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Abstract

The notions of permutable and weak-permutable convergence of a series
> o2, an of real numbers are introduced. Classically, these two notions are
equivalent, and, by Riemann's two main theorems on the convergence of se-
ries, a convergent series is permutably convergent if and only if it is absolutely
convergent. Working within Bishop-style constructive mathematics, we prove
that Ishihara's principle BD-IN implies that every permutably convergent series
is absolutely convergent. Since there are models of constructive mathematics
in which the Riemann permutation theorem for series holds but BD-IN does
not, the best we can hope for as a partial converse to our first theorem is that
the absolute convergence of series with a permutability property classically
equivalent to that of Riemann implies BD-IN. We show that this is the case
when the property is weak-permutable convergence.

1 Introduction

This paper follows on from [3], in which the first two authors gave proofs, within the
framework of Bishop-style constructive mathematics (BISH),! of the two famous
series theorems of Riemann [18]:2

RST, If a series > a,, of real numbers is absolutely convergent, then for each per-
mutation o of the set N* of positive integers, the series > ag(n) converges
to the same sum as »_ ay,.

RST. If aseries Y ay, of real numbers is conditionally convergent, then for each real
number x there exists a permutation o of Nt such that g (n) CONVErges
to x.

1Roughly, BISH is mathematics using intuitionistic logic, a related set theory such as construc-
tive ZF [1] or constructive Morse set theory [2], and dependent choice. For more on BISH, see
[4, 5,9, 10].

2We use shorthand like 3~ ay, and > o (n) for series when it is clear what the index of
summation is.



It is not hard to extend the conclusion of RST; to what we call its full, extended
version, which includes the existence of permutations of the series Y a,, that di-
verge to oo and to —oo. In consequence, a simple reductio ad absurdum argument
proves classically that if a real series > a,, is permutably convergent—that is,
every permutation of > a, converges in R—then it is absolutely convergent. An
intuitionistic proof of this last result was provided by Troelstra [20, pages 95ff ],
using Brouwer’s continuity principle for choice sequences. That result actually has
one serious intuitionistic application: Spitters [19, pages 2101-2] uses it to give
an intuitionistic proof of the characterisation of normal linear functionals on the
space of bounded operators on a Hilbert space; he also asks whether there is a
proof of the Riemann-Troelstra result within BISH alone. In Section 3 below, we
give a proof, within BISH supplemented by the constructive-foundationally impor-
tant principle BD-N, that permutable convergence implies absolute convergence.
While this proof steps outside unadorned BISH, it is valid in both intuitionistic and
constructive recursive mathematics, in which BD-N is derivable; see [12, 13, 14].

This raises the question: over BISH, does the absolute convergence of every
permutably convergent series imply BD-N? Thanks to Diener and Lubarsky [11],
we now know that the answer is negative. This raises another question: is there
a proposition that is classically equivalent to, and constructively cognate with, the
absolute convergence of all permutably convergent series and that, added to BISH,
implies BD-N? In order to answer this question affirmatively, we introduce in Section
2 the notion of weak-permutable convergence and then derive some of its funda-
mental properties, including its classical equivalence to permutable convergence. In
Section 4 we show that the absolute convergence of weak-permutably convergent
series implies BD-N. Thus, in BISH, the statement

every weak-permutably convergent series is absolutely convergent
implies BD-N, which in turn implies that
every permutably convergent series is absolutely convergent.

In view of the Diener-Lubarsky results in [11], the latter of these implications cannot
be reversed.

2 Weak-permutably convergent series in BISH
By a bracketing of a real series > a,, we mean a pair comprising

e a strictly increasing mapping f : NT — Nt with f(1) = 1, and

e the sequence b defined by

Fll+1)-1
by = Z a; (k>=1).

i=f(k)



By abuse of language, we also refer to the series > by as a bracketing of > ay,.

We say that > a,, is weak-permutably convergent if it is convergent and if for
each permutation o of NT there exists a convergent bracketing of > ag(n)- Clearly,
permutable convergence implies weak-permutable convergence. As we shall see in
this section, the converse holds classically; later we shall show that it does not hold
constructively. As a first step towards this, we have:

Proposition 1 Let > a, be a weak-permutably convergent series of real numbers,
with sum s, and let o be a permutation of NT. Then every convergent bracketing
of 3 Gy (n) converges to s.

The proof of this proposition will depend on some lemmas.?

