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Abstract

The notions of permutable and weak-permutable convergence of a series
22021 an of real numbers are introduced. Classically, these two notions are
equivalent, and, by Riemann’'s two main theorems on the convergence of
series, a convergent series is permutably convergent if and only if it is ab-
solutely convergent. Working within Bishop-style constructive mathematics,
we prove that Ishihara’s principle BD-IN implies that every permutably con-
vergent series is absolutely convergent. Since there are models of constructive
mathematics in which the Riemann permutation theorem for series holds but
BD-N does not, the best we can hope for as a partial converse to our first
theorem is that the absolute convergence of series with a permutability prop-
erty classically equivalent to that of Riemann implies BD-IN. We show that
this is the case when the property is weak-permutable convergence.

1 Introduction

This paper follows on from [2], in which the first two authors gave proofs, within
the framework of Bishop-style constructive analysis (BISH),! of the two famous
series theorems of Riemann [17]:2

RST, If a series > a,, of real numbers is absolutely convergent, then for each
permutation o of the set Nt of positive integers, the series ) ay () converges
to the same sum as Y, ay,.

RST, If a series Y a,, of real numbers is conditionally convergent, then for each
real number x there exists a permutation o of Nt such that > g(n) CON-
verges to x.

1That is, analysis using intuitionistic logic, a related set theory such as that of Aczel and
Rathjen [1], and dependent choice. For more on BISH, see [3, 4, 7].

2We use shorthand like 3" an and > g (n) for series when it is clear what the index of
summation is.



It is not hard to extend the conclusion of RST; to what we call its full, extended
version, which includes the existence of permutations of the series Y a, that di-
verge to co and to —oo. In consequence, a simple reductio ad absurdum argument
proves classically that if a real series > a, is permutably convergent—that is,
every permutation of Y a,, converges in R—then it is absolutely convergent. An
intuitionistic proof of this last result was provided by Troelstra ([19], pages 95 ff.),
using Brouwer's continuity principle for choice sequences. That result actually has
one serious intuitionistic application: Spitters ([18], pages 2101-2) uses it to give
an intuitionistic proof of the characterisation of normal linear functionals on the
space of bounded operators on a Hilbert space; he also asks whether there is a
proof of the Riemann-Troelstra result within BISH alone. In Section 3 below, we
give a proof, within BISH supplemented by the constructive-foundationally impor-
tant principle BD-IN, that permutable convergence implies absolute convergence.
While this proof steps outside unadorned BISH, it is valid in both intuitionistic and
constructive recursive mathematics, in which BD-N is derivable.

This raises the question: over BISH, does the absolute convergence of every
permutably convergent series imply BD-N7? Thanks to Diener and Lubarsky [8], we
now know that the answer is negative; in other words, the result about permutably
convergent series is weaker than BD-N. In turn, this raises another question: is
there a proposition that is classically equivalent to, and clearly cognate with, the
absolute convergence of permutably convergent series and that, added to BISH, im-
plies BD-NN? In order to answer this question affirmatively, we introduce in Section
2 the notion of weak-permutable convergence and then derive some of its funda-
mental properties, including its classical equivalence to permutable convergence. In
Section 4 we show that the absolute convergence of weak-permutably convergent
series implies BD-N. Thus, in BISH, we have the implications

Every weak-permutably convergent series is absolutely convergent
= BD-N

= Every permutably convergent series is absolutely convergent.

In view of the Diener-Lubarsky results in [8], neither of these implications can be
reversed.

2 Weak-permutably convergent series in BISH

By a bracketing of a real series > a,, we mean a pair comprising
e a strictly increasing mapping f : Nt — NT with f(1) =1, and
e the sequence b defined by

f(k+1)—1
be= > a (k=1).
i=1(k)



We also refer, loosely, to the series > by as a bracketing of > a,,.

We say that > a, is weak-permutably convergent if it is convergent and if
for each permutation o of N, there exists a convergent bracketing of 3~ ag(y).
Clearly, permutable convergence implies weak-permutable convergence. As we shall
see in this section, the converse holds classically but not constructively. As a first
step towards this, we have:

Proposition 1 Let ) a,, be a weak-permutably convergent series of real numbers,
with sum s, and let o be a permutation of N*. Then every convergent bracketing
of ) G, (n) converges to s.

The proof of this proposition will depend on some lemmas.

Lemma 2 Let Y a,, be a convergent series of real numbers, with sum s, and let
o be a permutation of N*t. If there exists a bracketing (f,b) of Y ay(,) that
converges to a sum t # s, then there exist a permutation T of Nt and a strictly
increasing sequence (k;);, of positive integers such

fkitr1)

1
Z A7 (n) > g ‘5 - t| (1)

n=f(k;)+1
for all i.

