmata, or more precisely
the constants that denote their computational content. We first describe
this method, and then use it to build the extracted term of our theorem.

4.1. Animation. Suppose a proof of a theorem uses a lemma. Then the
proof term contains just the name of the lemma, say L. In the term extracted
from this proof we want to preserve the structure of the original proof as
much as possible, and hence we use a new constant cL at those places where
the computational content of the lemma is needed. When we want to ex-
ecute the program, we have to replace the constant cL corresponding to a
lemma L by the extracted program of its proof. This can be achieved by
adding computation rules for cL and cGA. We can be rather flexible here and
enable/block rewriting by using animate/deanimate as desired.

4.2. Extracted term of some auxiliary lemmata. The term extracted
from the proof of ApproxSplit is
[x0,x1,x2,n3]
[if x0

([as4,M5]
[if x1

([as6,M7]
[if x2
([as8,M9]
as8(M5(S(S n3))max M7(S(S n3))max M9(S(S n3)))<=
(as4(M5(S(S n3))max M7(S(S n3)))+
as6(M5(S(S n3))max M7(S(S n3))))/2)])])]

of type real=>real=>real=>pos=>boole. It takes three reals x, y, z with
moduli M,N,K (here given by their Cauchy sequences as4, as6, as8 and
moduli M5, M7, M9) and a positive number k (here n3), and computes p :=
max(M(k+2), N(k+2)) and q := max(p, L(k+2)). Then the choice whether
to go right or left is by computing the boolean value cq ≤ ap+bp

2 . Notice that
the if-operator serves as a destructor here: it just takes the given real apart.

For the auxiliary lemma IVTAux we obtain the extracted term
[f0,n1,n2]
(cId rat@@rat=>rat@@rat)
([cd4]

[let cd5
((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (cApproxSplit(RealConstr(f0 approx left cd5)
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([n6]f0 uMod(S(S n6))))
(RealConstr(f0 approx right cd5)

([n6]f0 uMod(S(S n6))))
0
(S(S(n2+n1))))

(left cd4@right cd5)
(left cd5@right cd4)]])

of type cont=>pos=>pos=>rat@@rat=>rat@@rat. As in the informal proof,
it takes a continuous f (here f0), a uniform modulus l of increase (here n1),
a positive number n (here n2) and two rationals c, d (here the pair cd4)
such that 2−n < d − c. Let c0 := 2c+d

3 and d0 := c+2d
3 (here the pair cd5,

introduced via let because it is used four times). Then ApproxSplit is
applied to f(c0), f(d0), 0 and the witness n + 2 + l (here S(S(n2+n1))) for
f(c0) < f(d0). In the first case we go left, that is c1 := c and d1 := d0, and
in the second case we go right, that is c1 := c0 and d1 := d.

In the proof of the Intermediate Value Theorem, the construction step in
IVTAux (from a pair c, d to the “better” pair c0, d0) had to be iterated, to
produce two sequences (cn)n and (dn)n of rationals. This is the content of
a separate lemma IVTcds, whose extracted term is
[f0,n1,n2](cDC rat@@rat)(f0 doml@f0 domr)

([n4]cIVTAux f0 n1(n2+n4))

of type cont=>pos=>pos=>pos=>rat@@rat. It takes a continuous f : [a, b]→
R (here f0), a uniform modulus l of increase (here n1), and a positive number
k0 (here n2) such that 2−k0 < b − a. Then the axiom of dependent choice
DC is used, to construct from an initial pair (c0, d0) = (a, b) of rationals
(here f0 doml@f0 domr) a sequence of pairs of rationals, by iterating the
computational content cIVTAux of the lemma IVTAux.

