Refined Program Extraction from Classical
Proofs: Some Case Studies

Helmut Schwichtenberg*

1 Introduction

It is well known that it is undecidable in general whether a given program meets its
specification. In contrast, it can be checked easily by a machine whether a formal proof
is correct, and from a constructive proof one can automatically extract a corresponding
program, which by its very construction is correct as well. This — at least in principle —
opens a way to produce correct software, e.g. for safety-critical applications. Moreover,
programs obtained from proofs are “commented” in a rather extreme sense. Therefore
it is easy to maintain them, and also to adapt them to particular situations.

We will concentrate on the question of classical versus constructive proofs. It is well
known that any classical proof of a specification of the form Vaedy B with B quantifier-
free can be transformed into a constructive proof of the same formula (for particularly
simple proofs, cf. Friedman [5] or Leivant [7]). However, when it comes to extraction of
a program from a proof obtained in this way, one easily ends up with a mess. Therefore,
some refinements of the standard transformation are necessary.

In the present paper we make use of a refined method of extracting programs from
classical proofs; it is developed in detail in [1]. We demonstrate its use with two rather
detailed case studies. Specifically, we extract programs from classical proofs of the
existence of

e integer square roots, and

o integer coefficients to linearly combine the greatest common divisor of two num-
bers from these numbers,

The latter example has already been treated in [2]; here we show how it can be dealt
with in the present form of the theory. It turns out that the algorithm does not change;
however, the method of how to extract a program from this classical proof becomes
more perspicious.

Other interesting examples of program extraction from classical proofs have been
studied by Murthy [8], the group around Coquand (see e.g. [3]) in a type theoretic
context and by Kohlenbach [6] using a Dialectica-interpretation.

The paper is organized as follows. In section 2 the general background is developed.
We start in 2.1 with a short exposition of Godel’s system T'. Tait’s proof of termination
for the simply typed A-calculus is presented in detail, and is then extended to T'. In 2.2
we fix our version of intuitionistic arithmetic for functionals, and recall how classical
arithmetic can be seen as a subsystem. Subsection 2.3 develops the basic machinery
of modified realizability, and contains a detailed proof of the soundness theorem. The

*Mathematisches Institut der Universitat Munchen, Theresienstrafie 39, D-80333 Munchen, Ger-
many. Phone +49 89 2394 4413, Fax +49 89 280 5248, schwichtO@rz.mathematik.uni-muenchen.de

main part of the paper is section 3. There definite and goal formulas are defined, and
the main theorem on program extraction from classical proofs (Theorem 3.2) is stated;
for the proof we have to refer to [1]. Subsections 3.2 and 3.3 then develop the two case
studies mentioned above.

Acknowledgements The proof of termination for Godel’s system T' uses ideas from
Ulrich Berger, Holger Benl, Ralph Matthes and Thorsten Altenkirch. Monika Seisen-
berger and Felix Joachimski have contributed a lot to the MINLOG system, particularly
to the implementation of the translation of classical proofs into constructive ones.

2 General Background
2.1 Godel’s System T

We introduce Godel’s system T' of primitive recursive functionals of finite type, formu-
lated as a simply typed lambda calculus with higher type recursion constants.

Types are as for the simply typed lambda calculus, but with concrete ground types
¢ for the natural numbers and o for the boolean objects true and false.

tlolpxo|p—o.

The constants are

true® | false® | 0" | S*7* | Ro, | Rip-

R.,, is the primitive recursion operator of type p — (¢ = p — p) = ¢ = p. Ro, is of
type p — p = o — p and represents boolean induction, i.e. definition by cases. Instead
of Ro,MNK we will often write if K then M else N.

Terms are
z” | ¢’ (¢’ a constant) | (M, N) | mo(M) | mi(M) | Xa®M | M N

with the usual typing rules. The conversions are those for the simply typed lambda
calculus, plus some new ones for the recursion operators. We write K + 1 for SK.

Ro ,MN true —~r M

Ro,MN false —~r N

R, ,MNO —~r M
R.,,MN(K +1) —r NK(R,,MNK)

We will prove that for this system of terms every term strongly normalizes. Since the
normal form is uniquely determined, the relation M =zx N is decidable (by normalizing
M and N). By identifying =gr-equal terms (i.e. treating equations on the meta level)
we can greatly simplify many formal derivations.

Tait’s Proof of Termination for the Simply Typed Lambda Calculus

We first give a well-known proof of termination of the simply typed lambda calculus,
using method due to W.W. Tait. This proof will later be extended to Godel’s system
T.

Tait’s proof rests on defining so-called strong computability predicates. We present
the proof here in a form which avoids intuitive arguments concerning reduction se-
quences and therefore is suitable for formalization in a theory of inductive definitions.

We begin with a definition of strongly normalizable terms, by a strictly positive
induction.

If all M such that M —3 M’ are strongly normalizable (sn), then so is M.

Obviously M is sn if and only if every reduction sequence starting with M terminates
after a finite number of steps. This can be seen as follows. =—. Induction on the
definition of “strongly normalizable”. Consider a reduction sequence starting with M
and therein the first reduct M’. The IH for M’ yields the assertion. <—. By induction
on the length of the longest reduction sequence (Konig’s lemma).
We note a number of the properties of the notion “strongly normalizable”, to be
used below.
If all terms M are sn, then so is z M. (1)

Proof. Induction on the definition of sn for M. Let aM —3 N be given. It suffices
to show that N is sn. From aM —g N it follows that N = xM’, where M’ arises by
substitution of M; by M, with M; — 5 M/. It is to be proved that x M’ is sn. This
follows from the TH for M'. a

If Mz is sn, then so is M. (2)

Proof. Induction on the definition of sn for Mz. Let M —3 M’ be given. It
suffices to show that M’ is sn. From M —3 M’ we get Ma — 3 M'z. The IH for
M'z then yields that M’ is sn. a

We now define when a term M” is strongly computable (sc), by induction on the

type p.
o M*isscif M*is sn.
o M’ is sc if for every sc N* also (M N)7 is sc.

A term M is called strongly computable under substitution if for any sc terms N also
MIZ := NJis sc.