Proof. Consider, to illustrate, the case where s < t. For convenience, let ¢ =
3 (t — s). Pick k; such that

k
D an|<e (k>j> f(k)).
Then Zf(kl an < s+e. Set 7(k) =k for 1 <k < f(k1). Next pick ko > k; such
that
° {(11, .. .,af(kl)} C {ag(n) 1<n< f(kg)} and
Zf(k) Qo (n)
Define 7(n) for f(k1) <mn < f(ke) so that

{a(ny 1 1 <n < f(k2), o(n) > f(k1)} = {@r(r(hn)s1)s - o0 Cr(fiha)) } -

Note that

< & whenever k > j > f(k2).

f(k2) I (k2)

ZaTn)— Zag(n)>t—5

Next, pick k3 > ko such that

{ar@ys s @r(sra) } € {an 2 1< < flha)}



Define 7(n) for f(k2) <mn < f(ks) so that

{an :1<n< fks), n>7(f(ka))} = {a,,-(f(k2)+1), .. .,aT(f(kg))} .

Then
f(ks f(ks)

)
Z Qr(n) = Z ay, < S+e.
n=1 n=1

Carrying on in this way, we construct, inductively, a strictly increasing sequence
(k:i)i>1 of positive integers, and a permutation 7 of N, such that for each j,

f(k2j-1) f(k2;5)
Z arn) < s+e and Z Ur(n) >t — €.
n=1 n=1

When ¢ € N7 is even, we obtain

f(kiyr) f(kq) f(kit1) 1
Qr(n)| 2 Z Gr(n) — Z Ur(n) >t —8— 2> 3 (t—3s).
n=f(k;)+1 n=1 n=1

A similar argument gives (1) when i is odd. =
Lemma 3 Under the hypotheses of Lemma 2, the series > |a,| diverges.

Proof. Construct the permutation 7 and the sequence (k;),, as in Lemma 2.
Given C > 0, compute j such that (j — 1)|s —t| > 3C. Then

j—=1| f(kit1)

f(k;) o
dDilarm| =D D e >]31|s—t|>0.
n=1

i=1 |n=f (ki) +1

Then compute M such that
{%(1)7 e, a.,-(f(kj))} C {al, e a]w} .
Then

M f(k;)
Z |an| = Z |a'r(n)| > C.
n=1

n=1

Since C > 0 is arbitrary, the conclusion follows. m

Lemma 4 Let > a, be a convergent series of real numbers, and T a permutation
of NT such that > ) diverges to infinity. Then it is impossible that ) a,(y)
have a convergent bracketing.

Proof. Suppose there exists a bracketing (f,b) of > a,(,) that converges to a
sum s. Compute N > 1 such that

Za’r(n)>s+1 (V>N) (2)
n=1



There exists N1 > N such that

N; f(i+1)—1
Z Z a'r(n - <1
i=1 n=f(i)
and therefore
F(N1+1)—1
Z arny| < s+ 1.
n=1

Since f(N; + 1) > N, this contradicts (2). =

Lemma 5 Let ) a, be a weak-permutably convergent series of real numbers, and
o a permutation of NT. Then it is impossible that |ag(n)’ diverge.

Proof. Suppose that ) |ag(n)‘ does diverge. Then, by the full, extended version
of RST, there is a permutation 7 of N such that )" a,(,) diverges to infinity.
Since ) a, is weak-permutably convergent, there exists a bracketing of > a,(,)
that converges. This is impossible, in view of Lemma 4. =

Arguing with classical logic, we see that if Y a,, is weak-permutably convergent,
then, by Lemma 5, >_ |a,,| must converge; whence Y a,, is permutably convergent,
by RST;.

Returning to intuitionistic logic, we have reached the proof of Proposition 1:

Proof. Suppose that there exists a bracketing of ) a,(,) that converges to a
sum distinct from s. Then, by Lemma 3, > |a,| diverges. Lemma 5 shows that
this is impossible. It follows from the tightness of the inequality on R that every
convergent bracketing of ) a,(,) converges to s. m

Since permutable convergence implies convergence and is a special case of weak-
permutable convergence, we also have:

Corollary 6 Let > a, be a permutably convergent series of real numbers, and let
o be a permutation of N. Then Eaa(n) =>an.