Lemma 2 Let Y a, be a convergent series of real numbers, with sum s, and let
o be a permutation of N*. If there exists a bracketing (f,b) of Y a,(,) that
converges to a sum t # s, then there exist a permutation T of NT and a strictly
increasing sequence (k;) i>1 Of positive integers such

fkiy1)—1 1
Z Ar(n)| 2 3 |s — t] (i € NT). (1)
n=f(k;)
Proof. Consider, to illustrate, the case where s < t. For convenience, let ¢ =
1 (t—s). Pick ki such that )ZH_J a, ‘ < e and ‘ZH_J
Jj > f(k1), and let 7(n) = o(n) for 1 <n < f(k1). Then

f(k1) - f(k1)—1 ki—1f(+1)- ki—1
Z Qr(n) = Z Ao (n) = Z Z Qg (n) = Z b]
j=1 n=f( j=1

j=1 j=k1 j=k1
Next, pick k2 > Ky such that

{r(1), - (f(k1) =D} ={o(1),...,0(f(k1) =)} {1, fka) — 1}

There are exactly f(ks) — f(k1) values of m in the interval [1, f(k2) — 1] NN such
that m ¢ {o(1),...,0(f(k1) —1)}. Set 7(f(k1)) equal to the smallest such m,
T(f(k1) + 1) equal to the next smallest, and so on. Then

{71, 7(flk2) =)} = {1, f(k2) — 1},

SO

f(k'2)—1 f(k‘z)—l [ee] [ee]
DRI SIS PR o B
n=1 n=1 f(k2) fk2)

3 Following Bishop [4], when we write s # ¢ we mean that |s —¢| > 0.



Note that if f(k1) <n < f(k2) — 1, then 7(n) = o(k) for some k > f(k1). Now
pick k3 > ko such that

{r(1),- ., 7(f(k2) =D} C{o(1),...,0(f(ks) = D)}

There are exactly f(ks) — f(ke) values of m in [1, f(ks) — 1] NN such that o(m) ¢
{r(1),...,7(f(k2) — 1)}. Set 7(f(k2)) equal to o(m) for the smallest such m,
7(f(k2) + 1) equal o(m) for the next smallest m, and so on. Then

{r(),.. 7(f(ks) = 1)} = {o(1),...,0(f(ks) = D)},

SO
fks)— fks)—1 ks—1 f(G+1)— ks—1
Z Qr(n) = Z aan)_z Z aa(n:ZbJ
n=f(j Jj=1
:ibj*ibjzt*ibj >t—e.
Jj=1 Jj=ks Jj=ks

Now pick k4 > k3 such that
{r(Q),....,7(f(ks) = 1)} ={o(1),...,0(f(ks) = 1)} C{1,..., f(ka) = 1}.

Set 7(f(k3)) equal to the smallest m ¢ {o(1),...,0(f(ks) — 1), 7(f(k2) + 1)}
equal to the next smallest, and so on. Then

{r(1), - 7(f(ka) =)} = {1, f(ka) — 1}

and
kq)—1 f(ka)—1

f(ka
Z Gr(n) = Z anp < s+e.
n=1 n=1

Carrying on in this way, we construct a strictly increasing sequence (kzi)l>1 of positive
integers and a permutation 7 of NT, such that for each j > 1,

Flhzj—1)—1 flk2;)—1
Z Gr(n) Zt—¢€ and Z Gr(n) S S+E.
n=1 n=1

If i € NT is even, then

fkiy1)—1 flkiy1)—1 flki)—1
Z Qr(n) > Z QAr(n) — Z Ar(n
n=f(k;) n=1 n=1




Similarly, if i € NT is odd, then

flkiy1)—1 fki)—1 flkiy1)—1 1
Z a'r(n) > Z ar(n) - Z ar(n) > g(t - S)
n=f(k;) n=1 n=1

Hence (1) holds. m
Lemma 3 Under the hypotheses of Lemma 2, the series > |a,| diverges.