We note a property of the notion “strongly computable” which will be used below.

M is sc if and only if MN is sc for all sc N. (3)
Proof. Induction on the length of N. a

Lemma 2.1 a. Fvery sc term M? is sn.
b.]fM are sn, then (:1:]\2)” is sc.

Proof. By simultaneous induction on the type p. Case ¢. a. By definition. b. By

(1).

Case p — o a. Let M7 be sc. By IHb (with M empty) and the definition of
strong computability (Mz)? is sc. By IHa Mz then is sn. By (2) M is sn too. b.
Consider (:1;]\2)”‘” with M sn. Let N” be sc. We have to show that (J}MN)U is sc. By
IHa N is sn, hence e MN is sc by IHb. a

If M — 3 M’ and M is sn, then by the definition of strong normalizability also M’ is
sn. We now show that the corresponding assertion is also valid for strong computability.

Lemma 2.2 [f M —3 M’ and M 1is sc, then so is M'.

Proof. We use (3). Let N be a list of sc terms such that MN is of ground type.
Then MN is sc by (3), hence also sn. Furthermore we have MN —; M'N. By
definition of strong normalizablility M’N is sn. Thus by (3) M’ is sc. a0

Lemma 2.3 Let N be sn. [If Mz := N]E is sn and of a ground type, then so is
(A M)NL.

Proof. By induction on the strong normalizability for N and M|z := N]E So we
consider all the reducts K of (A M)NE Clearly it suffices to show that every such K
is sn.

Case K = Mz := N]Z, i.e. we have an outer [-conversion. Hence K is sn by
assumption.

Case K = (Ax M'YNL with M —s5 M’. Then we have M[z := N]L —s3 M'[z :=
N|L. By definition of strong normalizability M’[z := N]L is sn. Hence by IH K is sn.

Case K = (A M)N'L with N —s5 N’. Then we have M[z := N]L —5 Mz =
N']L. By definition of strong normalizability M[z := N']L and N’ are sn. Hence by IH
K is sn.

Case K = (Ax M)NZ’ with L; —5 L; for 2 and L; = L for j # 1. Then we have
Mz := N]L —g Mz := N]L'. By definition of strong normalizability M|z := N]L’
is sn. Hence by IH K is sn. a

Corollary 2.4 If M[z := N] is sc for all sc N, then also \x M s sc.

Proof. Let M|z := N] be sc for all sc N. We have to show that Ax M is sc. So let
N and L be sc such that (Az M)NL is of ground type. We must show that (Ax M)NL

is sc. Since M[z := N] is sc by assumption, M[z := N]L is sc too and hence also sn.
Since by lemma 2.1a N is also sn, by lemma 2.3 it follows that (Az M)NL is sn and
hence also sc. a

Lemma 2.5 Fuvery term M is sc under substitution.

Proof. By induction on M. Case x. The claim follows from lemma 2.1b or by
assumption.

Case MN. K be sc. We have to show that M[Z := K]N|[# := K] are sc. This
clearly holds, since by IH M[Z := K] as well as N[7 := K] are sc.

Case Az M. K be sc. We have to show that Az (M[Z = [;’]) is sc. We now
apply corollary 2.4. Let N be sc. By IH for M also M[z,# := N, K’] is sc. Hence by
corollary 2.4 the claim follows. a

From lemma 2.5 and lemma 2.1 we directly get

Theorem 2.6 —; is lerminating, i.e. every term M is sn.

Extension of the Termination Proof to Godel’s System T

This proof can easily be extended to terms with pairing (Mo, M;) and projections
mo(M), m1(M). We now show that addition of the conversion rules above for R does
not destroy termination.

We first change the definition of sc for the ground type ¢. It is not defined just to
be sn (as before), but now is defined inductively, as follows.

Definition 2.7 M is sc, if
o all M" such that M — 3 M’ are sc, and in addition

o if M = SMy, then My is sc.
Theorem 2.8 —3r is terminating.

Proof. We extend the argument above. Clearly it suffices to show that the constants
R., and Ry, are sc. We restrict ourselves to R, ,; for Ry, the argument is similar
(and simpler). So let M, N, K be sc. We must show that RM N K is sc.

The proof is by induction on sn for M, N and on sc for K. So let L be sc. We must
show that RMNKL is sc. Since this term is not of the form S My, 1t suffices to consider
all reducts @) of RMNKL and to show that every such reduct @) is sc.

Case K = Ko+1, Q = NKO(RMNKO)E. We first show that RM N Ky is sc. So let
L' be sc. Since K = Ko + 1 is sc, by definition also Ky is. So by induction hypothesis
RMN Ky is sc, and we obtain that @) is sc.

If the reduction takes place within a subterm M, N, K L the claim follows by induc-
tion hypothesis (here we need that strong computability is preserved under conversion
steps; cf. lemma 2.2). Since the case K =0, Q = ML is trivial this proves the claim.
a

Now we can conclude via Newman’s Lemma [9] that the normal form is uniquely
determined. For simplicity we identify terms with the same FR-normal form. Hence
every closed term of type ¢ is identified with a term of the form S(S(S...(S0)...))
and every closed term of type o is identified with either true or false. Such terms are
denoted by n and called numerals (even if they are of type o).

2.2 Intuitionistic Arithmetic for Functionals

The system we consider is essentially Heyting’s intuitionistic arithmetic in finite types
HA® as described e.g. in [4]. It is based on Godel’s system T' and just adds the cor-
responding logical and arithmetical apparatus to it. Classical arithmetic is obtained
by restriction to formulas without the constructive existential quantifier 3* but using
the classical definition 4 = —V— instead. Equations are treated on the meta level by
identifying terms with the same normal form.

We now write r,s,t,... for (object) terms, and reserve M, N, K,... for derivation
terms.

