
Re�ned Program Extraction from ClassicalProofs: Some Case StudiesHelmut Schwichtenberg�1 IntroductionIt is well known that it is undecidable in general whether a given program meets itsspeci�cation. In contrast, it can be checked easily by a machine whether a formal proofis correct, and from a constructive proof one can automatically extract a correspondingprogram, which by its very construction is correct as well. This { at least in principle {opens a way to produce correct software, e.g. for safety-critical applications. Moreover,programs obtained from proofs are \commented" in a rather extreme sense. Thereforeit is easy to maintain them, and also to adapt them to particular situations.We will concentrate on the question of classical versus constructive proofs. It is wellknown that any classical proof of a speci�cation of the form 8x9yB with B quanti�er-free can be transformed into a constructive proof of the same formula (for particularlysimple proofs, cf. Friedman [5] or Leivant [7]). However, when it comes to extraction ofa program from a proof obtained in this way, one easily ends up with a mess. Therefore,some re�nements of the standard transformation are necessary.In the present paper we make use of a re�ned method of extracting programs fromclassical proofs; it is developed in detail in [1]. We demonstrate its use with two ratherdetailed case studies. Speci�cally, we extract programs from classical proofs of theexistence of� integer square roots, and� integer coe�cients to linearly combine the greatest common divisor of two num-bers from these numbers,The latter example has already been treated in [2]; here we show how it can be dealtwith in the present form of the theory. It turns out that the algorithm does not change;however, the method of how to extract a program from this classical proof becomesmore perspicious.Other interesting examples of program extraction from classical proofs have beenstudied by Murthy [8], the group around Coquand (see e.g. [3]) in a type theoreticcontext and by Kohlenbach [6] using a Dialectica-interpretation.The paper is organized as follows. In section 2 the general background is developed.We start in 2.1 with a short exposition of G�odel's system T . Tait's proof of terminationfor the simply typed �-calculus is presented in detail, and is then extended to T . In 2.2we �x our version of intuitionistic arithmetic for functionals, and recall how classicalarithmetic can be seen as a subsystem. Subsection 2.3 develops the basic machineryof modi�ed realizability, and contains a detailed proof of the soundness theorem. The�Mathematisches Institut der Universit�at M�unchen, Theresienstra�e 39, D-80333 M�unchen, Ger-many. Phone +49 89 2394 4413, Fax +49 89 280 5248, schwicht@rz.mathematik.uni-muenchen.de



main part of the paper is section 3. There de�nite and goal formulas are de�ned, andthe main theorem on program extraction from classical proofs (Theorem 3.2) is stated;for the proof we have to refer to [1]. Subsections 3.2 and 3.3 then develop the two casestudies mentioned above.Acknowledgements The proof of termination for G�odel's system T uses ideas fromUlrich Berger, Holger Benl, Ralph Matthes and Thorsten Altenkirch. Monika Seisen-berger and Felix Joachimski have contributed a lot to theMinlog system, particularlyto the implementation of the translation of classical proofs into constructive ones.2 General Background2.1 G�odel's System TWe introduce G�odel's system T of primitive recursive functionals of �nite type, formu-lated as a simply typed lambda calculus with higher type recursion constants.Types are as for the simply typed lambda calculus, but with concrete ground types� for the natural numbers and o for the boolean objects true and false.� j o j � � � j �! �:The constants are trueo j falseo j 0� j S�!� j Ro;� j R�;�:R�;� is the primitive recursion operator of type � ! (� ! � ! �) ! � ! �. Ro;� is oftype �! �! o ! � and represents boolean induction, i.e. de�nition by cases. Insteadof Ro;�MNK we will often write if K then M else N .Terms arex� j c� (c� a constant) j hM;Ni j �0(M) j �1(M) j �x�M jMNwith the usual typing rules. The conversions are those for the simply typed lambdacalculus, plus some new ones for the recursion operators. We write K + 1 for SK.Ro;�MN true 7!R MRo;�MN false 7!R NR�;�MN0 7!R MR�;�MN(K + 1) 7!R NK(R�;�MNK)We will prove that for this system of terms every term strongly normalizes. Since thenormal form is uniquely determined, the relationM =�R N is decidable (by normalizingM and N). By identifying =�R-equal terms (i.e. treating equations on the meta level)we can greatly simplify many formal derivations.Tait's Proof of Termination for the Simply Typed Lambda CalculusWe �rst give a well-known proof of termination of the simply typed lambda calculus,using method due to W.W. Tait. This proof will later be extended to G�odel's systemT . Tait's proof rests on de�ning so-called strong computability predicates. We presentthe proof here in a form which avoids intuitive arguments concerning reduction se-quences and therefore is suitable for formalization in a theory of inductive de�nitions.



We begin with a de�nition of strongly normalizable terms, by a strictly positiveinduction.If all M 0 such that M �!� M 0 are strongly normalizable (sn), then so is M .Obviously M is sn if and only if every reduction sequence starting with M terminatesafter a �nite number of steps. This can be seen as follows. =). Induction on thede�nition of \strongly normalizable". Consider a reduction sequence starting with Mand therein the �rst reduct M 0. The IH for M 0 yields the assertion. (=. By inductionon the length of the longest reduction sequence (K�onig's lemma).We note a number of the properties of the notion \strongly normalizable", to beused below. If all terms ~M are sn, then so is x ~M . (1)Proof . Induction on the de�nition of sn for ~M . Let x ~M �!� N be given. It su�cesto show that N is sn. From x ~M �!� N it follows that N = x ~M 0, where ~M 0 arises bysubstitution of Mi by M 0i with Mi �!� M 0i . It is to be proved that x ~M 0 is sn. Thisfollows from the IH for ~M 0. If Mx is sn, then so is M . (2)Proof . Induction on the de�nition of sn for Mx. Let M �!� M 0 be given. Itsu�ces to show that M 0 is sn. From M �!� M 0 we get Mx �!� M 0x. The IH forM 0x then yields that M 0 is sn.We now de�ne when a term M� is strongly computable (sc), by induction on thetype �.� M � is sc if M � is sn.� M�!� is sc if for every sc N� also (MN)� is sc.A term M is called strongly computable under substitution if for any sc terms ~N alsoM [~x := ~N ] is sc.We note a property of the notion \strongly computable" which will be used below.M is sc if and only if M ~N is sc for all sc ~N . (3)Proof . Induction on the length of ~N .Lemma 2.1 a. Every sc term M� is sn.b. If ~M are sn, then (x ~M)� is sc.Proof . By simultaneous induction on the type �. Case �. a. By de�nition. b. By(1).Case � ! � a. Let M�!� be sc. By IHb (with ~M empty) and the de�nition ofstrong computability (Mx)� is sc. By IHa Mx then is sn. By (2) M is sn too. b.Consider (x ~M)�!� with ~M sn. Let N� be sc. We have to show that (x ~MN)� is sc. ByIHa N is sn, hence x ~MN is sc by IHb.IfM �!� M 0 andM is sn, then by the de�nition of strong normalizability alsoM 0 issn. We now show that the corresponding assertion is also valid for strong computability.Lemma 2.2 If M �!� M 0 and M is sc, then so is M 0.



