
TOWARDS A FORMAL THEORY OF COMPUTABILITY

SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

We sketch a constructive formal theory TCF+ of computable functionals,
based on the partial continuous functionals as their intendend domain. Such
a task had long ago been started by Dana Scott [12, 15], under the well-
known abbreviation LCF (logic of computable functionals). The present
approach differs from Scott’s in two aspects.

(i) The intended semantical domains for the base types are non-flat free
algebras, given by their constructors, where the latter are injective and
have disjoint ranges; both properties do not hold in the flat case.

(ii) TCF+ has the facility to argue not only about the functionals them-
selves, but also about their finite approximations.

In this setting we give an informal proof (based on Berger [2]) of Kreisel’s
density theorem [7], and an adaption of Plotkin’s definability theorem [10,
11]. We then show that both proofs can be formalized in TCF+.

The naive model of a finitely typed theory like TCF+ is the full set the-
oretic hierarchy of functionals of finite types. However, this immediately
leads to higher cardinalities, and does not lend itself well for a constructive
theory of computability. A more appropriate semantics for typed languages
has its roots in work of Kreisel [7] (where formal neighborhoods are used)
and Kleene [6]. This line of research was developed in a mathematically more
satisfactory way by Scott [13] and Ershov [3]. Today this theory is usually
presented in the context of abstract domain theory (see [16, 1]); it is based
on classical logic. The present work can be seen as an attempt to develop a
constructive theory of formal neighborhoods for continuous functionals, in
a direct and intuitive style. The task is to replace abstract domain theory
by a more concrete, finitary theory of representations. As a framework we
use Scott’s information systems (see [14, 8, 16]). In this setup the basic
notion is that of a “token”, or unit of information. The elements or points
of the domain appear as abstract or “ideal” entities: possibly infinite sets of
tokens, which are “consistent” and “deductively closed”.

The paper is organized as follows. Section 1 collects basic facts about
information systems, and section 2 contains informal proofs of the density
and definability theorems for the case of the non-flat natural numbers, in

Date: May 3, 2010.

1

2 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

enough detail to guide the formalization. Section 3 develops the language
and axioms of the theory TCF+. The formalization of both theorems in
TCF+ is discussed in section 4. 1

1. Partial Continuous Functionals

1.1. Information systems. The basic idea of information systems is to
provide an axiomatic setting to describe approximations of abstract objects
(like functions or functionals) by concrete, finite ones. The axioms below
are a minor modification of Scott’s [14], due to Larsen and Winskel [8].

An information system is a structure (A,Con,`) where A is a countable
set (the tokens), Con is a nonempty set of finite subsets of A (the consistent
sets) and ` is a subset of Con×A (the entailment relation), which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,
a ∈ U ∈ Con→ U ` a,
U, V ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

The elements U of Con are called formal neighborhoods. We use U, V,W to
denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).
The ideals (also called objects) of an information system A = (A,Con,`)
are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

x ⊇ U ` a→ a ∈ x (x is deductively closed).

For example the deductive closure U := { a | U ` a } of U is an ideal. The
set of all ideals of A is denoted by |A|.
Examples. Every countable set A can be turned into a flat information
system by letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and
U ` a mean a ∈ U . In this case the ideals are just the elements of Con.

Consider the algebras B (booleans), N (natural numbers), P (positive
numbers written binary), D (derivations) given by the constructors

ttB, ffB for B,

1Based on ~/wwwpublic/papers/pohlers09/tcfplus.tex. Changes: (i) Definition of
∪# corrected and restricted to N: In (10) one needs U ` en rather than U ↑ en.

FORMAL COMPUTABILITY 3

•0 • S∗@
@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

...

Figure 1. Tokens and entailment for N

0N and SN→N (successor) for N,

1P, SP→P
0 (append 0) and SP→P

1 (append 1) for P,

0D (axiom) and CD→D→D (rule) for D.

For each of them we define an information system Cι = (Tokι,Conι,`ι):
(a) The tokens a ∈ Tokι are the constructor expressions Ca∗1 . . . a

∗
n where a∗i

is an extended token, i.e., a token or the special symbol ∗ which carries
no information.

(b) A finite set U of tokens in Tokι is consistent (i.e., ∈ Conι) if its elements
start with the same n-ary constructor C, say U = {C ~a∗1, . . . ,C ~a∗m}, and
Ui ∈ Conι where Ui consists of the (proper) tokens among a∗1i, . . . , a

∗
mi.

(c) {C ~a∗1, . . . ,C ~a∗m} `ι C′ ~a∗ is defined to mean C = C′, m ≥ 1 and Ui ` a∗i ,
with Ui as in (b) above (and U ` ∗ defined to be true).

For example, the tokens for N are shown in Figure 1. For tokens a, b we
have {a} ` b if and only if there is a path from a (up) to b (down). In D,
the set {C0∗,C∗0} is consistent, and {C0∗,C∗0} ` C00.

A token is called total if it has the form C~a with a total token ai at every
argument position. For example, the total tokens for N are all Sn0, and for
D all ∗-free constructor trees built from 0 and C.

By induction on the formation of tokens, one easily sees the following.

Lemma (Comparability). If ι has at most unary constructors, then any two
consistent tokens a, b are comparable, i.e., {a} ` b or {b} ` a.

1.2. Function spaces. Let A = (A,ConA,`A) and B = (B,ConB,`B) be
information systems. Define the function space A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I(
⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB),

4 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.

From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b. Clearly application is monotone in the second
argument, in the sense that U `A U ′ implies WU ′ ⊆ WU , hence WU `B
WU ′. Application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

Using this one easily proves that A→ B is an information system provided
A and B are.

For any information system A the set of all OU := {x ∈ |A| | U ⊆ x }
with U ∈ Con forms the basis of a topology on |A|, the Scott topology. The
continuous functions (w.r.t. the Scott topology) from |A| to |B| are in a
natural bijective correspondence with the ideals of A→ B:

(a) With any ideal r ∈ |A → B| we can associate a continuous function
|r| : |A| → |B| by |r|z := { b ∈ B | (U, b) ∈ r for some U ⊆ z }. We call
|r|z the application of r to z.

(b) Conversely, with any continuous function f : |A| → |B| we can associate
an ideal f̂ : A→ B by f̂ := { (U, b) | b ∈ f(U) }.

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|. We
usually write rz for |r|z, and similarly (U, b) ∈ f for (U, b) ∈ f̂ .

Lemma (Approximable maps [14]). Let A = (A,ConA,`A) and B =
(B,ConB,`B) be information systems. The ideals of A → B are exactly
the approximable maps from A to B, i.e., the relations r ⊆ ConA×B with

(a) If (U, b1), . . . , (U, bn) ∈ r, then {b1, . . . , bn} ∈ ConB;
(b) If (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} `B b, then (U, b) ∈ r;
(c) If (U ′, b) ∈ r and U `A U ′, then (U, b) ∈ r.

Types are built from base types ι (the algebras above) by ρ→ σ. For every
type ρ we define the information system Cρ = (Tokρ,Conρ,`ρ) starting
from the Cι by formation of function spaces Cρ→σ := Cρ → Cσ. The set
|Cρ| of ideals in Cρ is the set of partial continuous functionals of type ρ.
A partial continuous functional x ∈ |Cρ| is computable if it is recursively
enumerable when viewed as a set of tokens. The information systems Cρ

enjoy the pleasant property of “coherence”, which amounts to the possibility
of locating inconsistencies in two-element sets of data objects. Generally,
an information system A = (A,Con,`) is coherent if it satisfies: U ⊆ A is
consistent if and only if all of its two-element subsets are.