Arithmetic: Predicate symbols and atomic formulas

Every predicate symbol P now has a fixed arity, which is a tupel of types (p1,...,pr).
So atomic formulas are of the form P(r}*,...,r*). The choice of the predicate symbols
depends on the particular problem under consideration. In most cases there will be
the predicate symbols L (falsity) of arity () and atom of arity (o). The intended
interpretation of atom is the set {true}. Hence “atom(t)” means “t = true”. Every
decidable relation (i.e., every relation given by a term t of type o), can then be written
in the form atom(t). If confusion is unlikely, we will write ¢ instead of atom(t). So
formulas are

Pirit,...orY JANB | A— B|VaPA | I’ A.

To accomodate the specific ground types ¢ and o, we need an induction scheme for
both types, and in addition a “truth axiom” .

Ind, a: Alp:= true] — Alp := false] — VpA
Ind, 4a: Aln:=0] = (Vn.A— An:=n+1]) > VnA
T: atom(true)

We also need 3*-axioms:

I Ve A— F2A
wap JaPA— (Va?PA— B)— B (x ¢ FV(B))

Derivations are within minimal logic. They are written in natural deduction style, i.e.
as typed A-terms via the well-known Curry-Howard correspondence.

uP (assumptions) | axioms

<MA NB>A/\B | 7.[.'(]\4A0/\A1)A,'
()\UA}WB)A_}B | (MA—)BNA)B |
()\xpMA)VxPA | (MprAtp)A[acp::tp]

where in the V-introduction Az M4, x must not be free in any B with u? € FA(M).

Classical logic

Assume that atom is the only predicate symbol, and replace L by atom(false). Then

we have
—A = A — atom(false)

dzA = Vae-A,

and stability =——A — A is provable for all 3*-free formulas A, using boolean induction
for the case atom(t). Hence classical arithmetic (in all finite types) is a subsystem of
our present system based on minimal logic.

So for 3*-free formulas (no restriction from a classical point of view) we have full
classical logic.

Note also that for quantifier-free formulas B built from prime formulas of the form
atom(t) we can easily construct a boolean term ¢5: 0 such that

atom(tg) < B

is derivable. Therefore we can use boolean induction to derive case distinction for
quantifier-free formulas.

2.3 Program FErtraction from Constructive Proofs

We now come back to the full system, and assign to every formula A an object 7(A) (a
type or the symbol *). 7(A) is intended to be the type of the program to be extracted
from a proof of A. In case 7(A) = * proofs of A have no computational content; such
formulas A are called Harrop formulas.

T(P(5)) =«
* . P = P lf T(A) —
T(FrarA) = {p X 7(otherwise
, e if 7(A) ==
T(Vard) = {p — 7(otherwise
(T AZ) if 7(Ai_;) = *
T(Ag AN Ay) = {T Ao) X 7(otherwise
7(B) if 7(4) =
T(A = B) = (= i 7(B) =«
7(A) — 7(B) otherwise

We now define, for a given derivation M of a formula A with 7(A) # *, its extracted
program [M] of type 7(A).

[u]
utM] =

(4) (SL’T(A) uniquely associated with uA)
[M] if 7(A) ==
(AD[M] otherwise
[M] if T(A) =«
[M][N] otherwise
[M:] if 7(A_;) = *
ﬁ[][\%]o]] [[]\?1]]%14 Otlr)lerw;se

[ri(MAer)] = {m[[M]] Z
[Ae*M] = Aa?[M]

[Mt] :=[M]t¢

?
BN =
-

[(Mg°, M{™)]

otherwise

We also need extracted programs for induction and 3*-axioms. For the induction scheme

Ind, 4: Aln :=0] = (Vn.A — A[n:=n+1]) = YnA let
lnd, 4] :=R.,ip—=(t—p—p)—t—p,

where p = 7(A). Similarly boolean induction is realized by R ,.
For the JF*-axioms we set

[34,] = {)\:Jcp:z; if 7(A) =
w2 AL T AP ™M (L y) otherwise
G,] = {AprfHﬂB)fx if 7(A) = *
sABL AzPXT AN fro7()=7(B) fro(2)mi(2) otherwise

For derivations M# where 7(A) = * (i.e. A is a Harrop-formula) we define [M] := ¢ (e
some new symbol). This applies in particular if A is 3*-free.

Finally we define the notion of modified realizability. More precisely, we define
formulas r mr A, where A is a formula and r is either a term of type 7(A) if the latter

is a type, or the symbol ¢ if 7(A) = *.
emr P(s) =)

. _ [emr Az =] if 7(A) = *

rmr(Fed) = mi(r) mr Alx := mo(r)] otherwise

Veemr A if 7(A) ==x

v

x.orxmr A otherwise
emrA — rmr B if 7(A) =

P
{
rmr (VzA) = {

rmr(A— B) =({VeamrA - cmrB ifr(A)#£*=r71(B)
Ve.omr A — remr B otherwise
emr Ag A rmr A; if 7(Ag) = *
rmr(Ag AN A;) = {rmr Ay A emr A if 7(Ay) = %
mo(r) mr Ag A mi(r) mr A, otherwise

Note that for A 3*-free we have 7(A) = * and ¢ mr A = A. For the formulation of the
soundness theorem below it will be useful to let x, := ¢ if u* is an assumption variable
with a Harrop-formula A.

Theorem 2.9 (Soundness) If M is a derivation of a formula B, then there is a
derivation (M) of [M] mr B from {x, mr C | u® € FA(M) }.

Proof. Induction on M. Case u: A. Then we have u: x, mr A. Let p(u) := u.
Case AuMP. We must find a derivation pu(AuM) of

[MuM] mr (A — B).
Subcase 7(A) = *. Then we have [AuM] = [M], hence
[MuM]Jmr(A—B) = emrA — [M]mr B.

By induction hypothesis we can define p(AuM) := Aup(M) with u:e mr A. Subcase
7(A) # * = 7(B). Then we have [AuM] = ¢ and

[MuM]mr (A— B) = VzamrA — emr B.

By induction hypothesis define p(AuM) = Az, up(M) with u:z, mr A. Subcase
7(A) # % # 7(B). Then we have

[MuM]mr (A — B) = VeamrA — [AuM]zmr B

Because of [AuM] = Az, [M] and since we identify terms with the same S-normal form,
by induction hypothesis we can define p(AuM) := Az, Aup(M).