Proof. Construct the permutation 7 and the sequence (k;),., in the proof of
Lemma 2. Given C' > 0, compute j such that (j —1)|s —t| > 3C. Then

fkj)—1 —1 f(kiy1)— J—1|f(kiy1)—1 j—1
Z }aT(n } = Z Z }aT(n)} 2 Z Z Qr(n) > 3 |S - t| > C.
n=1 i=1 n=f(k;) i=1| n=f(ki)

There exists M such that

{arq)s- - sar(s-1 ) C{ar, . an}

Then
M f(kj)—1
Z |an| 2 Z }aT(n)} > C.
n=1 n=1

Since C > 0 is arbitrary, the conclusion follows. m
Lemma 4 Let > a, be a convergent series of real numbers, and T a permutation
of Nt such that ) a,,) diverges to infinity. Then it is impossible that Y~ ar(y)

have a convergent bracketing.

Proof. Suppose there exists a bracketing (f,b) of > a,(,) that converges to a
sum s. Compute N > 1 such that

ZCLT(7L)>5+1 (V>N) (2)

There exists N1 > N such that

f(N1)—1 Ni—1 f(i+1)-1 Ny—1
Z aT(") - Z Z 7'(n - == Z bz —s|/ <1
n=1 =1  n=f(q) i=1

and therefore
F(N1)—-1

Z arn) < s+ 1.

n=1
Since f(N1) —1> Ny —1> N, this contradicts (2). m



Lemma 5 Let Y a, be a weak-permutably convergent series of real numbers, and
o a permutation of N*. Then it is impossible that > |aa(n)} diverge.

Proof. Suppose that > }aa(n)| does diverge. Then, by the full, extended version
of RST,, there is a permutation 7 of NT such that > ar(n) diverges to infinity.
Since ) a, is weak-permutably convergent, there exists a bracketing of } a,(,)
that converges. This is impossible, in view of Lemma 4. m

Arguing with classical logic, we see that if Y a,, is weak-permutably convergent,
then, by Lemma 5, >° |a,,| must converge; whence Y a,, is permutably convergent,
by RST;.

Returning to intuitionistic logic, we have reached the proof of Proposition 1:

Proof. Suppose that there exists a bracketing of 3 a,(,) that converges to a
sum distinct from s. Then, by Lemma 3, ) |a,| diverges. Lemma 5 shows that
this is impossible. It follows from the tightness of the inequality on R that every
convergent bracketing of } " a,(,) converges to s. m

Since permutable convergence implies convergence and is a special case of weak-
permutable convergence, we also have:

Corollary 6 Let > a, be a permutably convergent series of real numbers, and let
o be a permutation of NT. Then Y~ ay(n) = Y tn.

3 BD-N and permutable convergence

A subset S of N* is said to be pseudobounded if for each sequence* (8n)n>1
in S there exists N such that s,/n < 1 for all n > N—or, equivalently, if for
each sequence (sn,),,~ in S, s,/n — 0 as n — co. Every bounded subset of N*
is pseudobounded; the converse holds classically, intuitionistically, and in recursive
constructive mathematics, but Lietz et al. [15] and Lubarsky [16] have produced
models of BISH in which it fails to hold for inhabited, countable, pseudobounded
sets. Thus the principle

BD-N Every inhabited, countable, pseudobounded subset of Nt is bounded®

is independent of BISH. It is a serious problem of constructive reverse mathematics
[10, Chapters 23-25] to determine which classical theorems are equivalent to BD-
N over BISH. For example, it is known that the full form of the Open Mapping
Theorem for Hilbert spaces is one such theorem; see [8, Theorem 5].

This section is devoted to our version of the Riemann permutability theorem:

Theorem 7 In BISH + BD-N, every permutably convergent series of real numbers
is absolutely convergent.

4In this definition, we can replace sequence by increasing (but not strictly increasing)
sequence.
SBD-N was introduced by Ishihara in [12] (see also [17]).



Proof. Let >, a; be a permutably convergent series of real numbers. Write
a} = max {an,0}, a, = max{—a,,0}.
To begin with, assume that a;’ > 0 and each a; is rational. Given a positive rational

number ¢ < aj, define a binary mapping ¢ on N* x Nt such that

m
d(m,n)=0=m>nA Z ai > e,
1=n-+1

m
p(myn)=1=m<nV Z al <e.
1=n-+1

Let

S={n:3n(¢(m,n)=0)}.
Then 1 € S, and S is both countable and downward closed. In order to prove that
S is pseudobounded, let (sn)n21 be an increasing sequence in S. We may assume
that s; = 1. Define a map x: S — N by

m
n(n):min{m:m>n/\ Z aj}e}.
1=n-+1

Setting A1 = 0, we construct inductively a binary sequence A\ = (\),,», and a
mapping 6 : A=1(1) — N+ such that for each n € N*,

(a) if A, =0and \,11 =1,thenn+1€S;

(b) if Ay =0= Apy1, then sy <n+1;

(c) if A\p=1,thenf(n) =min{i <n:V; i <j<n=XN\=1)}
(d) if A, =1, then \,11 =0 if and only if n = k(0(n)).