4.3. Extracted term of the Inversion Theorem. The proof of the In-
version Theorem does not use the Intermediate Value theorem directly, but
its essential ingredient IVTcds. Here is its extracted term, which constructs
a continuous inverse:
[f0,n1,n2,n3,a4,a5]
ContConstr a4 a5
([a6,n7]

left((cAC rat pos=>rat@@rat)
([a8]
(cIP pos=>rat@@rat)
((cIP pos=>rat@@rat)
(cIVTcds
(ContConstr f0 doml f0 domr
([a12,n13]f0 approx a12 n13-a8)
f0 uMod
f0 uModCont)
n1
n2)))

a6
n7))
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([n6]SZero(f0 uModCont(S(S(n6+n1))))+n3+n3)
([n6]S(S(n6+n1)))

It takes a continuous function f (here f0), a uniform modulus l of increase
(here n1), positive numbers k0, k1 (here n2, n3) such that 2−k0−1 < b− a <
2k1 and two rationals a1 < a2 (here a4, a5) in the range of f . Then the
continuous inverse g is constructed (via ContConstr) from

• an approximating map,
• a uniform Cauchy modulus (involving the modulus of uniform con-

tinuity coming with f), and
• an easy and explicit modulus of uniform continuity.

The approximating map takes a, u (here a6, n7). Ignoring the computational
content cAC, cIP of AC, IP (which are identities), it yields the left component
(i.e., the Cauchy sequence) of the result of applying cIVTcds to a continuous
function close to the original f .

4.4. Numerical approximations. To compute numerical approximations
of values of an inverted function we need RealApprox, stating that every
real can be approximated by a rational. Its extracted term is
[x0,n1][if x0 ([as2,M3]as2(M3 n1))]

of type real=>pos=>rat. It takes a real x0 (here given by the Cauchy
sequence as2 and modulus M3) and a positive number k (here n1), and
computes a rational a such that |x− a| ≤ 2−k.

To compose Inv with RealApprox, we prove a proposition InvApprox
stating that given an error bound, we can find a rational approximating
the value of the inverted function g up to this bound. Clearly we need to
refer to this value and hence the inverted function g in the statement of the
theorem, but on the other hand we do not want to see a representation of g in
the extracted term, but only the construction of the rational approximation
from the error bound. Therefore in the statement of InvApprox we use the
non-computational quantifier ∃nc (see Section 3.5), for the inversion g of the
given continuous f . The extracted term of InvApprox then simply is
[f0,n1,n2,n3,a4,a5,a6]
cRealApprox
(RealConstr((cInv f0 n1 n2 n3 a4 a5)approx a6)
([n8](cInv f0 n1 n2 n3 a4 a5)uMod(S(S n8))))

of type cont=>pos=>pos=>pos=>rat=>rat=>rat=>pos=>rat.

4.5. Animation of the auxiliary lemmas. Now we “animate” the aux-
iliary lemmas, that is, add computation rules for all constants with “c” in
front of the name of the lemma. For InvApprox this gives
[f0,n1,n2,n3,a4,a5,a6,n7]
left((cDC rat@@rat)(f0 doml@f0 domr)

([n8]
(cId rat@@rat=>rat@@rat)
([cd10]
[let cd11

((2#3)*left cd10+(1#3)*right cd10@
(1#3)*left cd10+(2#3)*right cd10)
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[if (0<=
(f0 approx left cd11
(f0 uMod(S(S(S(S(S(S(n2+n8+n1))))))))-
a6+
(f0 approx right cd11
(f0 uMod(S(S(S(S(S(S(n2+n8+n1))))))))-
a6))/2)

(left cd10@right cd11)
(left cd11@right cd10)]]))

(SZero(f0 uModCont(S(S(S(S(n7+n1))))))+n3+n3))

4.6. Numerical computations. We use this term to compute numerical
approximations of values of an inverted function. First we construct the
continuous function x 7→ x2 on [1, 2], with its (trivial) uniform Cauchy
modulus and modulus of uniform continuity, and give it the name sq:
(define sq (pt "ContConstr 1 2([a0,n1]a0*a0)([n0]1)([n]n+3)"))