Case MA7BNA. We must find a derivation u(MN) of [MN] mr B. Subcase
7(A) = *. Then we have [M N] = [M]. By induction hypothesis we have derivations
u(M) of

[MJmr (A—B) = emrA — [M]mr B
and p(N) of e mr A; hence we can define u(MN) := p(M)u(N). Subcase T7(A) # * =
7(B). Then we have [M N] = . By induction hypothesis we have derivations p(M) of

[M]mr(A—B) = VexmrA — emr B

and p(N) of [N] mr A; hence we can define u(MN) := pu(M)[N]u(N). Subcase
7(A) # * # 7(B). Then we have [MN] = [M][N]. By induction hypothesis we have
derivations u(M) of

[M]mr (A— B) = VYeamrA — [M]lamr B

and u(N) of [N] mr A; hence we can define (M N) := u(M)[N]u(N).
Case (Mg, Mi"). We must find a derivation u((My, M;)) of

[[<M0, M1>]] mr (AO A Al)
Subcase 7(Ag) = * = 7(A1). Then we have [(My, M;)] = ¢, hence
[{(Mo, M1)] mr (Ag A A;) = emr Ay A e mr Ay

and by induction hypothesis we can define u({My, My)) 1= (u(Mo), u(My)). Subcase
7(Ag) = * # 7(A1). Then we have [(My, My)] = [Mi], hence

[[<M0, M1>]] mr (AO A Al) = &£1mr AO A [[Ml]] mr Al

and by induction hypothesis we can define u({My, My)) 1= (u(Mo), u(My)). Subcase
7(Ag) # * = 7(Ay). Similar. Subcase 7(Ag) # * # 7(A1). Then we have [(My, M;)] =
(IMo], [Mi]), hence

[(Mo, M1)] mr (Ag A Ay) = [Mo] mr Ag A [Mi] mr A,

and by induction hypothesis we can define u({Moy, M1)) := (u(M;), p(Mi—;)).
Case mo(MAo"1). We must find a derivation u(mo(M)) of

[mo(M)] mr Aq.

Subcase 7(Ay) = *. Then we have [mo(M)] = [M]. by induction hypothesis we have a
derivation (M) of

[MJmr (Ao A A1) = [M]mr Ag A e mr A;.

hence we can define p(mo(M)) := mo(pu(M)). Subcase 7(Ag) = * # 7(A;). Then we
have [mo(M)] = €. by induction hypothesis we have a derivation p(M) of

[MJmr (Ao A A1) = emr Ag A [M] mr A;.

hence we can define pu(mo(M)) := mo(u(M)). Subcase T(Ag) # * # 7(A1). Similar; we
can define u({My, M1)) := (u(Mo), u(My)).

Case m(M#4o"1), Similar.

Case A\zM*. We must find a derivation u(AzM) of [AzM] mr ¥zA. By definition
[AzM] = Az[M]. Subcase 7(A) = *. Then we have

AM[M]mrvVzA = Vzemr A

and by induction hypothesis we can define u(AzM) := Azu(M). The variable condi-
tion is satisfied, since AzM* is a derivation term, and hence z does not occur free in
any assumption variable u: B free in M*, hence also does not occur free in the free
assumption w: x, mr B. Subcase 7(A) # *. Then we have

A[M]mrVzA = Vz.(Az[M])z mr A.

Since we identify terms with the same -normal form, by induction hypothesis we again
can define p(AzM) := Azu(M). As before one can see that the variable condition is
satisfied.

Case MY*At. We must find a derivation pu(Mt) of [Mt] mr Alz := t]. By definition
we have [Mt] = [M]t. Subcase 7(A) = *. By induction hypothesis we have a derivation
of

[M]mrVzA = VzemrA

hence we can define u(Mt) := p(M)t. Subcase T(A) # *. By induction hypothesis we
have a derivation of

[M]mrVzA = Vz.[M]zmr A,

hence we again can define pu(Mt) := u(M)t.
Case I:%,:ViVe. A — F*2? A. We must find a derivation p(33F) of

[3:5] mr Vive. A — T’ A,
Subcase T(A) = *. Then we have 357, = AZAzx and we obtain

(AZAzz) mr VaVe A — 2 A =ViVe.a mr (A — Iz A)
=V&Nzemr A — zmr 324
=VaVe.emr A — e mr A.

Hence we can define p(33%,) = M zAuu. Subcase T(A) # *. Then we have 3;F, =
AZAxAy(x,y) and we obtain

ACAxAy(x,y) mr ViVe A — Tz A
=ViVaVy.y mr A — (z,y) mr 3"z A
=ViVaVy.ymr A — y mr A

Hence we can define p(357,) = AdAzAyAuu.

Case 3,7 p: V¥ T¢A — (Ve.A — B) — B] with ¢ FV(B). We must find a
derivation u(3;7 g) of VZ[F*xA — (Vo.A — B) — B|. Subcase 7(A) = x = 7(B).
Then we have [377) 5] = ¢ and we obtain

emr Vi[F*zA - (Va.A— B) — B]

=VaVe.e mr 3*2A — e mr (V2. A — B) — B)
=ViVeemr A —cemr (Ve.A— B) »emr B
=ViVe.emr A - Veemr (A— B) —»ecmr B
=ViVe.emr A — (Veemr A —»emr B) — e mr B.

Hence we can define (377) = AZAz A udv.vau. Subcase 7(A) # » = 7(B). Then we

again have [377 5] = ¢ and we obtain

e mr V¥[3*rA — (Ve. A — B) — B]

= VaVe.e mr 3*2A — e mr (V2. A — B) — B)

= VaVe.m(2) mr Alz :=no(z)] = e mr (Ve.A— B) - emr B

= VaVe.m(z) mr Alz := mo(z)] = Veemr (A - B) = emr B

= VaVa.m(2) mr Alz = mo(z)] = VaVy(ymr A - e mr B) — ¢ mr B.