Suppose we have defined Ay1,..., A, and, when &k < n and Ay = 1, 0(k) with the
applicable properties. In the case A\, =0, if sp,4+1 < n+1, we set \,41 = 0; and
if Spe1 > n+ 1, we set A\,y1 = 1, noting that n + 1 € S since S is downward
closed. In the case A\, = 1, since Ay = 0, we see that 6(n) is defined, that
Agny—1 = 0 and Xg(,) = 1, and therefore, by (a), that 0(n) € S; whence x(6(n))
is defined. We then set A\,,11 = 0 if n = k(6(n)), and A\, 41 = 1 otherwise. This
completes our inductive construction. Note that if A, = 1, then x(6(n)) > n. For
if 8(n) < k(6(n)) < n, then )\,{(Q(n)) =1= )\K(g(n))Jrl; but by (d), )\H(e(n))+1 =0,
a contradiction. Thus we have:

(e) if Ay =1, then k = k(0(n)) —n+1>1and \yyx = Aeo(n))+1 = 0.

Note also that if n > 2, A,y = Apy1 =0, and A\, = 1, then by (a), n € S, and
by (d), n = k(6(n)) > n, which is absurd.

For convenience, if n < m and the following hold, we call the interval T = [n,m]
of NT a bad interval:



— ifn>1then \,_1 =0,
— Am+1 =0, and
— XN, =1foralliel.

If \.-1 =0and A\, =1, thenn € S, by (a), and 6(n) = n, if also A\,41 =0,
then n = k(0(n)) = k(n) > n, which is absurd. Thus there are no singleton bad
intervals. We define a permutation o of N as follows. If A\, = 0 set o(n) =n. If
[n,m] is a bad interval (perforce with m > n), then by (c), 8(m) = n, and (since
Am+1 = 0) using (d), we have x(6(m)) = k(n) = m; hence 37" . af > €. Let
o map an initial segment [n,n + k — 1] of [n, m] onto

{i:n<i<mAal >0},
and map the remaining elements of [n, m] onto

{i:néiém/\aﬁzO}.

In this case,
n+k—1 n+k—1 m
_ + _ +
Y. o) = ZawZ af >e. (3)
1=n-+1 1=n-+1

If A, = 1, then 8(n) < n and, by (e), m = min{k: > 1: Apyr = 0} exists. It
follows that 8(m) = 6(n) and that [#(n),m] is a bad interval containing n; whence
o is defined on [f(n), m] and in particular at n. This completes the definition of o,
which is easily seen to be a permutation of N7.

Since Zfil aq(;) is convergent, there exists J such that Z 41 00() < €
whenever J < j < k. In view of (e), we can assume that \; = O Ifn > J
and A, = 1, then 6(n) > J and there exists m > 6(n) such that [#(n),m] is a
bad interval. Hence, by (3), there exists j with J < 6(n) < j < m such that
ZZZQ(H)H ay() > € a contradiction. We conclude that A\,_; = 0 = \,, and
therefore s, < n, for allm > J + 1. Thus S is pseudobounded.

Applying BD-N, we obtain a positive integer NV such that n < N for all n € S.
If m >mn > Nand "  al > ¢, then ¢(m,n) # 1, so ¢(m,n) = 0 and

1=n+1 "1
therefore n € S, a contradiction. Hence Y7, af <& whenever m >n > N.
Likewise, there exists N’ such that " ., a; <& whenever m >n > N’. Thus

if m >mn > max{N,N'}, then

m m m
Z la;| = Z af + Z a; <2

1=n-+1 1=n-+1 1=n-+1

Since € > 0 is arbitrary, we conclude that the partial sums of the series > |a,,| form
a Cauchy sequence, and hence that the series converges.