FORMAL COMPUTABILITY 5

It is easy to see that every constructor C generates a continuous function
rC := { (~U,C ~a∗) | ~U ` ~a∗ } in the function space (where (~U, b) means
(U1, . . . (Un, b) . . .)), and that

|rC|~x ⊆ |rC|~y ↔ ~x ⊆ ~y.

If C1,C2 are distinct constructors of ι, then |rC1 |~x 6= |rC2 |~y, since the two
ideals are non-empty and disjoint. Hence constructors are injective and
have disjoint ranges. Notice that neither property holds for flat information
systems, since for them, by monotonicity, constructors need to be strict (i.e.,
if one argument is the empty ideal, then the value is as well). But then

|rC|∅y = ∅ = |rC|x∅, |rC1 |∅ = ∅ = |rC2 |∅,

where C is a binary and C1, C2 are unary constructors.

2. Computable functionals

2.1. Terms and their denotational semantics. Terms are built from
(typed) variables and (typed) constants (constructors C or defined constants
D, see below) by application and abstraction:

M,N ::= xρ | Cρ | Dρ | (λxρMσ)ρ→σ | (Mρ→σNρ)σ.

Every defined constant D comes with a system of computation rules, con-
sisting of finitely many equations D~Pi(~yi) = Mi (i = 1, . . . , n) with free
variables of ~Pi(~yi) and Mi among ~yi, where the ~Pi(~yi) must be “constructor
patterns”, i.e., lists of applicative terms built from constructors and distinct
variables, with each constructor C occurring in a context C~P (of base type).
We assume that ~Pi and ~Pj for i 6= j are non-unifiable. Examples are

(i) the predecessor function P: N→ N defined by the computation rules
P0 = 0, P(Sn) = n,

(ii) Gödel’s primitive recursion operators RτN : N→ τ → (N→ τ → τ)→
τ with computation rules R0fg = f , R(Sn)fg = gn(Rnfg), and

(iii) the least-fixed-point operators Yρ of type (ρ → ρ) → ρ defined by the
computation rule Yρf = f(Yρf).

For every closed term λ~xM of type ~ρ→ σ we inductively define a set [[λ~xM]]
of tokens of type ~ρ→ σ.

Ui ` b
(~U, b) ∈ [[λ~xxi]]

(V),
(~U, V, c) ∈ [[λ~xM]] (~U, V) ⊆ [[λ~xN]]

(~U, c) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D we have

~V ` ~b∗

(~U, ~V ,C~b∗) ∈ [[λ~xC]]
(C),

(~U, ~V , b) ∈ [[λ~x,~yM]] ~W ` ~P (~V)

(~U, ~W, b) ∈ [[λ~xD]]
(D),

6 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

with one such rule (D) for every computation rule D~P (~y) = M .
Here (~U, V) ⊆ [[λ~xM]] means (~U, b) ∈ [[λ~xM]] for all (finitely many) b ∈

V , and (~U, b) denotes (U1, . . . (Un, b) . . .). For a constructor pattern ~P (~x)
and a list ~V of the same length and types as ~x, ~P (~V) is a list of formal
neighborhoods of the same length and types as ~P (~x): x(V) is V , and

(C~P)(~V) := {C~b∗ | b∗i ∈ Pi(~Vi) if Pi(~Vi) 6= ∅, and b∗i = ∗ otherwise }.

The height of a derivation of (~U, b) ∈ [[λ~xM]] is defined as usual, by adding
1 at each rule. We define its D-height similarly, where only rules (D) count.

Theorem. (a) For every term M , [[λ~xM]] is an ideal.
(b) If a term M converts to M ′ by βη-conversion or application of a com-

putation rule, then its value is preserved, i.e., [[M]] = [[M ′]].

For a term M with free variables among ~x and an assignment ~x 7→ ~u of
ideals ~u to ~x let [[M]]~u~x :=

⋃
~U⊆~u[[M]]~U~x with [[M]]~U~x := { b | (~U, b) ∈ [[λ~xM]] }.

Notice that a consequence of (A) is

(1) c ∈ [[MN]]~u~x ↔ ∃V⊆[[N]]~u
~x
((V, c) ∈ [[M]]~u~x) (continuity of application).

Proposition. For every n > 0, there is a derivation of (W, b) ∈ [[Y]] with
D-height n if and only if Wn∅ ` b.

Proof. Every derivation of (W, b) ∈ [[Y]] must have the form

Ŵ ` (V, b)

(Ŵ , V, b) ∈ [[λff]]

(Ŵ ,Wi, bi) ∈ [[λfY]]

Ŵ ` (Vij , bij)

(Ŵ , Vij , bij) ∈ [[λff]]

(Ŵ , bi) ∈ [[λf (Y f)]]

(Ŵ , b) ∈ [[λf (f(Y f))]]
(D), assuming W ` Ŵ

(W, b) ∈ [[Y]]

with V := { bi | i ∈ I }, Wi := { (Vij , bij) | j ∈ Ii }.
“→”. By induction on the D-height. We have (Ŵ ,Wi, bi) ∈ [[λfY]],

Ŵ ` Wi and Ŵ ` (V, b). By induction hypothesis Wni
i ∅ ` bi, and Ŵni∅ `

Wni
i ∅ by monotonicity of application. Because of Ŵn+1∅ ` Ŵn∅ (proved by

induction on n, using monotonicity) we obtain Ŵn∅ ` bi with n := maxni,
i.e., Ŵn∅ ` V . Recall that Ŵ ` (V, b) was defined to mean ŴV ` b. Hence
Ŵ (Ŵn∅) ` b and therefore Wn+1∅ ` b.

“←”. By induction on n. Let W (Wn∅) ` b, i.e., W ` (V, b) with V :=
Wn∅ =: { bi | i ∈ I }. Then Wn∅ ` bi, hence by induction hypothesis
(W, bi) ∈ [[Y]]. Substituting W for Ŵ and all Wi in the derivation above
gives the claim (W, b) ∈ [[Y]]. �

FORMAL COMPUTABILITY 7

Corollary. The fixed point operator Y has the property

(2) b ∈ [[Y]]w ↔ ∃k(b ∈ wk+1∅).

Proof. Since wk+1∅ for fixed k is continuous in w, from b ∈ wk+1∅ we can
infer W k+1∅ ` b for some W ⊆ w, and conversely. Moreover b ∈ [[Y]]w
is equivalent to (W, b) ∈ [[Y]] for some W ⊆ w, by (A). Now apply the
proposition. �

2.2. Total functionals. We now single out the total continuous functionals
from the partial ones. Our main goal will be the density theorem, which
says that every finite functional can be extended to a total one.

The total ideals x of type ρ (notation x ∈ Gρ) and the equivalence relation
x1 ≈ x2 between them are defined inductively.
(a) For an algebra ι, the total ideals x are those of the form C~z with C a

constructor of ι and ~z total (C denotes the continuous function |rC|).
Two total ideals x1, x2 are equivalent (written x1 ≈ι x2) if both are of
the form C~zi with the same constructor C of ι, and z1j ≈ι z2j for all j.

(b) An ideal r of type ρ → σ is total if and only if for all total z of type
ρ, the result |r|z of applying r to z is total. For f, g ∈ Gρ→σ define
f ≈ρ→σ g by ∀x∈Gρ(fx ≈σ gx).

We show that x ≈ρ y implies fx ≈σ fy, following Longo and Moggi [9].

Lemma (Extension). If f ∈ Gρ, g ∈ |Cρ| and f ⊆ g, then g ∈ Gρ.