Hence we can define /,L(EI;;LB) = A Az udv.omg(x)mi(a)u. Subcase T(A) = * # 7(B).
Then we have [377) 5] = AZAzAz(zx) and we obtain

ACAxAz(zx) mr Vi[T 2 A — (Ve A — B) — B]

= VaVe.e mr 32 A — Az(zz) mr (Ve.A— B) — B)
=ViVe.emr A - Vzzmr (Voe.A— B) - zemr B
=ViVe.emr A - VzVezamr (A — B) — zemr B
=ViVer.emr A — Vz.(Ve.emr A — ze mr B) — za mr B.

Hence we can define (3,7, p) = AZA Az udv.vzu. Subcase 7(A) # * # 7(B). Then we
have [377 g] = A zAz(zmo(x)mi(2)) and we obtain

ACAxAz(zmo()mi(2)) mr Vi[F* 2 A — (Ve.A— B) — B
= VaVe.o mr Iz A — Az(zmo(z)m(z)) mr (V2. A — B) — B)
= VaVae.m(x) mr Alx := mo(2)] —
Vz.zmr (Vo.A— B) — zmp(z)m () mr B
= VaVae.m(x) mr Alx := mo(2)] —
VzVaVy(y mr A — zey mr B) — zmp(z)m(z) mr B.

Hence we can define u(3;7 g) = AZAzAudzAv.omo(x)m(2)u. a
If B is 3*-free, then ¢ mr B = B. Hence for Va’3*y° B with J*-free B we have
7(VaJy*B) = p — o and

t mr Ve3'yB = VaBly := tz].
Then as a corollary to the soundness theorem we obtain the extraction theorem

Theorem 2.10 From a derivation M:Vx*3*y’ B with B 3*-free from 3*-free assump-
tions I' one can extract a closed term [M]*77 such that the formula VaBly := [M]x]
is provable from I.

Here I' should be viewed as lemmata, i.e. true formulas (proved separately, to keep
M short). The theorem says that the extracted program is independent of how this
shortcut is achieved.

3 Computational Content of Classical Proofs
3.1 Definite and Goal Formulas

For simplicity we only treat formulas in the —V fragment; this is not an essential
restriction, since conjunctions can be easily removed.

A formula is relevant if it “ends” with L. More precisely, relevant formulas are
defined inductively by the clauses

e | is relevant,
o if (' is relevant and B is an arbitrary formula, then B — (' is relevant, and
o if C is relevant, then Vx(' is relevant.

A formula which is not relevant is called irrelevant.

We define goal formulas GG and definite formulas D inductively. These notions are
related to similar ones common under the same name in the context of extensions of
logic programming. Let P range over atoms (including L).

G =P |D=>dG provided D irrelevant = D quantifier-free
| Vol provided G irrelevant
D =P |G—=D provided D irrelevant = (irrelevant

| VaD

Lemma 3.1 For definite formulas D, relevant goal formulas G and an arbitrary for-
mula A we have derivations

NA D — DA
HE G = -G — A

The proof is by induction on definite and goal formulas; it is necessary to prove
several additional claims simultaneously, to get the induction through. For details we
refer to [1].

Theorem 3.2 Let Dy, ..., D; be relevant and Dyyq, ..., D, irrelevant definite formulas,
and Gy,..., Gy be relevant quantifier-free and Giyq,. .., G,y irrelevant goal formulas.

Let A := El*yé and
t:= Xy, Zif =Gy then [HZ](x1) else ... if =G} then [HZ [(z) else y.
Assume that we have a derivation
M:D — (Vy.G— L) — L.
Let M# denote the result of substituting L by A everywhere in M. Then we can derive
D — [MAJ[NA]. .. [NA]t mr FyG.
The proof uses the soundness theorem 2.9 and lemma 3.1. For details we again have

to refer to [1].

3.2 Fxample: Integer Square Roots

Let f:¢ — ¢« be unbounded with f0 = 0; think of f as the square function f(n) = n?.
We want to prove that integer square roots always exist, or more precisely a general
form of this proposition, using only the two properties of f above. We specify our
problem as follows. Here f,g,n are parameters; ¢g is used as an explicit witness of the
unboundedness of f.

Vn-n<f0 — Vnn<f(gn) = (Vm.-n<fm = n<f(m+1) = L) = L

Clearly
Vn —n<f0 is a relevant definite formula
Ynn<f(gn) is an irrelevant definite formula
—n<fm is a relevant goal formula
n<f(m+1) is an irrelevant goal formula,

hence theorem 3.2 can be applied without inserting any double negations.
To construct a derivation, assume

vy Vnn<f0,
vy :Vnn<f(gn),
u Vm.on<fm —n<f(m+1) — L.

Our goal is L. From v; and u we inductively get Vm —-n<fm. For m := gn this yields
a contradiction to vy. The derivation is

Ind —n<f0 Ym.—n<fm — —n<f(m+1)
Ym—n<fm gn
—n<f(gn) n<f(gn)

with derivation term
M := dvidvgduInd,y, —n< prmn(vin)u(gn)(ven),
Now let A := F*m.—~n<fm An<f(m+ 1), hence

MA —)\UIVn.n<f0—>A)\U2Vn n<f(9n))\uVm.(n<fm—>A)—>n<f(m-|—1)—>A‘

Indp, ne fm—san(vin)u(gn)(ven)
and therefore
[MA] =5 Aat7 A2 R (zon)zo(gn)

From the proof of theorem 3.2 we generally know D — [N#] mr D for every relevant
definite formula D. In our case, with D = Vn.—-n<f0, we can derive directly

(Vn.n<f0 — L) — (An0) mr Vn.n<f0 — A,

since we can use ex-falso. So we may assume [N/] = An0. Also, from the proof of
theorem 3.2 we generally know z mr G4 — -G — [HA](z) mr A for every relevant
goal formula . In our case, with G = —n<fm, we can derive directly

(z mrn<fm — A) = - n<fm — z mr A.

So we may assume [HZ] = Azz. Now let

t: = AmAzif =Gy then [HE](z) else m
= dmAz.if n<fm then x else m.

Then the extracted term according to theorem 3.2 is

[MAJINATE = (Aws? A= R, (w0, n) 2 (gn)) (AnO)
=5 R.0t(gn)
= R,0(AnAzif n<fm then x else m)(gn).