It remains to remove the restrictions imposed in the second sentence of this
proof. Pick by > 0 such that as + by is positive and rational, and for each i # 2
pick b; such that 0 < b; < 27% and a; + b; is rational. Note that the series Zfil b;



converges absolutely and so, by RST1, is permutably convergent. It reaily follows
that 3", (a; + b;) is permutably convergent and therefore, by the first part of
this proof, absolutely convergent. Since |a;| < |a; + b;| + |b;|, the comparison test
shows that Y _°°, |a,| is convergent. m

4 Weak-permutable convergence and BD-N

Diener and Lubarsky [11] have constructed topological models showing that the
absolute convergence of every permutably convergent series in R neither implies
BD-N nor is provable within the Aczel-Rathjen CZF set-theoretic foundation [1]
for BISH, and may therefore be of constructive reverse-mathematical significance
in its own right. Their models lead us to ask: is there a variant of the Riemann
permutability theorem that is classically equivalent to the original form and that
implies BD-N? Since weak-permutable and permutable convergence are classically
equivalent, the main result of this section provides an affirmative answer:

Theorem 8 The statement
Every weak-permutably convergent series in R is absolutely convergent
implies BD-N.

The hard part of the proof is isolated in the complicated construction in the following
lemma.

Lemma 9 Let S = {s1,52,...} be an inhabited, countable, pseudobounded subset
of N. Then there exists a sequence (an),,.; of nonnegative rational numbers with
the following properties.

(i) S (=1)" ay, is weak-permutably convergent.

(ii) If>" ay, converges, then S is bounded.

Proof. First replace each s,, by max {sy : k < n}, thereby obtaining s; < s2 < ---.
Construct a binary sequence (Ag),, such that

Ak = 0= Sor+1 = Sor,
A = 1= Sopt1 > Sox.
Setting a; = 0, let a,, = \y/ (n+ 1) whenever k,n € N* and 2% < n < 281 In

order to show that >, (—1)" a,, converges in R, first observe that if \; =1 and
2k < my <mg < 2FtL then

ma

ma2 n
n (-1) 1 1
-1 n| = < < —.
2. (V"a 2 i my+1 2k
n=mi n=m:u




On the other hand, if j, k,my, my are positive integers with 28 < m; < 2FF1 <
27 < mg < 27t1 then

My ok+1_q j—1 |2¢t1-1 ma
DD an < Y (D anl+ D01 > (D an| +] Y (<) an
n=m n=my i=k+1| n=21% n=27
SR S RN | 1
Sopt §+§§Z§:2k71
i=k+1 i=k
We now see that
mao 1
Z (_1)n Qnp S 2_]@ (m2 Z my 2 2k+1)- (4)
n=msi

It follows that the partial sums of S°°° . (—1)"a,, form a Cauchy sequence, and
P n=1 y q
therefore the series converges to a sum s € R.
Consider any permutation o of N*. In order to show that Y~ | (=1)7™ o (n)
has a convergent bracketing, we construct strictly increasing sequences (jk.)k21 and
(k) of positive integers such that for each &,

(a) 27k < my < 20k+1,
(b) {1,2,...,27%} C {o(n) :n < ni} C {1,2,...,27%1} and

(©) |Ci, (- a

<2 % forall k>1andi>j> 2k,

First we set j; = 22 and choose n; > 271 such that
{1,...,2"Y c {o(n) :n < ny}.
From (4) we have
ij (=) an| <271 (i>j>27).
n=j
Having found ji and ny such that 27 < ny,
{1,2,...,2“} C{o(n):n<ng},
and ‘
ij(—l)"an <27h (izj =2,
n=j

choose jp1 > max{jy, 282} such that ny < 27++! and

{o(n):n<np}C{l,2,...,20r},

10




Then choose ng,1 > 27+ such that
{1,2,..., 275} C {o(n) : n < npga ).

Since, by (4),
K3

S () an| <27 (125> 20,

n=j
we have completed the inductive construction of the sequences (ji ), and (1),
with properties (a)—(c).

Now consider the sequence (sqi.+1);5,- Since S is pseudobounded, there exists
a positive integer K1 such that s,j,+1 < k for all £k > K;. Suppose that for each
positive integer k < K, there exists i such that ji < @ < jr+1 and A;, = 1.
Then
Sgip < Sgipg < +-+ < $2iK1 < SQjK1+1,

so K1 < Sgik,41; but ix, > Ki and therefore Syiri+1 < K1, a contradiction.
Hence there exists k1 < K such that for each ¢ with ji, < ¢ < jg,+1, we have
Ai = 0, and therefore a,, = 0 whenever 2¢ < n < 2¢*1. Thus a, = 0 whenever
29k < m < 290141 It follows from this and (b) above that

{an :n <2} C {agm) :n < ng, }
C {an in < 2jk1+1}
={ap:n<2m}U{a, 2 <n<2mn})
= {ann<2Pu}u{0)
={anin<2u}uia)
={a,:n<2m}.