3 BD-N and permutable convergence

A subset S of N is said to be pseudobounded if for each sequence (s,),,-, in
S, there exists N such that s, /n < 1 for all n > N—or, equivalently, if s, /n — 0
as n — oo. Every bounded subset of N is pseudobounded; the converse holds
classically, intuitionistically, and in recursive constructive mathematics, but Lietz
[14] and Lubarsky [15] have produced models of BISH in which it fails to hold for
inhabited, countable, pseudobounded sets. Thus the principle

BD-N Every inhabited, countable, pseudobounded subset of N7T is bounded?

3BD-N was introduced by Ishihara in [10] (see also [16]).




is independent of BISH. It is a serious problem of constructive reverse mathematics
[5, 12, 13] to determine which classical theorems are equivalent to BISH + BD-NN.
For example, it is known that the full form of Banach's inverse mapping theorem in
functional analysis is equivalent, over BISH, to BD-IN; see [11].

This section is devoted to our version of the Riemann permutability theorem:

Theorem 7 In BISH + BD-N, every permutably convergent series of real numbers
is absolutely convergent.

Proof. Let }.°, a; be a permutably convergent series of real numbers. To begin
with, assume that each a; is rational. Write

a}l = max{a,,0}, a, =max{—a,,0}.

Given a positive rational number ¢, define a binary mapping ¢ on N* x N such
that

m
$p(m,n)=0=m>nA Z ai >,
1=n—+1

m
p(m,n)=1=m<nV Z al <e.
1=n-+1

We may assume that ¢ (2,1) = 0. Let
S={n:3n(¢(m,n)=0}.

Then S is countable and downward closed. In order to prove that S is pseudobounded,
let (sn),, be an increasing sequence in S. We may assume that s; = 1. Define
amap k:S — NT by

m
n(n)min{m:m>n/\ z aj'}s}.
i=n+1

Setting A1 = 0, we construct inductively a binary sequence A = (\,),,; with the
following properties:

Vo (Gn=0AAp1=1)=n+1€8) 3)
Yo 3m (An = 1= Apssm = 0) (4)

Suppose that Aq1,..., A, have been defined such that
Vicn (A =0AXgy1 =1) = k+1€S5). (6)

In the case A\, =0, if s,11 <n+1, weset \y11 =0; and if 5,11 >n+1, we set



An+1 = 1, noting that n 4+ 1 € S since S is downward closed. In the case A\, =1,
we define
n=min{i<n:V;i<j<n=X\=1)}.

Then the hypothesis (6) ensures that n' € S. If r(n) =n, then 327" ., ai >e
and we set A\, 1 = 0; otherwise, we set A\,11 = 1. This concludes the inductive
construction of the sequence A. Note that in the case A\, = A,41 = 1, this

construction will eventually give A, 414, = 0 for some m, since

w(n')—1 r(n')
K(n') Zn+1, Z al <e, and Z al >e.

i=n'+1 i=n’+1

Hence the sequence A has all three properties (3)—(5).

For convenience, if n < m and the following hold, we call the interval T = [n,m]
of NT a bad interval:

—ifn>1then \,_1 =0,
- )\m+1:01 and
- XN;=1foralliel.

Define a permutation o of NT as follows. If \,, = 0, then o(n) = n. If [n,m] is
a bad interval, then the construction of the sequence X ensures that x(n) = m, so
>t ,.i10; > e Let o map an initial segment [n,n + k — 1] of [n, m] onto

{i:n<i§m/\a?‘>0},
and map the remaining elements of [n, m] onto

{i:ngiém/\ajzo}.
Note that for all n > 1,

k
M1 =0AX =)= T4 (n<F<kA D agy>e|. (7)
i=j+1

Since _.°, ay(;) is convergent, there exists .J such that Zf:jﬂ aq(;) < € whenever

J < j < k. Inview of (4), we can assume that A\; = 0. If n > J and A\; =1, then

there exists v such that J < v <n, A\, =0, and A\, 11 = 1; whence there exist j, k

such that J < v < j <k and Zf:j-s—l a,(;) = €, a contradiction. Thus A, = 0 for

all n > J, and therefore, by (5), s, < n for all n > J. This concludes the proof
that .S is pseudobounded.

Applying BD-IN, we obtain a positive integer NV such that n < N foralln € S.

If m >n > Nand "  af > ¢ then ¢(m,n) # 1, so ¢(m,n) = 0 and

therefore n € S, a contradiction. Hence Z;in-‘rl a;" < € whenever m > n > N.



m

Likewise, there exists N’ such that Y " ., a
if m >mn > max{N,N'}, then

< € whenever m > n > N’. Thus

7

m

m m
Z la;| = Z ai + Z a; < 2.