Informally, the algorithm can be written in the form h(gn) where h:¢ — ¢ is such that

h(0) = 0,
h(m +1) = {h(m) if n<f(m)

m else

3.3 Fxample: The Greatest Common Divisor

Yiannis Moschovakis suggested the following example of a classical existence proof with
a quantifier-free kernel which does not obviously contain an algorithm: the ged of two
natural numbers a; and @y is a linear combination of the two. Here we treat that
example as a case study for program extraction from classical proofs. In the original
treatment in [2] we identified one of the predicate symbols as critical (the divisibility
relation -|-). Here we show how this example can be treated in the present form of
the theory, with definite and goal formulas. It turns out that the algorithm does not
change; however, the method of how to extract a program from this classical proof
becomes more perspicious.

Let a,b,¢,1, 7, k,{,m,n,q,r denote natural numbers. Our language is determined by
the constants 0, 1, 4+, *, function symbols for the quotient and the remainder denoted

by ¢(a,c) and r(a,¢), a 4-ary function denoted by abs(kia; — kaaz) whose intended
meaning is clear from the notation and an auxiliary 5-ary function f which will be
defined later. We will express the intended meaning of these function symbols by
stating some properties (lemmata) vy,...,vs of them; these will be formulated as we
need them.

Theorem 3.3 For natural numbers ay,ay with 0 < ay
Elkl, kz.abs(klal — k2a2)|a1 A abs(klal — k2a2)|a2 AND < abs(klal — kzag).

Proof. Let ay,ay be given and assume 0 < ag. The ideal (a1,ay) generated from
ai,as has a least positive element ¢, since 0 < ay. This element has a representation
¢ = abs(kiay — kqaz) with ki, ks € N. It is a common divisor of a; and ay since otherwise
the remainder r(a;, ¢) would be a smaller positive element of the ideal.

The number ¢ € (a1, ay) dividing a; and ay is the greatest common divisor since any
common divisor of a; and a3 must also be a divisor of c. 0

The minimum principle and course-of-values induction.

In order to formally write out the proof above we need to make explicit the instance of
the induction scheme used implicitly in the minimum principle. The minimum principle
w.r.t. a measure y says

kR(E) — Tk R(E) AVEp(l) < p(k) — R(0) — L
(in our example R(kq, ko) =0 < abs(kiay — kaaz) and pu(ky, ko) = abs(kiay — keaz)). In

order to reduce this to the induction scheme we use the fact that the formula above is
classically equivalent to

(VE.R(E) — [VOu(0) < p(k) — R() — L] — 1) — Vk.R(k) — L,

i.e. the principle of course-of-values induction for R(E) — 1 w.r.t. the measure /,L(]_C))
We can write this as

Prog — Vk.R(k) — L,
where o . . .
Prog :=VE[Vl.u(l) < u(k) - R({) - L] — R(k) — L.

In the formal treatment of our example it will be more convenient to use the minimum
principle in the form of course-of-values induction. o

To prove course-of-values induction assume w;: Prog and prove Yk.R(k) — L. This
is achieved by proving VnB, where

B:=Vku(k) <n— R(k) — L,

—

and using B with n := p(k) + 1. We prove ¥nB by (zero-successor) induction.
Base. B[n := 0] follows easily from the lemma

vi:Vmm <0 — L.

Step. Let n be given and assume wy: B. To show Bln := n + 1] let k be given and
assume ws: /,L(E) <n+1. We will derive R(E) — 1 by using w;: Prog at k. Hence we
have to prove

VOu(0) < u(k) = R(0) — L.
So, let { be given and assume further w4:/,L(Z) < /,L(E) From w, and wg:/,L(E) <n+1
we infer /,L(Z) < n (using an arithmetical lemma). Hence, by induction hypothesis wy: B

at (we get R(Z) — L.

Detailed proof of the theorem

Now we repeat the proof of the theorem in some more detail using course-of-values
induction. As always in classical logic, we may view the proof as an indirect one,
deriving a contradiction from the assumption that the claim is false. So let a;,as be
given and assume vg: 0 < a3 and

u:‘v’kl,kg.abs(klal — k2a2)|a1 — abs(klal — k2a2)|a2 —
0 < abs(klal — kzag) — 1.

We have to prove L which will be achieved by proving Vky, k2.0 < abs(kiay —keaz) — L
by course-of-values induction and then specializing this formula to ki, ks = 0,1 and
using the assumption vg: 0 < ay (= abs(0a; — laz)).

The principle of course-of-values induction is used with

N(kl,kz) =0< abs(klal — kzag) — 1 and M(k‘l,kg) = abs(klal — k‘zag).
We have to show that N is progressive. To this end let ki, ks be given and assume
ulz‘v’ﬁl,ﬁg.u(ﬁl,ﬁg) < M(k‘l,kg) — N(ﬁl,gg).

We have to prove N(kq, kg). So, assume uz: 0 < pu(ky, k2). We have to show L. This will
be achieved by using the (false) assumption u at ki, k. We have to prove p(ky, k2)|as
and p(k1, ka)|as. Informally, one would argue “if, say, p(k1,k2) fa; then the remainder
ry := r(ay, p(k1, k2)) is positive and less than u(ki, ks). Furthermore we can find ¢y, (5
such that ry = u(ly, l2). Altogether this contradicts the assumption u;”. More formally,
to prove u(kq, ka)la; we use the lemma

ve:Va,q,c,ra=qge+r — (0<r— L) —cla

at ai, ¢1 := qlag, (K1, ks)) (the quotient), w(ky,k2) and r1. We have to prove the
premises
a; = quu(ki, ko) +r1 and 0<ry — L

of the instantiated lemma vs. Here we need the lemmata

vs:Va,c.0 < c— a=qla,c)c+r(a,c),

vg:Va,c.0 < c—r(a,c)<c
specifying the functions quotient and remainder. Now the first premise follows imme-
diately from lemma vz and uy: 0 < pu(kq, k2). To prove the second premise, 0 < r; — L,

we assume u3:0 < ry and show L. First we compute (1, such that r1 = u(ly, ().
This is done by some auxiliary function f, defined by