We now apply the extracted term of theorem InvApprox to
• the continuous sq to be inverted,
• a uniform modulus l of increase,
• a positive number k0 such that 2−k0−1 < b−a, and a positive number

k1 such that b− a < 2k1 (which all happen to be 1 in this case),
• two rational bounds a1, b1 for an interval in the range,

and normalize the result:
(define inv-sq-approx

(normalize-term
(apply mk-term-in-app-form
(list (proof-to-extracted-term

(theorem-name-to-proof "InvApprox"))
sq ;continuous function to be inverted
(pt "1") ;uniform modulus of increase
(pt "1") (pt "1") ;bounds for b-a
(pt "1") (pt "4") ;interval in range
))))

which prints as
[a0,n1]
left[let cd2

((cDC rat@@rat)(1@2)
([n2]
(cId rat@@rat=>rat@@rat)
([cd4]

[let cd5
((2#3)*left cd4+(1#3)*right cd4@
(1#3)*left cd4+(2#3)*right cd4)
[if (0<=(left cd5*left cd5-a0+

(right cd5*right cd5-a0))/2)
(left cd4@right cd5)
(left cd5@right cd4)]]))

(PosPred(SZero(S(S(S(S(S(S(S(S(S n1))))))))))))
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[let cd3
((2#3)*left cd2+(1#3)*right cd2@
(1#3)*left cd2+(2#3)*right cd2)
[if (0<=(left cd3*left cd3-a0+

(right cd3*right cd3-a0))/2)
(left cd2@right cd3)
(left cd3@right cd2)]]]

The term inv-sq-approx has type rat=>pos=>rat, where the first argu-
ment is for the rational to be inverted and the second argument k is for the
error bound 2−k. We can now directly (that is, without first translating into
a programming language) use it to compute an approximation of say

√
3 to

20 binary digits. To do this, we need to “animate” Id and then normalize
the result of applying inv-sq-approx to 3 and 20 (we use normalization by
evaluation here, for efficiency reasons):

(animate "Id")
(pp (nbe-normalize-term-without-eta

(make-term-in-app-form sqrt-two-approx (pt "20"))))

The result (returned in 2 seconds) is the rational

2719394071183166419623547282#1570042899082081611640534563

or 1.7320508075117231, which differs from
√

3 = 1.7320508075688772 at the
11-th (decimal) digit.

4.7. Translation into Scheme expressions. For a further speed-up (be-
yond the use of external code; cf. Section 3.2), we can also translate this
internal term (where “internal” means “in our underlying logical language”,
hence usable in formal proofs) into an expression of a programming language
(Scheme in our case), by evaluating (term-to-expr inv-sq-approx). This
Scheme program is very close to the internal term displayed above; the inter-
nal constant cDC (computational content of the axiom of dependent choice)
is replaced by the corresponding Scheme function (a curried form of itera-
tion):

(define |cDC|
(lambda (init)
(lambda (step)

(lambda (n)
(if (= 1 n)

init
((step n) (((|cDC| init) step) (- n 1)))))))),

the internal arithmetical functions +, *, /, <= by the ones from the program-
ming language and the internal pairing and unpairing functions by cons,
car and cdr. – It turns out that this code is reasonably fast: evaluating

(((ev (term-to-expr inv-sq-approx)) 3) 100)

gives the result in .5 seconds, with an accuracy of 100 binary digits.
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5. Conclusion, future work

The present case study shows that it is possible – albeit after some for-
malization effort – to machine extract reasonable terms from proofs in con-
structive analysis, and that ordinary evaluation of these terms can be used to
numerically compute approximations to say reals whose existence is claimed
by the theorems, with a prescribed precision.

As for future work, an obvious canditate is to do the same for the Cauchy-
Euler construction of approximate solutions to ordinary differential equa-
tions. A particularly promising candiate is the treatment of ordinary dif-
ferential equations in Chapter 1 of Hurewicz’s textbook (1958), which can
easily be adapted to our constructive setting. It should also be possible
to compare estimates for solutions of ordinary differential equations with
the treatment of the same problem in the interval analysis setting of Moore
(1966).
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