1=n+1 1=n+1 1=n+1

Since € > 0 is arbitrary, we conclude that the partial sums of the series Y |a,,| form
a Cauchy sequence, and hence that the series converges.

It remains to remove the restriction that the terms a; be rational. In the general
case, for each i pick b; such that a; + b; is rational and 0 < b; < 27%. Note that the
series >~ b; converges absolutely and so, by RSTy, is permutably convergent.
Hence >, (a; + b;) is permutably convergent. By the first part of the proof,
>ooy lai + b;| is convergent, as therefore is Y o2, |a;|. m

4 Weak-permutable convergence and BD-N

Diener and Lubarsky [8] have recently constructed topological models showing that
the absolute convergence of every permutably convergent series in R neither im-
plies BD-N nor is provable within the Aczel-Rathjen set-theoretic formulation of
BISH [1], and may therefore be of constructive reverse-mathematical significance
in its own right. Their models lead us to ask: is there a variant of the Riemann
permutability theorem that is classically equivalent to the original form and that
implies BD-N7 Since weak-permutable and permutable convergence are classically
equivalent, the main result of this section provides an affirmative answer:

Theorem 8 The statement
(*) Every weak-permutably convergent series in R is absolutely convergent
implies BD-N.

The hard part of the proof is isolated in the complicated construction in the
following lemma.

Lemma 9 Let S = {s1,82,...} be an inhabited, countable, pseudobounded subset
of N. Then there exists a sequence (ay),,~, of nonnegative rational numbers with
the following properties.

(i) S (=1)"a, is convergent and weak-permutably convergent.
(i) If>_ an converges, then S is bounded.

Proof. To perform this construction, we first replace each s,, by max {sy : k < n},
thereby obtaining s; < s3 < ---. Now construct a binary sequence ()‘k)k->1 such
that

Ak = 0 = Sor+1 = Sor,
Ak =1 = Sort1 > Sok.



For 28 +1 < m+1 < 21 set a,, = \y/(n+1). Note that if \y = 1, then
k41
Zi;k-s-l an, > 1. In order to show that > > (—1)"a, converges in R, first

observe that if A\, = 1 and 2F < my < mo < 25t then

mao n
(=1)
Z n+1

n=mji

ma

Z (_1)n an

n=mji

< Qik (8)

If j, k,m1, ma are positive integers with 28 < m; < 281 < 27 < my < 2711 then

ma

Z (71)”‘ (275

n=mi

2k‘,+1 2u+1 mo

<D EDMan+ DY | D> (D"an| | D (=) a,

n=mji k<v<j, |n=2"+1 n=27+4+1
Av=1

Hence the partial sums of >, (—1)" a, form a Cauchy sequence, and so the
series converges to a sum s € R.
Consider any permutation o of N*. In order to show that 32°° , (—1)°(") o ()

converges, we construct strictly increasing sequences (jik ), anTéi:ln;C r>1 of posi-
tive integers such that for each k,

(a) 270 <y < 29041,

(b) {n:n+1<2r} C{o(n):n+1<ng}C{1,2,...27%1 —1}, and

(c) ‘ZZ:ZJ% (-1)" an‘ <2 %1l forallk>1andi> 2.
Setting j1 = 2, pick ny > 4 such that

{1,2} e{o(n):n+1<mni}.

Then pick j; > j1 such that n; < 272,

{o(n):in+1l<m}C{n:in+1<22},

and ‘Z;ZQJ-Q (=" an‘ < 271 for all 4 > 272. Next pick, in turn, np > 272 and
J3 > ja such that

{n:in+1<2?}Cc{o(n):in+1<n}C{n:n+1<2?}

changed. check!



and Zl (—=1)" an,| < 272 for all i > 272. Carrying on in this way, we complete

n=272
the construction of our sequences (ji.);~1 » ()=, With properties (a)—(c).
Now consider the sequence (S5i;.+1); - Since S is pseudobounded, there exists
a positive integer K such that s,;,,, <k for all k > K;. Suppose that for each
positive integer k < K, there exists 75 such that j; < i < jgy1 and A;, = 1.
Then
Soip < Sging < -+ 0 < Soirc, < SoiKcy+1)

so K; < Sqiky+1 < K1, a contradiction. Hence there exists k1 < K7 such that
for each i with jx, < ¢ < jk,4+1, we have \; = 0, and therefore a,, = 0 whenever
28 <n+1< 2" Thus a, = 0 whenever 27x1 < n + 1 < 27k1+1_ |t follows that
{an n+1< 2j’°1} C {aa(n) n+1 <nkl}
C{an:n+1<2me}
={a,:n+1<2}U{a,: 2" <n+1<2m+}
={an:n+1<2%}u{0}.