Proof. By induction on ρ. For base types ι use induction on the definition
of f ∈ Gι. Case ρ→ σ. Assume f ∈ Gρ→σ and f ⊆ g. We show g ∈ Gρ→σ.
So let x ∈ Gρ. We show gx ∈ Gσ. But gx ⊇ fx ∈ Gσ, so the claim follows
by the induction hypothesis. �

Lemma. (f1 ∩ f2)x = f1x ∩ f2x, for f1, f2 ∈ |Cρ→σ| and x ∈ |Cρ|.

Proof. By the definition of |r|,

|f1 ∩ f2|x
= { b ∈ Tokσ | ∃U⊆x((U, b) ∈ f1 ∩ f2) }
= { b ∈ Tokσ | ∃U1⊆x((U1, b) ∈ f1) } ∩ { b ∈ Tokσ | ∃U2⊆x((U2, b) ∈ f2) }
= |f1|x ∩ |f2|x.

The part “⊆” of the middle equality is obvious. For “⊇”, let Ui ⊆ x with
(Ui, b) ∈ fi be given. Choose U = U1 ∪ U2. Then clearly (U, b) ∈ fi (as
{(Ui, b)} ` (U, b) and fi is deductively closed). �

Lemma. f ≈ρ g if and only if f ∩ g ∈ Gρ, for f, g ∈ Gρ.

8 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

Proof. By induction on ρ. For ι use induction on the definitions of f ≈ι g
and Gι. Case ρ→ σ.

f ≈ρ→σ g ↔ ∀x∈Gρ(fx ≈σ gx)

↔ ∀x∈Gρ(fx ∩ gx ∈ Gσ) by induction hypothesis

↔ ∀x∈Gρ((f ∩ g)x ∈ Gσ) by the last lemma
↔ f ∩ g ∈ Gρ→σ. �

Theorem. x ≈ρ y implies fx ≈σ fy, for x, y ∈ Gρ and f ∈ Gρ→σ.

Proof. Since x ≈ρ y we have x ∩ y ∈ Gρ by the previous lemma. Now
fx, fy ⊇ f(x∩y) and hence fx∩fy ∈ Gσ. But this implies fx ≈σ fy again
by the previous lemma. �

We prove the density theorem, which says that every finitely generated
functional (i.e., every U with U ∈ Conρ) can be extended to a total one. A
type ρ is called dense if

∀U∈Conρ∃x∈Gρ(U ⊆ x)

(i.e., Gρ ⊆ |Cρ| is dense w.r.t. the Scott topology), and separating if

∀U,V ∈Conρ(U 6 ↑ρ V → ~z ∈ G ∧ U~z 6 ↑ι V ~z).

We prove that every type ρ is both dense and separating. Define the height
|a∗| of an extended token a∗, and |U | of a formal neighborhood U , by

|Ca∗1 . . . a∗n| := max{ |a∗i | | i = 1, . . . , n }+ 1, | ∗ | := 0,

|(U, b)| := max{|U |, |b|}+ 1,

|{ ai | i ∈ I }| := max{ |ai|+ 1 | i ∈ I }.

Remark. Let U ∈ Conι be non-empty. Then every token in U starts with
the same constructor C. Let Ui consist of all tokens at the i-th argument
position of some token in U . Then C~U ` U (and also U ` C~U), and
|Ui| < |U | (where C~U := {C ~a∗ | a∗i ∈ Ui if Ui 6= ∅, and a∗i = ∗ otherwise }).

We write Gιa to mean that a is a total token (i.e., a constructor tree
without ∗), and GιU to mean that U contains a total token. For W =
{ (Ui, ai) | i < n } we have Wx := { ai | Ui ⊆ x }. Hence if x is decidable,
then so is Wx.

Theorem (Density). For every type ρ = ρ1 → . . . → ρp → ι we have
decidable formulas TExtρ and Sepiρ (i = 1, . . . , p) such that
(a) ∀U∈Conρ(U ⊆ { a | TExtρ(U, a) } ∈ Gρ) and
(b) ∀U,V ∈Conρ(U 6 ↑ρ V → ~zU,V ∈ G ∧ U~zU,V 6 ↑ι V ~zU,V), where ~zU,V =

zU,V,1, . . . , zU,V,p and zU,V,i = { a | Sepiρ(U, V, a) }.

FORMAL COMPUTABILITY 9

Proof. By induction on ρ.
Case ι, (a). Given U ∈ Conι we define a token aU by induction on the

height |U | such that {aU} ` U and GιaU . For U = ∅ let aU be the nullary
constructor of ι. If U 6= ∅, define Ui from U as in the remark above; then
C~U ` U and |Ui| < |U |. Hence for aU := CaU1 . . . aUn we have GιaU by
induction hypothesis, and {aU} ` C~U ` U by the definition of entailment.
So we can put TExtι(U, a) := ({aU} ` a).

Case ι, (b). There is nothing to show.
Case ρ → σ, (a). Fix W = { (Ui, ai) | i < n } ∈ Conρ→σ. Consider

i < j < n with ai 6 ↑ aj , thus Ui 6 ↑ Uj . By induction hypothesis (b) for ρ we
have ~zij ∈ G such that Ui~zij 6 ↑ι Uj~zij . Define for every U ∈ Conρ a set IU
of indices k < n such that “U behaves as Uk with respect to the ~zij”:

IU := { k < n | ∀i<k(ai 6 ↑ ak → U~zik `ι Uk~zik) ∧
∀j>k(ak 6 ↑ aj → U~zkj `ι Uk~zkj) }.

Notice that k ∈ IUk . We first show

VU := { ak | k ∈ IU } ∈ Conσ.

It suffices to prove ai ↑ aj for i, j ∈ IU with i < j. Since ai ↑ aj is
decidable we can argue indirectly. Assume ai 6 ↑ aj . Then U~zij `ι Uj~zij and
U~zij `ι Ui~zij , thus Ui~zij ↑ι Uj~zij . But Ui~zij 6 ↑ι Uj~zij by the choice of the ~zij
for Ui 6 ↑ Uj .

By induction hypothesis (a) VU ⊆ yVU := { a | TExtσ(VU , a) } ∈ Gσ. Let

(3) r := { (U, a) | (a ∈ yVU ∧ ∀i,j<n(ai 6 ↑ aj → Gι(U~zij))) ∨ VU ` a },

We claim W ⊆ r ∈ Gρ→σ; then we can define TExtρ→σ(W, (U, a)) to be the
defining formula of r. Since k ∈ IUk we have ak ∈ VUk , thus (Uk, ak) ∈ r.
For r ∈ |Cρ→σ| we verify the properties of approximable maps.

First we show that (U, a) ∈ r and (U, b) ∈ r imply a ↑ b. But from the
premises we obtain a, b ∈ yVU and hence a ↑ b.

Next we show that (U, b1), . . . , (U, bn) ∈ r and {b1, . . . , bn} ` b imply
(U, b) ∈ r. We argue by cases. If the left hand side of the disjunction in (3)
holds for one bk, then {b1, . . . , bn} ⊆ yVU , hence b ∈ yVU and thus (U, b) ∈ r.
Otherwise VU ` {b1, . . . , bn} ` b and therefore (U, b) ∈ r as well.

Finally we show that (U, a) ∈ r and U ′ ` U imply (U ′, a) ∈ r. We again
argue by cases. If the left hand side of the disjunction in (3) holds, we have
a ∈ yVU , and from U ′ ` U we obtain ∀i,j<n(ai 6 ↑ aj → Gι(U ′~zij)). We
show a ∈ yVU′ . But U~zij and U ′~zij both contain a total token, for every
i, j with ai 6 ↑ aj , which must be the same since U ′ ` U . Thus IU = IU ′ ,
hence VU = VU ′ . Now assume VU ` a. But U ′ ` U implies IU ⊆ IU ′ , hence
VU ⊆ VU ′ , hence VU ′ ` a and therefore (U ′, a) ∈ r.