Proof . We use (3). Let ~N be a list of sc terms such that M ~N is of ground type.Then M ~N is sc by (3), hence also sn. Furthermore we have M ~N �!� M 0 ~N . Byde�nition of strong normalizablilityM 0 ~N is sn. Thus by (3) M 0 is sc.Lemma 2.3 Let N be sn. If M [x := N ]~L is sn and of a ground type, then so is(�xM)N~L.Proof . By induction on the strong normalizability for N and M [x := N ]~L. So weconsider all the reducts K of (�xM)N~L. Clearly it su�ces to show that every such Kis sn.Case K = M [x := N ]~L, i.e. we have an outer �-conversion. Hence K is sn byassumption.Case K = (�xM 0)N~L with M �!� M 0. Then we have M [x := N ]~L �!� M 0[x :=N ]~L. By de�nition of strong normalizabilityM 0[x := N ]~L is sn. Hence by IH K is sn.Case K = (�xM)N 0~L with N �!� N 0. Then we have M [x := N ]~L �!�� M [x :=N 0]~L. By de�nition of strong normalizabilityM [x := N 0]~L and N 0 are sn. Hence by IHK is sn.Case K = (�xM)N~L0 with Li �!� L0i for i and Lj = L0j for j 6= i. Then we haveM [x := N ]~L �!� M [x := N ]~L0. By de�nition of strong normalizability M [x := N ]~L0is sn. Hence by IH K is sn.Corollary 2.4 If M [x := N ] is sc for all sc N , then also �xM is sc.Proof . Let M [x := N ] be sc for all sc N . We have to show that �xM is sc. So letN and ~L be sc such that (�xM)N~L is of ground type. We must show that (�xM)N~Lis sc. Since M [x := N ] is sc by assumption, M [x := N ]~L is sc too and hence also sn.Since by lemma 2.1a N is also sn, by lemma 2.3 it follows that (�xM)N~L is sn andhence also sc.Lemma 2.5 Every term M is sc under substitution.Proof . By induction on M . Case x. The claim follows from lemma 2.1b or byassumption.Case MN . ~K be sc. We have to show that M [~x := ~K]N [~x := ~K] are sc. Thisclearly holds, since by IH M [~x := ~K] as well as N [~x := ~K] are sc.Case �xM . ~K be sc. We have to show that �x (M [~x := ~K]) is sc. We nowapply corollary 2.4. Let N be sc. By IH for M also M [x; ~x := N; ~K] is sc. Hence bycorollary 2.4 the claim follows.From lemma 2.5 and lemma 2.1 we directly getTheorem 2.6 �!� is terminating, i.e. every term M is sn.



Extension of the Termination Proof to G�odel's System TThis proof can easily be extended to terms with pairing hM0;M1i and projections�0(M), �1(M). We now show that addition of the conversion rules above for R doesnot destroy termination.We �rst change the de�nition of sc for the ground type �. It is not de�ned just tobe sn (as before), but now is de�ned inductively, as follows.De�nition 2.7 M is sc, if� all M 0 such that M �!� M 0 are sc, and in addition� if M = SM0, then M0 is sc.Theorem 2.8 �!�R is terminating.Proof . We extend the argument above. Clearly it su�ces to show that the constantsR�;� and Ro;� are sc. We restrict ourselves to R�;�; for Ro;� the argument is similar(and simpler). So let M;N;K be sc. We must show that RMNK is sc.The proof is by induction on sn for M;N and on sc for K. So let ~L be sc. We mustshow that RMNK~L is sc. Since this term is not of the form SM0, it su�ces to considerall reducts Q of RMNK~L and to show that every such reduct Q is sc.Case K = K0+1, Q = NK0(RMNK0)~L. We �rst show that RMNK0 is sc. So let~L0 be sc. Since K = K0 + 1 is sc, by de�nition also K0 is. So by induction hypothesisRMNK0 is sc, and we obtain that Q is sc.If the reduction takes place within a subtermM;N;K; ~L the claim follows by induc-tion hypothesis (here we need that strong computability is preserved under conversionsteps; cf. lemma 2.2). Since the case K = 0, Q = M~L is trivial this proves the claim.Now we can conclude via Newman's Lemma [9] that the normal form is uniquelydetermined. For simplicity we identify terms with the same �R-normal form. Henceevery closed term of type � is identi�ed with a term of the form S(S(S : : : (S0) : : :))and every closed term of type o is identi�ed with either true or false. Such terms aredenoted by n and called numerals (even if they are of type o).2.2 Intuitionistic Arithmetic for FunctionalsThe system we consider is essentially Heyting's intuitionistic arithmetic in �nite typesHA! as described e.g. in [4]. It is based on G�odel's system T and just adds the cor-responding logical and arithmetical apparatus to it. Classical arithmetic is obtainedby restriction to formulas without the constructive existential quanti�er 9� but usingthe classical de�nition 9 = :8: instead. Equations are treated on the meta level byidentifying terms with the same normal form.We now write r; s; t; : : : for (object) terms, and reserve M;N;K; : : : for derivationterms.