Without loss of generality, we may assume that a; = 0. Then
{an:n—|—l < 2j’“1} = {aa(n) :n+1 <nk1}.

Next consider the sequence (52jk1+k+1) Since S is pseudobounded, there

E>1"
exists a positive integer K such that s, .. < k for all k > K3. Suppose that

for each positive integer k < Ko, there exists i such that ji, 41 < % < Jiy+k+1
and A;, =1. Then

Sgin < 8gip <o r < Syiey, < Sogiky+ K415

so Ky < Soiky+Kkat1 < K5, which is absurd. Hence there exists kK < K> such
that for each ¢ with ji, 1« < % < Jk,+x+1, We have A\; = 0, and therefore a,, = 0
whenever 28 < n + 1 < 21, Setting ko = ki + , we have a,, = 0 for all n with
27k L m 4 1 < 27k2+1 Hence

{an:n+1<2j’“2} C {aa(n) :n+1<nk2}
C{an:n+1< 2k}
={an:n+1<2%2}U{a,: 2% <n+1 <2k}
={an:n+1<2*}uU{0}.
Thus, since a; =0,
{an:n+1<2j’“2} = {ag(n) :n+1<nk2}.

Carrying on in this way, we construct positive integers k1 < ko < k3 < --- such
that for each ¢,

{anin+1 <2} ={aom in+1<mg}.

10
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1

Since both o and ™" are injective, it readily follows that for each 1,

{o(n) :ng, <n+1<ng,,

}: {m S0k < 2j’“i+1}

and therefore

Mgy —1 oIk;+11 1
> (=1)7™ ay (| = > (D)"am < ok
Syl m:iji

We now see that
Mkiy1—1

Z Z (71)0(71)0’0(71)

=1 n=ng,

converges, by comparison with Y o, 27
convergent.

Finally, suppose that Z,:o:l an converges. Then there exists N such that
> e n41@n < 1/2. It follows that A, = 0, and therefore that s, = son, for

all n > N; whence s, < so~ for all n, and therefore S is a bounded set. m

Thus Y° | a, is weak-permutably

The proof of Theorem 8 is now straightforward:

Proof. Given an inhabited, countable, pseudobounded subset S of N, construct a
sequence (ay),; of nonnegative rational numbers with properties (i) and (ii) in
Lemma 9. Assuming (*), we see that ) a,, converges; whence, by property (ii), S
is a bounded set. m

5 Concluding remarks
We have shown that, over BISH,

— with BD-N, every permutably convergent series is absolutely convergent;

— the absolute convergence of every weak-permutably convergent series implies
BD-N.

It follows from the latter result that if weak-permutable convergence constructively
implies, and is therefore equivalent to, permutable convergence, then the absolute
convergence of every permutably convergent series implies, and is therefore equiva-
lent to, BD-N. Since the topological models in [8] show that this is not the case, we
see that, relative to BISH, weak-permutable convergence is a strictly weaker notion
than permutable convergence. In fact, the Diener-Lubarsky results shows that there
is no algorithm which, applied to any inhabited, countable, pseudobounded subset S
of N and the corresponding weak-permutably convergent series > a,, constructed
in the proof of Lemma 9, proves that that series is permutably convergent. Never-
theless, weak-permutable convergence and permutable convergence are classically

11



equivalent notions; the constructive distinction between them is that the former
implies, but is not implied by, BD-IN, which in turn implies, but is not implied by,
the latter.
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Details of proof that

{U(n) PNk, <n+1<nki+1}: {mth <m<2jki+1}

i

Proof. Given n with ng, <n+1< L pick m such that m + 1 < 2Jki+1 and
o(n) = m. Suppose that m + 1 < 27%:; then there exists n’ with n’ 4+ 1 < ny, and
o(n’) = m = o(n), which is absurd since n’ < n and o is a permutation. Hence
27k < m. We now see that

{o(n):np, <n+1<ng,,}C {m:2j’°i <m<2j’%‘+1},

On the other hand, given m with 2/% < m < 2%+ we can find n such that
n+1 < ng,,, and o(n) = m. Supposing that n + 1 < ny,, we see from (?7) that
there exists m/ with m’ + 1 < 27% and m/ = o(n) = m, which is also absurd since
m’ < m and o is a permutation; whence ng, < n+ 1. It follows from this that

{m D0k < 2j’”+1} C {U(n) tng, <Kn+1< nkiﬂ}
and hence that
}: {m:Qj"'i <m<2j"'i+1}.

{o(n):nk, <n+1<ng,.,

Hence m
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