10 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

It remains to prove r ∈ Gρ→σ. Let x ∈ Gρ. We show that rx ∈ Gσ, i.e.,

{ a ∈ Tokσ | ∃U⊆x((U, a) ∈ r) } ∈ Gσ.
Recall ~zij ∈ G for all i < j < n with ai 6 ↑ aj . Hence x~zij ∈ Gι for all
such i, j. Since every total ideal of base type contains a total token we have
Uij ⊆ x with Gι(Uij~zij). Let U be the union of all Uij ’s. Then Gι(U~zij).
Hence (U, a) ∈ r for all a ∈ yVU , i.e., yVU ⊆ rx and therefore rx ∈ Gσ, by
the Extension Lemma.

Case ρ → σ, (b). Let W1,W2 ∈ Conρ→σ with W1 6 ↑ W2. Pick (Ui, ai) ∈
Wi such that U1 ↑ U2 and a1 6 ↑ a2. By induction hypothesis (a) for ρ

U1 ∪ U2 ⊆ zU1,U2 := { a | TExtρ(U1 ∪ U2, a) } ∈ Gρ.
Then ai ∈ WizU1,U2 . From the induction hypothesis (b) for σ we obtain
~za1,a2 ∈ G such that

{a1}~za1,a2 6 ↑ι {a2}~za1,a2 ,

where σ = σ1 → . . . → σp → ι and za1,a2,i := { a | Sepiσ({a1}, {a2}, a) } for
i = 1, . . . , p. Hence W1zU1,U2~za1,a2 6 ↑ι W2zU1,U2~za1,a2 . Therefore

Sep1
ρ→σ(W1,W2, a) := TExtρ(U1 ∪ U2, a),

Sepi+1
ρ→σ(W1,W2, a) := Sepiσ({a1}, {a2}, a). �

2.3. Definability. There will be two kinds of (natural) numbers: (i) total
tokens in the algebra N, and (ii) total ideals of type N. Recall that the
total tokens in N are iterated applications of the successor constructor S to
the zero constructor 0. We call them index numbers and write n ∈ N for
the n-th such token. Then n is a total ideal of type N.

In the statement of the definability theorem below we will need fixed
enumerations (en)n∈N of all tokens and (En)n∈N of all formal neighborhoods,
one for each type. We will also need some special computable functionals:

The parallel conditional pcond: B→ ρ→ ρ→ ρ. It is defined by the clauses

U ` tt→ V ` a→ (U, V,W, a) ∈ pcond,(4)

U ` ff →W ` a→ (U, V,W, a) ∈ pcond,(5)

V ` a→W ` a→ (U, V,W, a) ∈ pcond.(6)

We also need the least-fixed-point axiom, which says that any set of tokens
(U, V,W, a) satisfying (4)–(6) is a superset of pcond. It is easy to see that
pcond is an ideal.

Lemma (Properties of pcond).

tt ∈ z → pcond(z, x, y) = x,(7)

ff ∈ z → pcond(z, x, y) = y,(8)

FORMAL COMPUTABILITY 11

a ∈ x→ a ∈ y → a ∈ pcond(z, x, y).(9)

Proof. (7). Assume tt ∈ z. “⊇”. Let a ∈ x. We show a ∈ pcond(z, x, y). It
suffices to find U ⊆ z, V ⊆ x and W ⊆ y such that (U, V,W, a) ∈ pcond.
Since ({tt}, {a}, ∅, a) ∈ pcond by (4) we can take {tt} for U , {a} for V and
∅ for W . “⊆”. Let a ∈ pcond(z, x, y). We show a ∈ x. By continuity of
application we have U ⊆ z, V ⊆ x and W ⊆ y such that (U, V,W, a) ∈
pcond. It suffices to show V ` a. This will follow from the rules for pcond,
since (because of tt ∈ z) the token (U, V,W, a) must have entered pcond by
clause (4) or (6). Formally we make use of the least-fixed-point axiom for
pcond, and apply it to C := { (U, V,W, a) | {tt} ` U → V ` a }. We show
that C satisfies (4)–(6). For (5) we must show

U ` ff →W ` a→ {tt} ` U → V ` a.
This follows from ex-falso-quodlibet, since {tt} ` U and U ` ff implies
{tt} ` ff, a contradiction. (4) and (6) have the desired conclusion V ` a
among their premises. But now the least-fixed-point axiom for pcond implies
(U, V,W, a) ∈ C (since tt ∈ z and U ⊆ z imply {tt} ` U) and hence V ` a.

(8) is proved similarly. (9). It suffices to have V ⊆ x and W ⊆ y such
that (∅, V,W, a) ∈ pcond. Use (6) with {a} for V and W . �

A continuous variant of the union for N. For ideals in the algebra N, the
union (i.e., essentially the maximum) is not a continuous function. However,
there is a continuous variant ∪#

N, which refers in its second argument to the
fixed enumeration of the tokens of type N. The type of ∪#

N is N→ N→ N,
and its defining clauses are

U ` en → V ` n→ U ` a→ (U, V, a) ∈ ∪#
N,(10)

{en} ` a→ V ` n→ (U, V, a) ∈ ∪#
N,(11)

and again we require the least-fixed-point axiom. It is easy to see that ∪#
N

is an ideal.

Lemma (Properties of ∪#
N).

∀a∈x(a ↑ en)→ x ∪#
N n = x ∪ {en},(12)

en ∈ x ∪#
N n.(13)

Proof. (12). Assume a ↑ en for all a ∈ x.
“⊇”. Let a ∈ x ∪ {en}. We show a ∈ x ∪#

N n. It suffices to find U ⊆ x,
V ⊆ n such that (U, V, a) ∈ ∪#

N. By the Comparability Lemma either
a ` {en} or {en} ` a. In the first case take U = {a}, and in the second
U = ∅. Then (U, {n}, a) ∈ ∪#

N by (10) or (11), respectively.

12 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

“⊆”. Let a ∈ x∪#
N n. We show a ∈ x∪{en}. By continuity of application

we have U ⊆ x and V ⊆ n such that (U, V, a) ∈ ∪#
N. Let

C := { (U, V, a) | U ` a ∨ ∃k∈N({ek} ` a ∧ V ` k) }.

C satisfies (10) and (11). Hence by the least-fixed-point axiom for ∪#
N we

have (U, V, a) ∈ C. If U ` a the claim is immediate, since U ⊆ x. Otherwise
we have k ∈ N such that {ek} ` a and V ` k. But V ⊆ n implies k = n.
Hence {en} ` a and therefore a ∈ {en}.

(13). Assume n ∈ N. It suffices to have U ⊆ x and V ⊆ n such that
(U, V, en) ∈ ∪#

N. Use (11) with en for a, ∅ for U and {n} for V . �

A continuous variant of consistency. We define ↑#ρ of type ρ→ N→ B by
the clauses

U ` En → V ` n→ (U, V, tt) ∈↑#ρ ,(14)

a ∈ U → b ∈ En → V ` n→ a 6 ↑ b→ (U, V, ff) ∈↑#ρ .(15)

Again we require the least-fixed-point axiom; it is easy to see that ↑#ρ is an
ideal.