Hence
{an in < 2j’“1} = {ag(n) n < nk.l} .

Next consider the sequence (S2jk1+k+1)k>l. Since S is pseudobounded, there
exists a positive integer K5 such that Soiky4htr1 < k for all k > K5. Suppose that

for each positive integer k < Ko, there exists i) such that ji, 1 < ik < Jg,+k+1
and A;, = 1. Then

Soip < Sgipg < ++0 < SqiK, < Soiky+Ka+1)

so K2 < Syin+xy11 < K2, which is absurd. Hence there exists k < K> such
that for each ¢ with ji, 4+ < ¢ < jk,+r+1, We have \; = 0, and therefore a,, = 0
whenever 2¢ < n < 2i+1 Setting ko = ki + K, we have a,, = 0 for all n with
2Jk2 L < 29241, |t follows from this and (b) above that

11



{an:n < Qj’“?} Cagmy :n<ni,}
C {an :n < 2t}
= {anZTlSijz}U{an : QK2 <n+1<21k2+1}
= {an:n§2jk2}u{0}
= {an:n§ 2j’“2}U{a1}
= {an:n§2jk2}.

Thus
{an,:n < 2j’“2} = {ag(n) i <y b

Carrying on in this way, we construct positive integers k; < ko < kg < --- such
that for each ¢,

{an n < 2”1‘} = {ag(n) in < nk} (5)
For each i € N7t let

X, ={n: ki < < ki1 | q, # 0}

and
Yi={o(n):nk, <n<ng.,,, ym) #0}.

Observe that if a,, = a,s # 0, then, choosing p, ¢ such that 27 < n < 2P*! and
29 < n’ <29 wehave A\, =\, =1, a,, = 1/(n+1), and a,y = 1/(n’+1); hence
n =n'. By (5), for each n € X; there exists m < ng,, such that a,, = ay(,,); then
n = o(m) and therefore m = o=1(n). If m < ng,, then by (5), there exists n’ < 27%i
such that @,y = @y (m) = a, and therefore n = n’; but n € X;, son > Wki >/,
a contradiction. Hence ny, < m and o(m) € Y;. Similar arguments using (5) show
that for each m, if ng, <m < ny,,, and ag () # 0, then there exists n € X; such
that a, () = @, and therefore n = o(m). It readily follows that n ~» o(o7*(n)) is
a one-one mapping of X; onto Y;. Thus

ki 27k +1
o(m) n 1
Yo (D M agey| =] Y (D)"an| < g
m=nj;+1 n=27%i +1

the last inequality using (c) above. Hence

Nhkjt1

Z Z (71)0(777«) Qg (m)

=1 m=ny, —+1

converges, by comparison with Y0, 27 Since ¢ is an arbitrary permutation of
N+, it follows that >, a,, is weak-permutably convergent. This proves (i).

To prove (ii), suppose that Y ° a, converges. There exists N; such that
Z?:Nl an < 1/4. Also, there exists N > Nj such that

(n > N).



If n >N and A\, = 1, then

a contradiction. It follows that for all n > N we have )\, = 0 and therefore
Sp = Son. Hence s,, < sy~ for all n, and S is a bounded set.

The proof of Theorem 8 is now straightforward:

Proof. Given an inhabited, countable, pseudobounded subset S of N, use Lemma
9 to construct a sequence (an),-; of nonnegative rational numbers such that
> (—1)"a,, is weak-permutably convergent, and if > (—1)"a,, converges absolutely,
then S is bounded. m

5 Concluding remarks
We have shown that, over BISH,

— with BD-N, every permutably convergent series is absolutely convergent;

— the absolute convergence of every weak-permutably convergent series implies
BD-N.

It follows from the latter result that if, in BISH, weak-permutable convergence
implies, and is therefore equivalent to, permutable convergence, then the absolute
convergence of every permutably convergent series implies, and is therefore equiva-
lent to, BD-N. Since the topological models in [11] show that this is not the case,
we see that, within BISH, weak-permutable convergence is a strictly weaker notion
than permutable convergence.
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