Arithmetic: Predicate symbols and atomic formulasEvery predicate symbol P now has a �xed arity, which is a tupel of types (�1; : : : ; �k).So atomic formulas are of the form P (r�11 ; : : : ; r�kk ). The choice of the predicate symbolsdepends on the particular problem under consideration. In most cases there will bethe predicate symbols ? (falsity) of arity () and atom of arity (o). The intendedinterpretation of atom is the set ftrueg. Hence \atom(t)" means \t = true". Everydecidable relation (i.e., every relation given by a term t of type o), can then be writtenin the form atom(t). If confusion is unlikely, we will write t instead of atom(t). Soformulas are P (r�11 ; : : : ; r�kk ) j A ^B j A! B j 8x�A j 9�x�A:To accomodate the speci�c ground types � and o, we need an induction scheme forboth types, and in addition a \truth axiom" .Indp;A: A[p := true]! A[p := false]! 8pAIndn;A: A[n := 0]! (8n:A! A[n := n+ 1])! 8nAT: atom(true)We also need 9�-axioms:9�+x;A: 8x:A! 9�xA9��x;A;B: 9�x�A! (8x�:A! B)! B (x =2 FV (B))Derivations are within minimal logic. They are written in natural deduction style, i.e.as typed �-terms via the well-known Curry-Howard correspondence.uB (assumptions) j axioms jhMA; NBiA^B j �i(MA0^A1)Ai j(�uAMB)A!B j (MA!BNA)B j(�x�MA)8x�A j (M8x�At�)A[x�:=t�]where in the 8-introduction �xMA, x must not be free in any B with uB 2 FA(M).Classical logicAssume that atom is the only predicate symbol, and replace ? by atom(false). Thenwe have :A := A! atom(false)9xA := :8x:A;and stability ::A ! A is provable for all 9�-free formulas A, using boolean inductionfor the case atom(t). Hence classical arithmetic (in all �nite types) is a subsystem ofour present system based on minimal logic.So for 9�-free formulas (no restriction from a classical point of view) we have fullclassical logic.Note also that for quanti�er-free formulas B built from prime formulas of the formatom(t) we can easily construct a boolean term tB: o such thatatom(tB)$ Bis derivable. Therefore we can use boolean induction to derive case distinction forquanti�er-free formulas.



2.3 Program Extraction from Constructive ProofsWe now come back to the full system, and assign to every formula A an object � (A) (atype or the symbol �). � (A) is intended to be the type of the program to be extractedfrom a proof of A. In case � (A) = � proofs of A have no computational content; suchformulas A are called Harrop formulas.� (P (~s)) := �� (9�x�A) := � � if � (A) = ��� � (A) otherwise� (8x�A) := � � if � (A) = ��! � (A) otherwise� (A0 ^ A1) := � � (Ai) if � (A1�i) = �� (A0)� � (A1) otherwise� (A! B) := 8><>: � (B) if � (A) = �� if � (B) = �� (A)! � (B) otherwiseWe now de�ne, for a given derivation M of a formula A with � (A) 6= �, its extractedprogram [[M ]] of type � (A).[[uA]] := x�(A)u (x�(A)u uniquely associated with uA)[[�uAM ]] := � [[M ]] if � (A) = ��x�(A)u [[M ]] otherwise[[MA!BN ]] := � [[M ]] if � (A) = �[[M ]][[N ]] otherwise[[hMA00 ;MA11 i]] := � [[Mi]] if � (A1�i) = �h[[M0]]; [[M1]]i otherwise[[�i(MA0^A1)]] := � [[M ]] if � (A1�i) = ��i[[M ]] otherwise[[�x�M ]] := �x�[[M ]][[Mt]] := [[M ]]tWe also need extracted programs for induction and 9�-axioms. For the induction schemeIndn;A:A[n := 0]! (8n:A! A[n := n + 1])! 8nA let[[Indn;A]] := R�;�: �! (�! �! �)! �! �;where � = � (A). Similarly boolean induction is realized by Ro;�.For the 9�-axioms we set[[9�+x�;A]] := ��x�x if � (A) = ��x��y�(A)hx; yi otherwise[[9��x�;A;B]] := (�x��f�!�(B)fx if � (A) = ��z���(A)�f�!�(A)!�(B):f�0(z)�1(z) otherwiseFor derivations MA where � (A) = � (i.e. A is a Harrop-formula) we de�ne [[M ]] := " ("some new symbol). This applies in particular if A is 9�-free.Finally we de�ne the notion of modi�ed realizability. More precisely, we de�neformulas r mr A, where A is a formula and r is either a term of type � (A) if the latter



is a type, or the symbol " if � (A) = �."mr P (~s) = P (~s)r mr (9�xA) = � "mr A[x := r] if � (A) = ��1(r) mr A[x := �0(r)] otherwiser mr (8xA) = � 8x:"mr A if � (A) = �8x:rxmr A otherwiser mr (A! B) = 8<: "mr A ! r mr B if � (A) = �8x:xmr A ! "mr B if � (A) 6= � = � (B)8x:xmr A ! rxmr B otherwiser mr (A0 ^A1) = 8><>: "mr A0 ^ r mr A1 if � (A0) = �r mr A0 ^ "mr A1 if � (A1) = ��0(r) mr A0 ^ �1(r) mr A1 otherwiseNote that for A 9�-free we have � (A) = � and "mr A = A. For the formulation of thesoundness theorem below it will be useful to let xu := " if uA is an assumption variablewith a Harrop-formula A.Theorem 2.9 (Soundness) If M is a derivation of a formula B, then there is aderivation �(M) of [[M ]]mr B from fxu mr C j uC 2 FA(M) g.Proof . Induction on M . Case u:A. Then we have �u:xu mr A. Let �(u) := �u.Case �uAMB. We must �nd a derivation �(�uM) of[[�uM ]]mr (A! B):Subcase � (A) = �. Then we have [[�uM ]] = [[M ]], hence[[�uM ]]mr (A! B) = "mr A ! [[M ]]mr B:By induction hypothesis we can de�ne �(�uM) := ��u�(M) with �u: " mr A. Subcase� (A) 6= � = � (B). Then we have [[�uM ]] = " and[[�uM ]]mr (A! B) = 8x:xmr A ! "mr B:By induction hypothesis de�ne �(�uM) := �xu��u�(M) with �u:xu mr A. Subcase� (A) 6= � 6= � (B). Then we have[[�uM ]]mr (A! B) = 8x:xmr A ! [[�uM ]]xmr BBecause of [[�uM ]] = �xu[[M ]] and since we identify terms with the same �-normal form,by induction hypothesis we can de�ne �(�uM) := �xu��u�(M).Case MA!BNA. We must �nd a derivation �(MN) of [[MN ]] mr B. Subcase� (A) = �. Then we have [[MN ]] = [[M ]]. By induction hypothesis we have derivations�(M) of [[M ]]mr (A! B) = "mr A ! [[M ]]mr Band �(N) of "mr A; hence we can de�ne �(MN) := �(M)�(N). Subcase � (A) 6= � =� (B). Then we have [[MN ]] = ". By induction hypothesis we have derivations �(M) of[[M ]]mr (A! B) = 8x:xmr A ! "mr Band �(N) of [[N ]] mr A; hence we can de�ne �(MN) := �(M)[[N ]]�(N). Subcase� (A) 6= � 6= � (B). Then we have [[MN ]] = [[M ]][[N ]]. By induction hypothesis we havederivations �(M) of[[M ]]mr (A! B) = 8x:xmr A ! [[M ]]xmr B