Lemma (Properties of ↑#ρ).

tt ∈ x ↑#ρ n↔ x ⊇ En,(16)

ff ∈ x ↑#ρ n↔ ∃a∈x,b∈En(a 6 ↑ b).(17)

Proof. (16). Let n ∈ N. “→”. Assume tt ∈ x ↑#ρ n. We show x ⊇ En. By
continuity of application we have U ⊆ x and V ⊆ n such that (U, V, tt) ∈↑#ρ .
Let C be the predicate consisting of all (U, V, c) such that

(c = tt→ ∃k∈N(U ` Ek ∧ V ` k)) ∧
(c = ff → ∃a∈U,k∈N,b∈Ek(V ` k ∧ a 6 ↑ b)).

C satisfies (14) and (15). Hence by the least-fixed-point axiom for ↑#ρ we
have (U, V, tt) ∈ C, i.e., k ∈ N such that U ` Ek and V ` k. Using V ⊆ n
we obtain k = n. Now U ⊆ x implies x ⊇ En.

“←”. Assume x ⊇ En. We show tt ∈ x ↑#ρ n. It suffices to find U ⊆ x

and V ⊆ n such that (U, V, tt) ∈↑#ρ . Take En for U and {n} for V . Then
(U, V, tt) ∈↑#ρ by (14).

(17) is proved similarly. For “→” we can use the same C, and for “←”
use (15) instead of (14). �

Let ι have at most unary constructors, i.e., be one of N, B or P. A partial
continuous functional Φ of type ρ1 → · · · → ρp → ι is recursive in pcond, ∪#

N

FORMAL COMPUTABILITY 13

and ↑#ρ if it can be defined explicitly by a term involving the constructors for
ι and N, the constants predecessor, the fixed point operators Yρ, the parallel
conditional pcond and the continuous variants of union and of consistency.

Theorem (Definability). A partial continuous functional is computable if
and only if it is recursive in pcond, ∪#

N and ↑#ρ .

Proof. The fact that the constants are defined by the rules above implies
that the ideals they denote are recursively enumerable. Hence every func-
tional recursive in pcond, ∪#

N and ↑#ρ is computable. For the converse let
Φ be computable of type ρ1 → · · · → ρp → ι. Then Φ is a primitive recur-
sively enumerated set of tokens (Ef1n, . . . , Efpn, egn) where f1, . . . , fp and
g are fixed primitive recursive functions on index numbers. Let f denote
a continuous extension of f to ideals, such that fn = fn. Such an f is
obtained by reading f ’s primitive recursion equations as computation rules
in the sense of 2.1.

Let ~ϕ = ϕ1, . . . , ϕp be arbitrary continuous functionals of types ρ1, . . . , ρp,
respectively. We show that Φ is definable by the equation Φ~ϕ = Y w~ϕ0 with
w~ϕ of type (N→ ι)→ N→ ι given by

w~ϕψx := pcond(ϕ1 ↑#ρ1 f1x ∧ · · · ∧ ϕp ↑#ρp fpx, ψ(x+ 1) ∪#
N gx, ψ(x+ 1)).

Here ∧ is the parallel and of type B → B → B, defined by ∧(p, q) :=
pcond(p, q, {ff}). To simplify notation we assume p = 1 in the argument
to follow, and write w for wϕ. For later reference we split the rest of the
argument into steps.

Step 1. We first prove that

(18) ∀n(a ∈ wk+1∅n→ ∃n≤l≤n+k(ϕ ⊇ Efl ∧ {egl} ` a)).

The proof is by induction on k. For the base case assume a ∈ w∅n, i.e.,

a ∈ pcond(ϕ ↑#ρ fn, ∅ ∪#
N gn, ∅).

Then clearly ϕ ⊇ Efn and {egn} ` a.

Step 2. For the step k 7→ k + 1 we have

a ∈ wk+2∅n = w(wk+1∅)n = pcond(ϕ ↑#ρ fn, v ∪#
N gn, v),

with v := wk+1∅(n+1). Then either a ∈ v (and we are done by the induction
hypothesis) or else ϕ ⊇ Efn and {egn} ` a.

Step 3. Now Φϕ ⊇ Y w0 follows easily. Assume a ∈ Y w0. Then a ∈ wk+1∅0
for some k, by (2). Therefore there is an l with 0 ≤ l ≤ k such that ϕ ⊇ Efl
and {egl} ` a. But this implies a ∈ Φϕ.

14 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

Step 4. For the converse assume a ∈ Φϕ. Then for some U ⊆ ϕ we have
(U, a) ∈ Φ. By our assumption on Φ this means that we have an n such that
U = Efn and a = egn. We show

a ∈ wk+1∅(n− k) for k ≤ n.

The proof is by induction on k. For k = 0 because of ϕ ⊇ Efn we have
tt ∈ ϕ ↑#ρ fn and hence wψn = ψ(n+ 1) ∪#

N gn 3 egn = a, for any ψ.

Step 5. For the step k 7→ k + 1 by definition of w (:= wϕ)

v′ := wk+2∅(n− k − 1)

= w(wk+1∅)(n− k − 1)

= pcond(ϕ ↑#ρ f(n− k − 1), v ∪#
N g(n− k − 1), v)

with v := wk+1∅(n− k). By induction hypothesis a ∈ v; we show a ∈ v′.
If a and eg(n−k−1) are inconsistent, a ∈ Φϕ and (Ef(n−k−1), eg(n−k−1)) ∈ Φ
imply that ϕ ∪ Ef(n−k−1) is inconsistent, hence ff ∈ ϕ ↑#ρ f(n− k − 1) and
therefore v′ = v.

Step 6. If a and eg(n−k−1) are consistent, a and eg(n−k−1) are comparable,
since our underlying algebra ι has at most unary constructors.

Step 7. In case {eg(n−k−1)} ` a we have v∪#
Ng(n− k − 1) ⊇ {eg(n−k−1)} ` a,

and hence a ∈ v′ because of a ∈ v.

Step 8. In case {a} ` eg(n−k−1) we have eg(n−k−1) ∈ v because of a ∈ v,
hence v ∪#

N g(n− k − 1) = v and therefore again a ∈ v′.

Step 9. Now the converse inclusion Φϕ ⊆ Y wϕ0 can be seen easily. Since
a ∈ Φϕ, the claim just proved for k := n gives a ∈ wn+1

ϕ ∅0, and this implies
a ∈ Y wϕ0. �

3. The Theory TCF+

We sketch a formal system TCF+ intended to talk about computable
functionals plus their finite approximations, i.e., tokens and formal neigh-
borhoods. Since continuous functionals (i.e., ideals) are possibly infinite
sets of tokens, TCF+ contains for every type ρ set variables xρ. The only
existence axiom for sets will be Σ-comprehension.

FORMAL COMPUTABILITY 15

3.1. Types and token types. Recall that (object) types are built from
base types ι (the algebras above) by ρ → σ. Now in addition for every
(object) type ρ we have token types Tok∗ρ (extended tokens of type ρ), Tokρ
(tokens of type ρ), LTokρ (lists of tokens of type ρ), LTok∗ρ (lists of extended
tokens of type ρ); let τ range over token types. The index ρ will be omitted
if it is inessential or clear from the context.

We inductively define the extended tokens of an algebra ι. As a generic
algebra we take the algebra D (of derivations), given by the constructors 0D

(axiom) and CD→D→D (rule); for other algebras the definitions are similar.
The clauses are

Tok∗D(∗), Tok∗D(0D), Tok∗D(a∗1)→ Tok∗D(a∗2)→ Tok∗D(CD→D→Da∗1a
∗
2).

(Proper) tokens are defined similarly:

TokD(0D), Tok∗D(a∗1)→ Tok∗D(a∗2)→ TokD(CD→D→Da∗1a
∗
2).

Clearly every token can be viewed as an extended token.
It will be convenient to represent formal neighborhoods as lists of tokens.

The algebra of lists of tokens of type D is defined by

LTokD(nilD), TokD(a)→ LTokD(U)→ LTokD(a ::D U).