Flar, av, ki, ko q) = {qkl — 1, if kyay < kya; and 0 < ¢;

gki + 1, otherwise.

f satisfies the lemma
U5:va17a27k17k27Q7r'a1 =q- /“L(klvk?) tr—=r= /“L(f(alva%klvk?v(ﬁ?qk?)‘

Hence we let ¢4 := f(ay, a2, ki, ko, q1) and {5 := q1kz. Now we have u(l1,03) = r; <
p(k1, k2) by vs, uz and vy, as well as 0 < ry = p(ly, l2) by us and vs. Therefore, we get L
by uy at (1, (5 (using some equality lemmata). This completes the proof of p(ky, k2)|as.
p(ki, k2)|az is proved similarly using the lemma

U6:va17a27k17k27Q7r-a2 =q- /“L(klka) +r—=r= /“L(qklvf(a%alvk?vklv(Z))‘

Turning the lemmata and the claim into definite and goal formulas

In order to make our general theory applicable to the present example we have to make
sure that the lemmata assert definite formulas and the claim is given by goal formulas.
This is almost the case already, with the sole exeption of

ve:Va,q,c,ra=qe+r — (0<r— L)— cla,

which is not definite (we have concluded something positive, i.e. ¢|a, from something
negative, i.e. 0 < r — L). We now make it definite by inserting a double negation in
front of the final conclusion c|a, i.e. we replace the formula of vy by

Va,q,c,raa=qgc+r —(0<r— L1)— (cla— L) — L.

Clearly this will not affect our proof in any essential way; however, it will make a
difference when it comes to extract the program.

Formal proof

The proof of the principle of course-of-values induction and the proof of the theorem
were given in such a detail that it is now easy to formalize them completely. Only some
arguments concerning < and = were left implicit, but since these will be irrelevant
formulas we don’t need to worry about these omissions.

M = IvJ<*
)\Ulvm.m<0—>J_
)\U2Va,q,c,r.a:qc—l—r—}(0<7’—>J_)—>(c|a—>J_)—>J_
)\Uga,c.0<c—>a:q(a,c)c—|—r(a,c)
)\UZa,c.0<c—>r(a,c)<c
)\U:al,aQ,kl,kQ,q,r.a1:q~u(k1,k2)+r—>r:u(f(a1,a2,k1,k2,q),qk2)
)\Ugahamkl7k27q77’~a2=q'ﬂ(k17k2)+7’—>7’=u(qk17f(a27a17k27k17q))

Ny VE-(R) a1 = (k) az—0< (k)= L
MERE VRSB N 01(LO<HO)
where
MCVind =)‘wfrog)‘];-lndn,BMbaseMstep(M(];) —I_ 1)ELM(E)<M(E)+17
Mpase =)‘E)‘wg(kko)\wo()@(k)-Ulﬂ(lg)wm
Moy = Andeof AEXwh O+ o D TP o, 10O [y, w])),

Mg = Moot/ FHO<B0<u@ 4y 0<u(F)
Mgvgf?)wzﬂ)ﬂ Aug<é>|a2‘ Méi@fnal%)ﬂ Aui@nal ks,
Mdivi — UQQZ»%(E)M(ri(];)(Lai=qi(ﬁ)u(ﬁ)+ri(ﬁ) [U?” uz])]wzjm‘(k)—u_7

k)
My, =)\ugjm(k)-mg;(lg)
(LM(Zi(k))<M(k) [U4+i7 U3, Uz, U4])(LO<M(&(]€))[U3J7 U444, U3, Uz])

Here we have used the abbreviations

Prog = VE[V0u(f) < p(k) = 0 < p(0) = 1] = 0 < pu(k) — L
B =Vkpk)<n—0<plk)— L

Term extraction

Let
A= TFkp(k)ar A p(k)az A0 < p(k),

so T(A) = =1 x ¢ Let C4:=(C[L:= A], hence

T(Prog?) =0 — (I = 1) = 1,
T(BY) =0— 1

Furthermore recall [Ind, pa] = R, =7 where
Rosr(l—=0) == {@T—=0)—={@T—=10)) == (=10

Note that R,z may be viewed as simultaneous primitive recursion operators R =
(Rl, Rz) with

Rzgto =Y, 5 5

Rigf(z +1) = fiz(Rayf2)(Rayif 2).
Now we are prepared to compute the extracted term. Let M4 denote the result of
replacing every formula €' in the derivation M by C4 (note that M4 generally does not
derive A).

[[MA]] —)\xa—n)\ 4 —)L—)L—)L)\ L—)L [[Cvmd]] [[MpArog]]Ol
where) . .
[[Cv1nd]] -)\xéﬁ(é_ﬂ’)_n)\k R[[Méise]][[step]]((k) + 1)k

[[base -)\k xUlM(kl . .
[Mi,] = Andal P k@, k(A .2y,0),

[Mito] = Meal2 " [Mg, DM, D(wuk))
M] = woasq(k)p(k)ri(R)[MZ]
[M2] = au,lilk).

From the proof of theorem 3.2 we generally know D — [N#] mr D for every relevant
definite formula D. In our case for Dy = Vm.m < 0 — L we can derive directly

(Vm.m <0 — L) — (An0) mr Vm.m < 0 — A,
since we can use ex-falso. So we may assume [N} | = An0. Similarly for

Dy =Va,q,c,ra=qge+r —-0<r— 1)—=(cla— 1) — we have

L
DY =Va,q,c;raa=qge+r— (0 <r—= A) = (cla — A) — A.

Now an informal proof of Dy — D3 runs as follows. Assume the hypotheses. We prove
A by cases on 0 < r. In case 0 < r the hypothesis 0 < r — A yields A. In case
0 < r — L we obtain (¢Jla — L) — L and hence ¢|la. Now the hypothesis ¢la — A
yields A.

From this proof we can derive directly
Dy — (AargAeArAZA.if 0 < r then Z else) mr Ds.

So we may assume [N} | = AaAgAcArAZAG.if 0 < r then & else y.