and �(N) of [[N ]]mr A; hence we can de�ne �(MN) := �(M)[[N ]]�(N).Case hMA00 ;MA11 i. We must �nd a derivation �(hM0;M1i) of[[hM0;M1i]]mr (A0 ^A1):Subcase � (A0) = � = � (A1). Then we have [[hM0;M1i]] = ", hence[[hM0;M1i]]mr (A0 ^A1) = "mr A0 ^ "mr A1and by induction hypothesis we can de�ne �(hM0;M1i) := h�(M0); �(M1)i. Subcase� (A0) = � 6= � (A1). Then we have [[hM0;M1i]] = [[M1]], hence[[hM0;M1i]]mr (A0 ^A1) = "mr A0 ^ [[M1]]mr A1and by induction hypothesis we can de�ne �(hM0;M1i) := h�(M0); �(M1)i. Subcase� (A0) 6= � = � (A1). Similar. Subcase � (A0) 6= � 6= � (A1). Then we have [[hM0;M1i]] =h[[M0]]; [[M1]]i, hence[[hM0;M1i]]mr (A0 ^A1) = [[M0]]mr A0 ^ [[M1]]mr A1and by induction hypothesis we can de�ne �(hM0;M1i) := h�(Mi); �(M1�i)i.Case �0(MA0^A1). We must �nd a derivation �(�0(M)) of[[�0(M)]]mr A0:Subcase � (A1) = �. Then we have [[�0(M)]] = [[M ]]. by induction hypothesis we have aderivation �(M) of[[M ]]mr (A0 ^A1) = [[M ]]mr A0 ^ "mr A1:hence we can de�ne �(�0(M)) := �0(�(M)). Subcase � (A0) = � 6= � (A1). Then wehave [[�0(M)]] = ". by induction hypothesis we have a derivation �(M) of[[M ]]mr (A0 ^A1) = "mr A0 ^ [[M ]]mr A1:hence we can de�ne �(�0(M)) := �0(�(M)). Subcase � (A0) 6= � 6= � (A1). Similar; wecan de�ne �(hM0;M1i) := h�(M0); �(M1)i.Case �1(MA0^A1). Similar.Case �zMA. We must �nd a derivation �(�zM) of [[�zM ]]mr 8zA. By de�nition[[�zM ]] = �z[[M ]]. Subcase � (A) = �. Then we have�z[[M ]]mr 8zA = 8z:"mr Aand by induction hypothesis we can de�ne �(�zM) := �z�(M). The variable condi-tion is satis�ed, since �zMA is a derivation term, and hence z does not occur free inany assumption variable u:B free in MA, hence also does not occur free in the freeassumption �u:xu mr B. Subcase � (A) 6= �. Then we have�z[[M ]]mr 8zA = 8z:(�z[[M ]])zmr A:Since we identify terms with the same �-normal form, by induction hypothesis we againcan de�ne �(�zM) := �z�(M). As before one can see that the variable condition issatis�ed.



Case M8zAt. We must �nd a derivation �(Mt) of [[Mt]]mr A[x := t]. By de�nitionwe have [[Mt]] = [[M ]]t. Subcase � (A) = �. By induction hypothesis we have a derivationof [[M ]]mr 8zA = 8z:"mr Ahence we can de�ne �(Mt) := �(M)t. Subcase � (A) 6= �. By induction hypothesis wehave a derivation of [[M ]]mr 8zA = 8z:[[M ]]zmr A;hence we again can de�ne �(Mt) := �(M)t.Case 9�+x;A:8~x8x:A! 9�x�A. We must �nd a derivation �(9�+x;A) of[[9�+x;A]]mr 8~x8x:A! 9�x�A:Subcase � (A) = �. Then we have 9�+x;A = �~x�xx and we obtain(�~x�xx) mr 8~x8x:A! 9�xA = 8~x8x:xmr (A! 9�xA)= 8~x8x:"mr A! xmr 9�xA= 8~x8x:"mr A! "mr A:Hence we can de�ne �(9�+x;A) = �~x�x�uu. Subcase � (A) 6= �. Then we have 9�+x;A =�~x�x�yhx; yi and we obtain�~x�x�yhx; yimr 8~x8x:A! 9�xA= 8~x8x8y:ymr A! hx; yimr 9�xA= 8~x8x8y:ymr A! y mr AHence we can de�ne �(9�+x;A) = �~x�x�y�uu.Case 9��x;A;B:8~x[9�xA ! (8x:A ! B) ! B] with x =2 FV (B). We must �nd aderivation �(9��x;A;B) of 8~x[9�xA ! (8x:A ! B) ! B]. Subcase � (A) = � = � (B).Then we have [[9��x;A;B]] = " and we obtain"mr 8~x[9�xA! (8x:A! B)! B]= 8~x8x:xmr 9�xA! "mr ((8x:A! B)! B)= 8~x8x:"mr A! "mr (8x:A! B)! "mr B= 8~x8x:"mr A! 8x "mr (A! B)! "mr B= 8~x8x:"mr A! (8x:"mr A! "mr B)! "mr B:Hence we can de�ne �(9��x;A;B) = �~x�x�u�v:vxu. Subcase � (A) 6= � = � (B). Then weagain have [[9��x;A;B]] = " and we obtain"mr 8~x[9�xA! (8x:A! B)! B]= 8~x8x:xmr 9�xA! "mr ((8x:A! B)! B)= 8~x8x:�1(x) mr A[x := �0(x)]! "mr (8x:A! B)! "mr B= 8~x8x:�1(x) mr A[x := �0(x)]! 8x "mr (A! B)! "mr B= 8~x8x:�1(x) mr A[x := �0(x)]! 8x8y(ymr A! "mr B)! "mr B:Hence we can de�ne �(9��x;A;B) = �~x�x�u�v:v�0(x)�1(x)u. Subcase � (A) = � 6= � (B).Then we have [[9��x;A;B]] = �~x�x�z(zx) and we obtain�~x�x�z(zx) mr 8~x[9�xA! (8x:A! B)! B]= 8~x8x:xmr 9�xA! �z(zx) mr ((8x:A! B)! B)= 8~x8x:"mr A! 8z:zmr (8x:A! B)! zxmr B= 8~x8x:"mr A! 8z:8x zxmr (A! B)! zxmr B= 8~x8x:"mr A! 8z:(8x:"mr A! zxmr B)! zxmr B:



Hence we can de�ne �(9��x;A;B) = �~x�x�u�v:vxu. Subcase � (A) 6= � 6= � (B). Then wehave [[9��x;A;B]] = �~x�x�z(z�0(x)�1(x)) and we obtain�~x�x�z(z�0(x)�1(x))mr 8~x[9�xA! (8x:A! B)! B]= 8~x8x:xmr 9�xA! �z(z�0(x)�1(x))mr ((8x:A! B)! B)= 8~x8x:�1(x)mr A[x := �0(x)]!8z:zmr (8x:A! B)! z�0(x)�1(x) mr B= 8~x8x:�1(x)mr A[x := �0(x)]!8z:8x8y(ymr A! zxy mr B)! z�0(x)�1(x)mr B:Hence we can de�ne �(9��x;A;B) = �~x�x�u�z�v:v�0(x)�1(x)u.If B is 9�-free, then " mr B = B. Hence for 8x�9�y�B with 9�-free B we have� (8x9y�B) = �! � and tmr 8x9�yB = 8xB[y := tx]:Then as a corollary to the soundness theorem we obtain the extraction theoremTheorem 2.10 From a derivation M :8x�9�y�B with B 9�-free from 9�-free assump-tions � one can extract a closed term [[M ]]�!� such that the formula 8xB[y := [[M ]]x]is provable from �.Here � should be viewed as lemmata, i.e. true formulas (proved separately, to keepM short). The theorem says that the extracted program is independent of how thisshortcut is achieved.3 Computational Content of Classical Proofs3.1 De�nite and Goal FormulasFor simplicity we only treat formulas in the !8 fragment; this is not an essentialrestriction, since conjunctions can be easily removed.A formula is relevant if it \ends" with ?. More precisely, relevant formulas arede�ned inductively by the clauses� ? is relevant,� if C is relevant and B is an arbitrary formula, then B ! C is relevant, and� if C is relevant, then 8xC is relevant.A formula which is not relevant is called irrelevant .We de�ne goal formulas G and de�nite formulas D inductively. These notions arerelated to similar ones common under the same name in the context of extensions oflogic programming. Let P range over atoms (including ?).G := P j D! G provided D irrelevant ) D quanti�er-freej 8xG provided G irrelevantD := P j G! D provided D irrelevant ) G irrelevantj 8xD



Lemma 3.1 For de�nite formulas D, relevant goal formulas G and an arbitrary for-mula A we have derivations NAD :D ! DAHAG :GA ! :G! AThe proof is by induction on de�nite and goal formulas; it is necessary to proveseveral additional claims simultaneously, to get the induction through. For details werefer to [1].Theorem 3.2 Let D1; : : : ;Dl be relevant and Dl+1; : : : ;Dn irrelevant de�nite formulas,and G1; : : : ; Gk be relevant quanti�er-free and Gk+1; : : : ; Gm irrelevant goal formulas.Let A := 9�y ~G andt := �y; ~x:if :G1 then [[HAG1]](x1) else : : : if :Gk then [[HAGk ]](xk) else y:Assume that we have a derivationM : ~D ! (8y: ~G! ?)! ?:Let MA denote the result of substituting ? by A everywhere in M . Then we can derive~D! [[MA]][[NAD1]] : : : [[NADl]]tmr 9�y ~G:The proof uses the soundness theorem 2.9 and lemma 3.1. For details we again haveto refer to [1].3.2 Example: Integer Square RootsLet f : � ! � be unbounded with f0 = 0; think of f as the square function f(n) = n2.We want to prove that integer square roots always exist, or more precisely a generalform of this proposition, using only the two properties of f above. We specify ourproblem as follows. Here f; g; n are parameters; g is used as an explicit witness of theunboundedness of f .8n:n<f0! 8nn<f(gn)! (8m::n<fm! n<f(m+ 1)! ?)! ?Clearly 8n:n<f0 is a relevant de�nite formula8nn<f(gn) is an irrelevant de�nite formula:n<fm is a relevant goal formulan<f(m+ 1) is an irrelevant goal formula;hence theorem 3.2 can be applied without inserting any double negations.To construct a derivation, assumev1 :8n:n<f0;v2 :8nn<f(gn);u :8m::n<fm! n<f(m + 1)!?:Our goal is ?. From v1 and u we inductively get 8m:n<fm. For m := gn this yieldsa contradiction to v2. The derivation isInd :n<f0 8m::n<fm! :n<f(m+ 1)8m:n<fm gn:n<f(gn) n<f(gn)?



with derivation termM := �v1�v2�u:Indm;:n<fmn(v1n)u(gn)(v2n);Now let A := 9�m::n<fm ^ n<f(m+ 1), henceMA = �v8n:n<f0!A1 �v8nn<f(gn)2 �u8m:(n<fm!A)!n<f(m+1)!A:Indm;n<fm!An(v1n)u(gn)(v2n)and therefore[[MA]] =� �x�!�v1 �x�!�!�u :R�(xv1n)xu(gn)From the proof of theorem 3.2 we generally know D ! [[NAD]]mrDA for every relevantde�nite formula D. In our case, with D = 8n::n<f0, we can derive directly(8n:n<f0! ?)! (�n0) mr 8n:n<f0! A;since we can use ex-falso. So we may assume [[NAD]] = �n0. Also, from the proof oftheorem 3.2 we generally know x mr GA ! :G ! [[HAG ]](x) mr A for every relevantgoal formula G. In our case, with G = :n<fm, we can derive directly(xmr n<fm! A)! ::n<fm! xmr A:So we may assume [[HAG ]] = �xx. Now lett : = �m�x:if :G1 then [[HAG1]](x) else m= �m�x:if n<fm then x else m:Then the extracted term according to theorem 3.2 is[[MA]][[NAD]]t = ��x�!�v1 �x�!�!�u :R�(xv1n)xu(gn)�(�n0)t=� R�0t(gn)= R�0(�n�xif n<fm then x else m)(gn):Informally, the algorithm can be written in the form h(gn) where h: �! � is such thath(0) = 0;h(m+ 1) = � h(m) if n<f(m)m else3.3 Example: The Greatest Common DivisorYiannis Moschovakis suggested the following example of a classical existence proof witha quanti�er-free kernel which does not obviously contain an algorithm: the gcd of twonatural numbers a1 and a2 is a linear combination of the two. Here we treat thatexample as a case study for program extraction from classical proofs. In the originaltreatment in [2] we identi�ed one of the predicate symbols as critical (the divisibilityrelation �j�). Here we show how this example can be treated in the present form ofthe theory, with de�nite and goal formulas. It turns out that the algorithm does notchange; however, the method of how to extract a program from this classical proofbecomes more perspicious.Let a; b; c; i; j; k; `;m; n; q; r denote natural numbers. Our language is determined bythe constants 0; 1;+; �, function symbols for the quotient and the remainder denoted