We use nilD to denote the empty list, and a ::D U (or consD(a, U)) to denote
the result of constructing a new list from a given one U by adding a in front.
Similarly the algebra of lists of extended tokens is defined by

LTok∗D(nilD), Tok∗D(a)→ LTok∗D(U)→ LTok∗D(a ::D U).

We allow functions of token-valued types ~τ → τ , defined by primitive
recursion. An easy example is ∈̇D : Tok∗D → LTok∗D → TokB; it is a boolean-
valued function, i.e., with values in TokB. The recursion equations are

(a∗ ∈̇D nil) := ff,

(a∗ ∈̇D (b∗ ::D U)) := (a∗ =D b∗) ∨B a∗ ∈̇ U,

where equality =D : Tok∗D → Tok∗D → TokB is defined by

(∗ =D ∗) := (0 =D 0) := tt,

(∗ =D 0) := (∗ =D Ca∗1a
∗
2) := ff,

(0 =D ∗) := (0 =D Ca∗1a
∗
2) := ff,

(Ca∗1a
∗
2 =D ∗) := (Ca∗1a

∗
2 =D 0) := ff,

(Ca∗1a
∗
2 =D Cb∗1b

∗
2) := (a∗1 =D b∗1) ∧B (a∗2 =D b∗2),

and ∨B,∧B : TokB → TokB → TokB are functions on TokB, defined by
tt ∨B b := tt, ff ∨B b := b, ff ∧B b := ff and tt ∧B b := b.

16 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

From a list of extended tokens of D we obtain a list of (proper) tokens by
removing the ∗’s. Define clean: LTok∗D → LTokD by

clean(nil) := nil,

clean(∗ :: U) := clean(U),

clean(0 :: U) := 0 :: clean(U),

clean(Ca∗1a
∗
2 :: U) := Ca∗1a

∗
2 :: clean(U).

We define argsC,i : LTokD → LTok∗D (i = 1, 2), which from a list of tokens
of D constructs the list of the i-th arguments of C-tokens:

argsC,i(nil) := nil,

argsC,i(0 :: U) := argsC,i(U),

argsC,i(Ca
∗
1a
∗
2 :: U) := a∗i :: argsC,i(U).

Now we can define entailment ` : LTokD → Tok∗D → TokB:

U ` ∗ := tt,

nil ` 0 := ff,

nil ` Ca∗1a
∗
2 := ff,

0 :: U ` Cb∗1b
∗
2 := U ` Cb∗1b

∗
2,

Ca∗1a
∗
2 :: U ` 0 := U ` 0,

0 :: U ` 0 := tt,

and
Ca∗1a

∗
2 :: U ` Cb∗1b

∗
2 := clean(a∗1 :: argsC,1(U)) ` b∗1 ∧B

clean(a∗2 :: argsC,2(U)) ` b∗2.

To define consistency for lists of tokens we need an auxiliary function
checking the outermost constructor only. Let PreCon: LTokD → TokB be
defined by

PreCon(nil) := PreCon(a :: nil) := tt,

PreCon(0 :: Ca∗1a
∗
2 :: U) := PreCon(Ca∗1a

∗
2 :: 0 :: U) := ff,

PreCon(0 :: 0 :: U) := PreCon(0 :: U),

PreCon(Ca∗1a
∗
2 :: Cb∗1b

∗
2 :: U) := PreCon(Cb∗1b

∗
2 :: U).

Using PreCon we can define consistency Con: LTokD → TokB by

Con(nil) := Con(a :: nil) := tt,

Con(0 :: Ca∗1a
∗
2 :: U) := Con(Ca∗1a

∗
2 :: 0 :: U) := ff,

Con(0 :: 0 :: U) := Con(0 :: U),

and
Con(Ca∗1a

∗
2 :: Cb∗1b

∗
2 :: U) := PreCon(Cb∗1b

∗
2 :: U) ∧B

Con(clean(a∗1 :: b∗1 :: argsC,1(U))) ∧B

Con(clean(a∗2 :: b∗2 :: argsC,2(U))).

We write a∗ ↑ρ b∗ for Con(a∗ ::ρ b∗ ::ρ nil).

FORMAL COMPUTABILITY 17

We define GD : Tok∗D → TokB expressing totality for extended tokens:

GD(∗) := ff, GD(0) := tt, GD(Ca∗1a
∗
2) := GDa

∗
1 ∧B GDa

∗
2,

and also GLTokD
: LTokD → TokB doing the same for lists of tokens

GLTokD
(nilD) := ff, GLTokD

(a ::D U) := GDa ∨B GLTokD
U.

Recall that total tokens of N are iterated applications of the successor
constructor S to the zero constructor 0. They are called “index numbers”,
and written n ∈ N. Since primitive recursion is available to define token-
valued functions, we can construct standard auxiliary functions, like se-
quence coding. Thus every (index) number n can be written uniquely as
n = 〈a0, a1, . . . , ak−1〉, and k = lh(n), ai = (n)i for i < k.

Tokens of a function type ρ→ σ are pairs (U, a) of lists of tokens of type
ρ and tokens of type σ. Both projections are given by functions π1, π2.
Consistency of lists of tokens, application WU and entailment W ` (U, a)
can be defined as described in 1.2.

3.2. Enumerations. We assume fixed enumerations (en)n∈N of tokens and
(En)n∈N of lists of tokens, for each type. It seems easiest to define them
explicitly. Fix for every constructor C of an algebra a unique “symbol num-
ber” SN(C). We also have a symbol number SN(Nhd) indicating the code
of a formal neighborhood. We define a Gödel numbering p·q : Tok∗D → N by

p∗q := 0,

p0q := 〈SN(0)〉,
pCa∗1a

∗
2q := 〈SN(C), pa∗1q, pa

∗
2q〉.

Formal neighborhoods are gödelized by p·q : LTokρ → N,

pa0 :: a1 :: . . . ak−1 :: nilq := 〈SN(Nhd), pρq, pa0q, pa1q, . . . , pak−1q〉,
where pιq := 〈SN(ι)〉, pρ→ σq := 〈SN(→), pρq, pσq〉. It is clear that we can
primitive recursively define the converse, mapping the Gödel number pa∗q
of an extended token back to a∗, i.e., epa∗q = a∗, and similarly for LTokρ.

3.3. Terms and formulas. We have variables a∗ for Tok∗ρ (extended tokens
of type ρ), a for Tokρ (tokens of type ρ) and U for LTokρ (lists of tokens of
type ρ). From these, the symbols for token-valued functions and constants
for the constructors for tokens, extended tokens and lists of these we can
build terms of token types. We identify terms of token type if they have the
same normal form w.r.t. the defining primitive recursion equations for the
token-valued functions involved.

Decidable (or ∆-) prime formulas are of the form atom(p), with p a term
of token type TokB. They are decidable in the sense that for each such term
p we can prove p = tt∨p = ff; in fact, every closed term of type TokB can be

18 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

evaluated to either tt and ff. Examples are a ↑ρ b, a ∈̇ρ U , U `ρ a (which are
shorthand for atom(a ↑ρ b), atom(a ∈̇ρ U), atom(U `ρ a)). ∆-formulas are
built from decidable prime formulas by→, ∧,∨ and bounded quantifiers, i.e.,
∀a∈̇U , ∃a∈̇U , with a a variable for tokens and U a term for a list of tokens.

In TCF+ we also allow variables and constants of (object) type ρ, intended
to denote sets of tokens. The constants are [[λ~xM]] (with M a term as in
2.1) of type ~ρ → σ, and also pcond, ∪#

N, ↑#ρ of types B → ρ → ρ → ρ,
N→ N→ N and ρ→ N→ B, respectively.