Moreover, there is no relevant goal formula, hence ¢ = Ayy. Then the extracted
term according to theorem 3.2 is

[MATIND, JIND,It =5 [Minal [Mirog] 01

V.

where ’ indicates substitution of [N [, [Nj,], t for @y, , T4y, Ty, s0

[MA D! =g, Al DN R(NEO) (AL AR, K,) (e (K) 4+ 1R,
[Mitoel =5 AT M,) (IMG, 1),

[Mi,] =5 (AEAG.if 0 < Fi(k) then 7 else §)(x., :(k))

and hence

—

[M]] =5 Medz,,. if 0 < ry(k) then z, (k) else
(if 0 < ry(K) then x,,0, (k) else k)

Therefore we obtain as extracted algorithm, using the fact that w(0,1) = as,

[MAJINAJING]t =5 RORG) . .
(AnAzl AR AE 0 < ro(k) then w,,(;(k) else
if 0 < r (k) then z,,0 (k) else k)
(a3 + 1)01

To make this algorithm more readable we may write [MA][N7 [[N5]t = h(az+1,0,1),
where
)

)

.
= 0,
— - =

= if 0 < ry(k) then h(n,lz(k)) else
(if 0 < ry (k) then h(n,(y(k)) else k)

L T

h(0,
h(n +1,

Example

Let us use the extracted algorithm to compute coefficients kq, ko such that ged(66,27) =
|ky - 66 — ky - 27).

h(28,0,1) 1(0,1) = 27
0 < r = 12 q1 = 2
qlkl :i:l, qlkg —1, if kzaz < klal No
S~ S~ S~
0 2 0
1, 2
h(27,1,2) pu(1,2) = 12
0<ri=6 g1 = 5
qlkl :i:l, qlkg —1, if kzaz < klal Yes
SN~ SN~ S—— S~
5-1 5-2 2:27 1-66
4, 10
h(26,4,10) 11(4,10) = |4- 66 — 10 - 27| = |264 — 270| = 6
6/66
0<rqg=3 g2 = 4
Qle, q2k2 +1 — 1, if klal < k2a2 Yes
S~ S~ e S——
4.4 4-10 4.66=264 10-27=270
16, 39
h(25,16,39) 1(16,39) = |16 - 66 — 39 - 27| = |1056 — 1053| = 3
3166
3]27

Result: 16,39

Note that, although 3 = |16 - 66 — 39 - 27| is the least positive element of the ideal
(66,27), the coefficients 16, 39 are not minimal. The minimal coefficients are 2, 5.

Remarks

1. As one sees from this example the recursion parameter n is not really used in the
computation but just serves as a counter or more precisely as an upper bound for the
number of steps until both remainders are zero. This will always happen if the induction
principle is used only in the form of the minimum principle (or, equivalently, course-of-
values induction). Because then in the extracted terms of course-of-values induction,
the step [M.] =)\nAfojr)\E.xwll_f)()\waQZ) has in its kernel no free occurrence of n.

2. If one removes n according to the previous remark it becomes clear that our ged
algorithm is similar to Euclid’s. The only difference lies in the fact that we have kept
ay, az fixed in our proof whereas Euclid changes a; to az and ay to r(ay, az) provided
r(ay, az) > 0 (using the fact that this doesn’t change the ideal).

Implementation

The ged example has been implemented in the interactive proof system MINLOG. We
show the term which was extracted automatically from a derivation of the theorem.

(lambda (al)
(lambda (a?2)
((({(((nat-rec-at ’(arrow nat (arrow nat (star nat nat))))

(lambda (k1) (lambda (k2) (cons n000 n000))))
(lambda (n)
(lambda (w)
(lambda (k1)
(lambda (k2)
((((if-at ’(star nat nat))
((<-strict-nat 0) r2))
((w 121) 122))
((((if-at ’(star nat nat))
((<-strict-nat 0) ril))
((w 111) 112))
(cons k1 k2))))))))
((plus-nat a2) 1))
0)
1))

We have manually introduced r1, r2, 111, 112, 121, 122 for somewhat lengthy
terms corresponding to our abbreviations r;, 7;. The unbound variable n000 appearing
in the base case is a dummy variable used by the system when it is asked to produce
a realizing term for the instance L — JkA(k) of ex-falso-quodlibet. In our case, when

the existential quantifier is of type ¢ one might as well pick the constant 0 (as we did
in the text).

References

[1]
[2]

Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined program extraction
from classical proofs. In preparation.

Ulrich Berger and Helmut Schwichtenberg. The greatest common divisor: a case study
for program extraction from classical proofs. In S. Berardi and M. Coppo, editors, Types
for Proofs and Programs. International Workshop TYPES 95, Torino, Italy, June 1995.
Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 36—46. Springer
Verlag, Berlin, Heidelberg, New York, 1996.

Thierry Coquand and Hendrik Persson. Grébner Bases in Type Theory. In T. Altenkirch,
W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs, volume 1657 of
Lecture Notes in Computer Science. Springer Verlag, Berlin, Heidelberg, New York, 1999.

Anne S. Troelstra (editor). Metamathematical Investigation of Intuitionistic Arithmetic
and Analysis, volume 344 of Lecture Notes in Mathematics. Springer Verlag, Berlin, Hei-
delberg, New York, 1973.

Harvey Friedman. Classically and intuitionistically provably recursive functions. In D.S.
Scott and G.H. Miiller, editors, Higher Set Theory, volume 669 of Lecture Notes in Math-
ematics, pages 21-28. Springer Verlag, Berlin, Heidelberg, New York, 1978.

Ulrich Kohlenbach. Analyzing proofs in analysis. In W. Hodges, M. Hyland, C. Steinhorn,
and J. Truss, editors, Logic: from Foundations to Applications. Furopean Logic Colloquium
(Keele, 1993), pages 225-260. Oxford University Press, 1996.

Daniel Leivant. Syntactic translations and provably recursive functions. The Journal of
Symbolic Logic, 50(3):682-688, September 1985.

Chetan Murthy. Extracting constructive content from classical proofs. Technical Report
90-1151, Dep.of Comp.Science, Cornell Univ., [thaca, New York, 1990. PhD thesis.

M.H.A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Mathematics, 43(2):223-243, 1942.