by q(a; c) and r(a; c), a 4-ary function denoted by abs(k1a1 � k2a2) whose intendedmeaning is clear from the notation and an auxiliary 5-ary function f which will bede�ned later. We will express the intended meaning of these function symbols bystating some properties (lemmata) v1; : : : ; v6 of them; these will be formulated as weneed them.Theorem 3.3 For natural numbers a1; a2 with 0 < a29k1; k2:abs(k1a1 � k2a2)ja1 ^ abs(k1a1 � k2a2)ja2 ^ 0 < abs(k1a1 � k2a2):Proof . Let a1; a2 be given and assume 0 < a2. The ideal (a1; a2) generated froma1; a2 has a least positive element c, since 0 < a2. This element has a representationc = abs(k1a1�k2a2) with k1; k2 2 N. It is a common divisor of a1 and a2 since otherwisethe remainder r(ai; c) would be a smaller positive element of the ideal.The number c 2 (a1; a2) dividing a1 and a2 is the greatest common divisor since anycommon divisor of a1 and a2 must also be a divisor of c.The minimum principle and course-of-values induction.In order to formally write out the proof above we need to make explicit the instance ofthe induction scheme used implicitly in the minimumprinciple. The minimumprinciplew.r.t. a measure � says9~kR(~k)! 9~k:R(~k) ^ 8~̀:�(~̀) < �(~k)! R(~̀)! ?(in our example R(k1; k2) � 0 < abs(k1a1� k2a2) and �(k1; k2) � abs(k1a1� k2a2)). Inorder to reduce this to the induction scheme we use the fact that the formula above isclassically equivalent to(8~k:R(~k)! [8~̀:�(~̀) < �(~k)! R(~̀)! ?]!?)! 8~k:R(~k)! ?;i.e. the principle of course-of-values induction for R(~k) ! ? w.r.t. the measure �(~k).We can write this as Prog ! 8~k:R(~k)!?;where Prog := 8~k:[8~̀:�(~̀) < �(~k)! R(~̀)! ?]! R(~k)! ?:In the formal treatment of our example it will be more convenient to use the minimumprinciple in the form of course-of-values induction.To prove course-of-values induction assume w1:Prog and prove 8~k:R(~k)!?. Thisis achieved by proving 8nB, whereB := 8~k:�(~k) < n! R(~k)!?;and using B with n := �(~k) + 1. We prove 8nB by (zero-successor) induction.Base. B[n := 0] follows easily from the lemmav1:8m:m < 0 !?:Step. Let n be given and assume w2:B. To show B[n := n + 1] let ~k be given andassume w3:�(~k) < n + 1. We will derive R(~k) ! ? by using w1:Prog at ~k. Hence wehave to prove 8~̀:�(~̀) < �(~k)! R(~̀)! ?:So, let ~̀ be given and assume further w4:�(~̀) < �(~k). From w4 and w3:�(~k) < n + 1we infer �(~̀) < n (using an arithmetical lemma). Hence, by induction hypothesis w2:Bat ~̀ we get R(~̀)!?.



Detailed proof of the theoremNow we repeat the proof of the theorem in some more detail using course-of-valuesinduction. As always in classical logic, we may view the proof as an indirect one,deriving a contradiction from the assumption that the claim is false. So let a1; a2 begiven and assume v0: 0 < a2 andu:8k1; k2:abs(k1a1 � k2a2)ja1 ! abs(k1a1 � k2a2)ja2 !0 < abs(k1a1 � k2a2)! ?:We have to prove ? which will be achieved by proving 8k1; k2:0 < abs(k1a1�k2a2)!?by course-of-values induction and then specializing this formula to k1; k2 = 0; 1 andusing the assumption v0: 0 < a2 (= abs(0a1 � 1a2)).The principle of course-of-values induction is used withN(k1; k2) := 0 < abs(k1a1 � k2a2)! ? and �(k1; k2) := abs(k1a1 � k2a2):We have to show that N is progressive. To this end let k1; k2 be given and assumeu1:8`1; `2:�(`1; `2) < �(k1; k2)! N(`1; `2):We have to prove N(k1; k2). So, assume u2: 0 < �(k1; k2). We have to show ?. This willbe achieved by using the (false) assumption u at k1; k2. We have to prove �(k1; k2)ja1and �(k1; k2)ja2. Informally, one would argue \if, say, �(k1; k2) 6 ja1 then the remainderr1 := r(a1; �(k1; k2)) is positive and less than �(k1; k2). Furthermore we can �nd `1; `2such that r1 = �(`1; `2). Altogether this contradicts the assumption u1". More formally,to prove �(k1; k2)ja1 we use the lemmav2:8a; q; c; r:a= qc+ r ! (0 < r !?)! cjaat a1, q1 := q(a1; �(k1; k2)) (the quotient), �(k1; k2) and r1. We have to prove thepremises a1 = q1�(k1; k2) + r1 and 0 < r1 ! ?of the instantiated lemma v2. Here we need the lemmatav3:8a; c:0< c! a = q(a; c)c+ r(a; c);v4:8a; c:0< c! r(a; c) < cspecifying the functions quotient and remainder. Now the �rst premise follows imme-diately from lemma v3 and u2: 0 < �(k1; k2). To prove the second premise, 0 < r1 ! ?,we assume u3: 0 < r1 and show ?. First we compute `1; `2 such that r1 = �(`1; `2).This is done by some auxiliary function f , de�ned byf(a1; a2; k1; k2; q) := � qk1 � 1; if k2a2 < k1a1 and 0 < q;qk1 + 1; otherwise.f satis�es the lemmav5:8a1; a2; k1; k2; q; r:a1 = q � �(k1; k2) + r ! r = �(f(a1; a2; k1; k2; q); qk2):Hence we let `1 := f(a1; a2; k1; k2; q1) and `2 := q1k2. Now we have �(`1; `2) = r1 <�(k1; k2) by v5, u2 and v4, as well as 0 < r1 = �(`1; `2) by u3 and v5. Therefore, we get ?by u1 at `1; `2 (using some equality lemmata). This completes the proof of �(k1; k2)ja1.�(k1; k2)ja2 is proved similarly using the lemmav6:8a1; a2; k1; k2; q; r:a2 = q � �(k1; k2) + r ! r = �(qk1; f(a2; a1; k2; k1; q)):