Prime Σ-formulas are either decidable prime formulas or else of the form
r ∈ρ x, with r a term of token type Tokρ and x a variable or constant of
type ρ. Σ-formulas are built as follows.
(a) Every prime Σ-formula is a Σ-formula.
(b) A0 → B is a Σ-formula if A0 is a ∆-formula and B a Σ-formula.
(c) Σ-formulas are closed under ∧,∨, bounded quantifiers and existential

quantifiers over variables of a token type.
Prime formulas are either prime Σ-formulas or else of the form Gρx (ex-

pressing totality of x) or x ≈ρ y (expressing equivalence of x and y); x, y are
variables or constants of type ρ. Formulas are built from prime formulas by
→,∧,∨,∀,∃, where the quantifiers are w.r.t all kinds of variables.

3.4. Axioms. TCF+ is based on intuitionistic logic. In fact, minimal logic
suffices, since falsity can be defined as atom(ff). Then atom(ff) → A (“ex-
falso-quodlibet”) can be proved provided one has it as an axiom for every
prime formula (it can be proved for decidable prime formulas).

Therefore the axioms of TCF+ are ex-falso-quodlibet for non-decidable
prime formulas A, plus the usual ones of Heyting arithmetic, adapted to
token types. In particular we have the ordinary induction schemes, for
arbitrary formulas of the language. Examples are

A(tt)→ A(ff)→ A(a),

A(∗)→ A(0)→ ∀a∗,b∗(A(a∗)→ A(b∗)→ A(Ca∗b∗))→ A(a∗).

Moreover atom(tt) is an axiom. For object types we have Σ-comprehension:

∃x∀a(a ∈ρ x↔ A), for every Σ-formula A.

A convenient notation for x is { a | A }. Further axioms are
(a) For every constant [[λ~xM]] its defining clauses corresponding to the rules

(V), (A), (C), (D) from 2.1, together with their least-fixed-point axioms.
(b) The defining clauses and corresponding least-fixed-point axioms, for

pcond, ∪#
N and ↑#ρ , as listed in 2.3.

(c) The clauses from 2.2 defining the totality predicates Gρ and the equiva-
lence relations x1 ≈ρ x2, together with their least-fixed-point axioms.

FORMAL COMPUTABILITY 19

Notice that the latter imply x1 ≈ρ x2 → Gx1 → Gx2.

3.5. First steps in TCF+. We use the abbreviations

U ⊆ V for ∀a∈̇U (a ∈̇ V),

U ` V for ∀a∈̇V (U ` a),
U ∼ V for U ` V ∧ V ` U,
a ∼ b for {a} ` b ∧ {b} ` a,
x ⊆ y for ∀a∈x(a ∈ y),
x = y for x ⊆ y ∧ y ⊆ x,
U ⊆ x for ∀a∈̇U (a ∈ x).

Class terms of (object) type are built from variables and constants by ap-
plication ts and unrestricted comprehension { a | A }. Then r ∈ρ t for t a
class term of type ρ and r a term of token type Tokρ is defined by

(r ∈ρ { a | A(a) }) := A(r),

(r ∈ρ ts) := ∃U⊆s((U, r) ∈ t) (continuity of application).

For a term M with free variables among ~x we write

a ∈σ [[M]] for ∃~U⊆~x((~U, a) ∈~ρ→σ [[λ~xM]]).

We can prove ∆-comprehension for lists of tokens

∃U∀a(a ∈̇ U ↔ a ∈̇ V ∧A), for every ∆-formula A,

by induction on V . A convenient notation for U is [a ∈̇ V | A].
We will need the extension f of a monotone token-valued function f to

ideals. It suffices to do this for f : Tok∗N → Tok∗N. Suppose f is monotone,
i.e., {a∗} ` b∗ implies {fa∗} ` fb∗. Define f [·] : LTok∗N → LTok∗N by

f [nil] := nil, f [a∗ ::N U] := (fa∗) ::N f [U].

Then f : N→ N is defined by

f = { (U, a) | Con(U) ∧ f [U] ` a }.

Clearly f is a decidable ideal. If f : TokN → TokN is defined primitive
recursively, then by reading f ’s primitive recursion equations as computation
rules we obtain a defined constant f (in the sense of 2.1) such that fn = fn.

Notice that ∀i<nA with i a variable and n a term of token type TokN can
be viewed as bounded quantification. Define h : Tok∗N → LTok∗N by

h(∗) := h(0) := nil, h(Sa∗) := h(a∗) ∗ (a∗ :: nil),

where ∗ appends two lists from LTok∗N. Then h(Sk0) = [0,S0, . . . ,Sk−10]
(i.e., 0 :: S0 :: . . . Sk−10 :: nil), and we can read ∀i<nA as ∀i∈̇h(n)A.

20 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

Every W of token type LTokρ→σ can be written as { (Ui, ai) | i < n }.
Here Ui, ai are given as f(W, i), g(W, i) and n as the length lh(W) of W ,
with f , g and lh(·) defined primitive recursively. Define

(a ∈̇Wx) := ∃i<n(Ui ⊆ x ∧ a = ai).

Then a ∈̇ Wx is a ∆-formula if x is given by { a | A } with A a ∆-formula.
Therefore by ∆-comprehension for list of tokens we obtain U consisting of
all ai’s such that ai ∈̇ Wx. Hence Wx ` a can be seen as a ∆-formula as
well.

4. Formalization

4.1. Density. The informal proof already was written in a form making its
formalization in TCF+ easy. We only discuss the more interesting issues.

The density theorem is parametrized by the type ρ, and its proof (by
induction on ρ) is to be viewed as employing a “meta”-induction.

In the proof that ρ → σ is dense we fixed W = { (Ui, ai) | i < n } ∈
Conρ→σ. Consider i < j < n with ai 6 ↑ aj , thus Ui 6 ↑ Uj . The induction
hypothesis (b) for ρ gives ~zij ∈ G such that Ui~zij 6 ↑ι Uj~zij . The definition of

VU := [ak | k ∈ IU]

can be seen as an application of ∆-comprehension for lists of tokens, since
k ∈ IU is a ∆-formula. Now the induction hypothesis that σ is dense yields
VU ⊆ yVU := { a | TExtσ(VU , a) } ∈ Gσ. The definition (3) of

r := { (U, a) | (a ∈ yVU ∧ ∀i,j<n(ai 6 ↑ aj → Gι(U~zij))) ∨ VU ` a },

is by Σ-comprehension; in fact, the defining formula is a ∆-formula. The
rest of the argument can be easily formalized.

The proof that ρ→ σ is separating does not present any difficulties. We
are given W1,W2 ∈ Conρ→σ with W1 6 ↑ W2, and pick (Ui, ai) ∈ Wi such
that U1 ↑ U2 and a1 6 ↑ a2. Notice that the Ui, ai can be defined primitive
recursively from W1,W2, and hence are uniquely determined. By induction
hypothesis (a) for ρ,

U1 ∪ U2 ⊆ zU1,U2 := { a | TExtρ(U1 ∪ U2, a) } ∈ Gρ.

Then ai ∈̇ WizU1,U2 . From the induction hypothesis (b) for σ we obtain
~za1,a2 ∈ G such that (writing {ai} for [ai])

{a1}~za1,a2 6 ↑ι {a2}~za1,a2 ,

where σ = σ1 → . . . → σp → ι and za1,a2,i := { a | Sepiσ({a1}, {a2}, a) } for
i = 1, . . . , p. Hence W1zU1,U2~za1,a2 6 ↑ι W2zU1,U2~za1,a2 .