Turning the lemmata and the claim into de�nite and goal formulasIn order to make our general theory applicable to the present example we have to makesure that the lemmata assert de�nite formulas and the claim is given by goal formulas.This is almost the case already, with the sole exeption ofv2:8a; q; c; r:a= qc+ r ! (0 < r ! ?)! cja;which is not de�nite (we have concluded something positive, i.e. cja, from somethingnegative, i.e. 0 < r ! ?). We now make it de�nite by inserting a double negation infront of the �nal conclusion cja, i.e. we replace the formula of v2 by8a; q; c; r:a= qc+ r ! (0 < r ! ?)! (cja! ?)!?:Clearly this will not a�ect our proof in any essential way; however, it will make adi�erence when it comes to extract the program.Formal proofThe proof of the principle of course-of-values induction and the proof of the theoremwere given in such a detail that it is now easy to formalize them completely. Only somearguments concerning < and = were left implicit, but since these will be irrelevantformulas we don't need to worry about these omissions.M := �v0<a20�v8m:m<0!?1�v8a;q;c;r:a=qc+r!(0<r!?)!(cja!?)!?2�v8a;c:0<c!a=q(a;c)c+r(a;c)3�v8a;c:0<c!r(a;c)<c4�v8a1;a2;k1;k2;q;r:a1=q��(k1;k2)+r!r=�(f(a1;a2;k1;k2;q);qk2)5�v8a1;a2;k1;k2;q;r:a2=q��(k1;k2)+r!r=�(qk1;f(a2;a1;k2 ;k1;q))6�u8~k:�(~k)ja1!�(~k)ja2!0<�(~k)!?:MProg!8~k:0<�(~k)!?cvind Mprog01(L0<�(0;1)[v0])where Mcvind = �wProg1 �~k:Indn;BMbaseMstep(�(~k) + 1)~kL�(~k)<�(~k)+1;Mbase = �~k�w�(~k)<00 � ~w00<�(~k):v1�(~k)w0;Mstep = �n�wB2 �~k�w�(~k)<n+13 :w1~k(�~̀�w�(~̀)<�(~k)4 :w2~̀(L�(~̀)<n[w4; w3]));Mprog = �~k�u8~̀:�(~̀)<�(~k)!0<�(~̀)!?1 �u0<�(~k)2 :M (�(~k)ja2!?)!?div2 �u�(~k)ja23 :M (�(~k)ja1!?)!?div1 �u�(~k)ja14 :u~ku4u3u2;Mdivi = v2aiqi(~k)�(~k)ri(~k)(Lai=qi(~k)�(~k)+ri(~k)[v3; u2])M0<ri(~k)!?6<i ;M 6<i = �u0<ri(~k)3;i :u1~̀i(~k)(L�(~̀i(~k))<�(~k)[v4+i; v3; u2; v4])(L0<�(~̀i(~k))[u3;i; v4+i; v3; u2]):Here we have used the abbreviationsProg = 8~k:[8~̀:�(~̀) < �(~k)! 0 < �(~̀)! ?]! 0 < �(~k)!?B = 8~k:�(~k) < n! 0 < �(~k)! ?



Term extractionLet A := 9�~k:�(~k)ja1 ^ �(~k)ja2 ^ 0 < �(~k);so � (A) = ~� := �� �. Let CA := C[? := A], hence� (ProgA) = ~�! (~�! ~�)! ~�;� (BA) = ~�! ~�:Furthermore recall [[Indn;BA]] = R�;~�!~� whereR�;~�!~�: (~�! ~�)! (�! (~�! ~�)! (~�! ~�))! �! (~�! ~�)Note that R�;~�!~� may be viewed as simultaneous primitive recursion operators ~R =(R1;R2) with Ri~y ~f0 = yi;Ri~y ~f(z + 1) = fiz(R1~y ~fz)(R2~y ~fz):Now we are prepared to compute the extracted term. Let MA denote the result ofreplacing every formula C in the derivation M by CA (note that MA generally does notderive A). [[MA]] = �x�!~�v1 �x�4!~�!~�!~�v2 �x~�!~�u :[[MAcvind]][[MAprog]]01where [[MAcvind]] = �x~�!(~�!~�)!~�w1 �~k:R[[MAbase]][[MAstep]](�(~k) + 1)~k[[MAbase]] = �~k:xv1�(~k)[[MAstep]] = �n�x~�!~�w2 �~k:xw1~k(�~̀:xw2 ~̀);[[MAprog]] = �~k�x~�!~�u1 :[[MAdiv2]]([[MAdiv1 ]](xu~k))[[MAdivi ]] = xv2aiqi(~k)�(~k)ri(~k)[[MA6<i]][[MA6<i]] = xu1 ~̀i(~k):From the proof of theorem 3.2 we generally know D ! [[NAD]]mrDA for every relevantde�nite formula D. In our case for D1 = 8m:m < 0 !? we can derive directly(8m:m< 0! ?)! (�n0) mr 8m:m < 0! A;since we can use ex-falso. So we may assume [[NAD1]] = �n0. Similarly forD2 = 8a; q; c; r:a= qc+ r ! (0 < r ! ?)! (cja! ?)! ? we haveDA2 = 8a; q; c; r:a= qc+ r ! (0 < r ! A)! (cja! A)! A:Now an informal proof of D2 ! DA2 runs as follows. Assume the hypotheses. We proveA by cases on 0 < r. In case 0 < r the hypothesis 0 < r ! A yields A. In case0 < r ! ? we obtain (cja ! ?) ! ? and hence cja. Now the hypothesis cja ! Ayields A.From this proof we can derive directlyD2 ! (�a�q�c�r�~x�~y:if 0 < r then ~x else ~y)mr DA2 :So we may assume [[NAD2]] = �a�q�c�r�~x�~y:if 0 < r then ~x else ~y.