FORMAL COMPUTABILITY 21

4.2. Definability. We restrict ourselves to the more interesting direction
and assume that Φ is given as a primitive recursively enumerated set of
tokens (Efn, egn) where f, g are fixed primitive recursive functions. We need
to show that Φ is recursive in pcond, ∪#

N and ↑#ρ , i.e., that it can be defined
explicitly by a term involving the constructors for ι and N, the constants
predecessor, the fixed point operators Yρ, the parallel conditional pcond and
the continuous variants of union and of consistency. In doing so we follow
the steps in the informal proof in 2.3. We show that Φ is definable by the
equation Φϕ = Y wϕ0, with wϕ of type (N→ ι)→ N→ ι given by

wϕψx := pcond(ϕ ↑#ρ fx, ψ(x+ 1) ∪#
N gx, ψ(x+ 1)).

In Step 1 by continuity of application we obtain U ⊆ ϕ ↑#ρ fn and
V ⊆ ∅ ∪#

N gn such that (U, V, ∅, a) ∈ pcond. For ϕ ⊇ Efn it suffices by (16)
to prove tt ∈ ϕ ↑#ρ fn, which because of U ⊆ ϕ ↑#ρ fn follows from U ` tt.
This will follow from the rules for pcond, because (since W is ∅) the token
(U, V, ∅, a) must have entered pcond by rule (4). Formally we make use of
the least-fixed-point axiom for pcond, and apply it to C := { (U, V,W, a) |
W ⊆ ∅ → U ` tt }. We show that C satisfies (4)–(6). For (5) we must show

U ` ff →W ` a→ (U, V,W, a) ∈ C, i.e.,

U ` ff →W ` a→W ⊆ ∅ → U ` tt.

But this follows from ex-falso-quodlibet, since W ` a and W ⊆ ∅ are con-
tradictory. (6) is proved similarly, and (4) has the desired conclusion U ` tt
among its premises. But now the least-fixed-point axiom for pcond implies
(U, V, ∅, a) ∈ C and hence U ` tt. For {egn} ` a we argue similarly, with
C := { (U, V,W, a) | W ⊆ ∅ → V ` a }, and obtain V ` a and hence
a ∈ ∅ ∪#

N gn. By (12) we conclude that {egn} ` a.
The next part of the informal proof was Step 2. Again by continuity of

application we obtain U ⊆ ϕ ↑#ρ fn, V ⊆ v ∪#
N gn and W ⊆ v such that

(U, V,W, a) ∈ pcond. We can prove W ` a ∨ (U ` tt ∧ V ` a) as above from
the rules for pcond. Hence either a ∈ v (and we are done by the induction
hypothesis), or else ϕ ⊇ Efn (which follows as above from U ` tt) and
a ∈ v ∪#

N gn. From the latter by continuity of application we obtain V ⊆ v

and W ⊆ gn such that (V,W, a) ∈ ∪#
N. By a least-fixed-point argument

(with C := { (V,W, a) | ∃m(m ∈̇ W ∧ {em} ` a) ∨ V ` a }) we obtain either
V ` a (hence a ∈ v and again we are done by the induction hypothesis), or
else {em} ` a for an m ∈ G such that m ∈̇W , hence m = gn, and therefore
{egn} ` a. Now the induction used in the informal proof can be applied and
we have proved (18) formally.

22 SIMON HUBER, BASIL A. KARÁDAIS AND HELMUT SCHWICHTENBERG

The informal proof proceeded by Step 3. Since corollary (2) referred to
is available in TCF+, we have proved the conclusion a ∈ Φϕ formally.

Let us now formalize the proof of the reverse direction, i.e., Step 4. In the
formalization from ϕ ⊇ Efn we obtain tt ∈ ϕ ↑#ρ fn by (16). We show a ∈
wψn for an arbitrary ψ, i.e., a ∈ pcond(ϕ ↑#ρ fn, ψ(n+ 1)∪#

N gn, ψ(n+ 1)).
Because of tt ∈ ϕ ↑#ρ fn and (7) it is enough to show that a ∈ ψ(n+1)∪#

Ngn.
But egn ∈ ψ(n+ 1) ∪#

N gn by (13), and we have assumed a = egn.
Next we consider Step 5. Formally we can infer the existence of b ∈ ϕ and

c ∈̇ Ef(n−k−1) such that b 6 ↑ c. Hence ff ∈ ϕ ↑#ρ f(n− k − 1) by (17), and
v′ = v by (8). Step 6 is immediate because of the Comparability Lemma.
For Step 7: Here we can infer a ∈ v ∪#

N g(n− k − 1) from (13). This and
the induction hypothesis a ∈ v yields the claim a ∈ v′ by (9). For Step 8:
v ∪#

N g(n− k − 1) = v follows from eg(n−k−1) ∈ v by (12). Again this and
the induction hypothesis a ∈ v yields the claim a ∈ v′ by (9). For Step 9:
The final inference is justified by (2) (applied to ({0}, a)).

5. Future work

In this paper we attempted to have a first exploratory view on a con-
structive formal theory of computability TCF+, where the functionals are
studied together with their finite approximations. The attempt was guided
by the semantics of non-flat Scott information systems; in particular, it was
based on two case studies, namely, the density theorem and the definability
theorem. Future work along these lines is to explain TCF+ in a rigorous and
systematic way, as well as test it against further case studies, while an actual
implementation on a theorem prover—which should be specially designed to
allow for handling functionals and finite approximations alike—remains the
ultimate goal of the whole enterprise.

References

[1] S. Abramsky and A. Jung. Domain theory. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 3, pages 1–168.
Clarendon Press, 1994.

[2] U. Berger. Total sets and objects in domain theory. Annals of Pure and Applied Logic,
60:91–117, 1993.

[3] Y. L. Ershov. Maximal and everywhere defined functionals. Algebra i Logika,
13(4):374–397, 1974.

[4] A. Heyting, editor. Constructivity in Mathematics. North–Holland, Amsterdam, 1959.
[5] S. Huber. On the computional content of choice axioms. Master’s thesis, Mathema-

tisches Institut der Universität München, 2010.
[6] S. C. Kleene. Countable functionals. In Heyting [4], pages 81–100.
[7] G. Kreisel. Interpretation of analysis by means of constructive functionals of finite

types. In Heyting [4], pages 101–128.

FORMAL COMPUTABILITY 23

[8] K. G. Larsen and G. Winskel. Using information systems to solve recursive domain
equations. Information and Computation, 91:232–258, 1991.

[9] G. Longo and E. Moggi. The hereditary partial effective functionals and recursion
theory in higher types. The Journal of Symbolic Logic, 49:1319–1332, 1984.

[10] G. D. Plotkin. LCF considered as a programming language. Theoretical Computer
Science, 5:223–255, 1977.

[11] G. D. Plotkin. Tω as a universal domain. Journal of Computer and System Sciences,
17:209–236, 1978.

[12] D. Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. Manuscript, Ox-
ford University. Published as [15], 1969.

[13] D. Scott. Outline of a mathematical theory of computation. Technical Monograph
PRG–2, Oxford University Computing Laboratory, 1970.

[14] D. Scott. Domains for denotational semantics. In E. Nielsen and E. Schmidt, edi-
tors, Automata, Languages and Programming, volume 140 of LNCS, pages 577–613.
Springer Verlag, Berlin, Heidelberg, New York, 1982.

[15] D. Scott. A type-theoretical alternative to ISWIM, CHUCH, OWHY. Theoretical
Computer Science, 121:411–440, 1993.

[16] V. Stoltenberg-Hansen, E. Griffor, and I. Lindström. Mathematical Theory of Do-
mains. Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press, 1994.