Moreover, there is no relevant goal formula, hence t = �~y~y. Then the extractedterm according to theorem 3.2 is[[MA]][[NAD1]][[NAD2]]t =� [[MAcvind]]0[[MAprog]]001where 0 indicates substitution of [[NAD1]], [[NAD2]], t for xv1, xv2, xu, so[[MAcvind]]0 =�� �x~�!(~�!~�)!~�w1 �~k0:R(�~k:~0)(�n�xw2�~k:xw1~kxw2)(�(~k0) + 1)~k0;[[MAprog]]0 =� �~k�x~�!~�u1 :[[MAdiv2]]0([[MAdiv1 ]]0~k);[[MAdivi ]]0 =� (�~x�~y:if 0 < ~ri(~k) then ~x else ~y)(xu1 ~̀i(~k))and hence [[MAprog]]0 =� �~k�xu1 : if 0 < r2(~k) then xu1 ~̀2(~k) else( if 0 < r1(~k) then xu1 ~̀1(~k) else ~k)Therefore we obtain as extracted algorithm, using the fact that �(0; 1) = a2,[[MA]][[NAD1]][[NAD2]]t =� R(�~k:~0)(�n�x~�!~�w2 �~k:if 0 < r2(~k) then xw2 ~̀2(~k) elseif 0 < r1(~k) then xw2 ~̀1(~k) else ~k)(a2 + 1)01To make this algorithm more readable we may write [[MA]][[NAD1]][[NAD2]]t = h(a2+1; 0; 1),where h(0; ~k) := ~0;h(n+ 1; ~k) := if 0 < r2(~k) then h(n; ~̀2(~k)) else(if 0 < r1(~k) then h(n; ~̀1(~k)) else ~k)



ExampleLet us use the extracted algorithm to compute coe�cients k1; k2 such that gcd(66; 27) =jk1 � 66� k2 � 27j.h(28; 0; 1) �(0; 1) = 270 < r1 = 12 q1 = 2q1k1| {z }0 �1; q1k2| {z }2 �1; if k2a2 < k1a1| {z }0 No1; 2h(27; 1; 2) �(1; 2) = 120 < r1 = 6 q1 = 5q1k1| {z }5�1 �1; q1k2| {z }5�2 �1; if k2a2| {z }2�27 < k1a1| {z }1�66 Yes4; 10h(26; 4; 10) �(4; 10) = j4 � 66 � 10 � 27j = j264 � 270j = 66j660 < r2 = 3 q2 = 4q2k1| {z }4�4 ; q2k2| {z }4�10 �1 � 1; if k1a1| {z }4�66=264 < k2a2| {z }10�27=270 Yes16; 39h(25; 16; 39) �(16; 39) = j16 � 66 � 39 � 27j = j1056 � 1053j = 33j663j27Result: 16; 39Note that, although 3 = j16 � 66 � 39 � 27j is the least positive element of the ideal(66; 27), the coe�cients 16, 39 are not minimal. The minimal coe�cients are 2, 5.Remarks1. As one sees from this example the recursion parameter n is not really used in thecomputation but just serves as a counter or more precisely as an upper bound for thenumber of steps until both remainders are zero. This will always happen if the inductionprinciple is used only in the form of the minimum principle (or, equivalently, course-of-values induction). Because then in the extracted terms of course-of-values induction,the step [[MAstep]] = �n�x~�!~�w2 �~k:xw1~k(�~̀:xw2~̀) has in its kernel no free occurrence of n.2. If one removes n according to the previous remark it becomes clear that our gcdalgorithm is similar to Euclid's. The only di�erence lies in the fact that we have kepta1; a2 �xed in our proof whereas Euclid changes a1 to a2 and a2 to r(a1; a2) providedr(a1; a2) > 0 (using the fact that this doesn't change the ideal).ImplementationThe gcd example has been implemented in the interactive proof system Minlog. Weshow the term which was extracted automatically from a derivation of the theorem.(lambda (a1)(lambda (a2)((((((nat-rec-at '(arrow nat (arrow nat (star nat nat))))



(lambda (k1) (lambda (k2) (cons n000 n000))))(lambda (n)(lambda (w)(lambda (k1)(lambda (k2)((((if-at '(star nat nat))((<-strict-nat 0) r2))((w l21) l22))((((if-at '(star nat nat))((<-strict-nat 0) r1))((w l11) l12))(cons k1 k2))))))))((plus-nat a2) 1))0)1)))We have manually introduced r1, r2, l11, l12, l21, l22 for somewhat lengthyterms corresponding to our abbreviations ri, ~̀i. The unbound variable n000 appearingin the base case is a dummy variable used by the system when it is asked to producea realizing term for the instance ? ! 9kA(k) of ex-falso-quodlibet. In our case, whenthe existential quanti�er is of type � one might as well pick the constant 0 (as we didin the text).References[1] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Re�ned program extractionfrom classical proofs. In preparation.[2] Ulrich Berger and Helmut Schwichtenberg. The greatest common divisor: a case studyfor program extraction from classical proofs. In S. Berardi and M. Coppo, editors, Typesfor Proofs and Programs. International Workshop TYPES '95, Torino, Italy, June 1995.Selected Papers, volume 1158 of Lecture Notes in Computer Science, pages 36{46. SpringerVerlag, Berlin, Heidelberg, New York, 1996.[3] Thierry Coquand and Hendrik Persson. Gr�obner Bases in Type Theory. In T. Altenkirch,W. Naraschewski, and B. Reus, editors, Types for Proofs and Programs, volume 1657 ofLecture Notes in Computer Science. Springer Verlag, Berlin, Heidelberg, New York, 1999.[4] Anne S. Troelstra (editor). Metamathematical Investigation of Intuitionistic Arithmeticand Analysis, volume 344 of Lecture Notes in Mathematics. Springer Verlag, Berlin, Hei-delberg, New York, 1973.[5] Harvey Friedman. Classically and intuitionistically provably recursive functions. In D.S.Scott and G.H. M�uller, editors, Higher Set Theory, volume 669 of Lecture Notes in Math-ematics, pages 21{28. Springer Verlag, Berlin, Heidelberg, New York, 1978.[6] Ulrich Kohlenbach. Analyzing proofs in analysis. In W. Hodges, M. Hyland, C. Steinhorn,and J. Truss, editors, Logic: from Foundations to Applications. European Logic Colloquium(Keele, 1993), pages 225{260. Oxford University Press, 1996.[7] Daniel Leivant. Syntactic translations and provably recursive functions. The Journal ofSymbolic Logic, 50(3):682{688, September 1985.[8] Chetan Murthy. Extracting constructive content from classical proofs. Technical Report90{1151, Dep.of Comp.Science, Cornell Univ., Ithaca, New York, 1990. PhD thesis.[9] M.H.A. Newman. On theories with a combinatorial de�nition of \equivalence". Annals ofMathematics, 43(2):223{243, 1942.


