
Proofs, Lambda Terms and Control OperatorsHelmut SchwichtenbergMathematisches Institut, Universit�at M�unchen,Theresienstra�e 39, D-80333 M�unchen, Germany.email schwicht@rz.mathematik.uni-muenchen.deThe so-called continuation-passing-style translation (cps-translation) hasbeen introduced by Fischer [8] for the �-calculus and extended to the �-calculus with control operators C and A by Felleisen et al. in [7]. By givinga typing a connection with implicational propositional logic has been es-tablished by Meyer and Wand [13] for the �-calculus and extended to the�-calculus with control operators C and A by Gri�n [10]. Gri�n has shownthat all evaluations with respect to call-by-value �-conversion and the stan-dard conversion rules for C and A terminate. More precisely Gri�n extendsthe Meyer/Wand typing of Fischers cps-translation M of a term M to thelanguage involving the control operators C and A. It still holds that if Mhas type A, then M has type ::A�, where A� is de�ned as P � := P and(A! B)� := A� ! :B� ! F (which is equivalent to :B� ! :A�). Gri�n'sproof of termination of evaluation is based on Plotkin's [16] technique of theso-called colon-translation (denoted M :V and typed by MA:V :A� ) and con-text unwrapping (denoted V E and typed by requiring V to be of type :B�and the evaluation context E[] to be of type B with the `hole' of type A).Here we essentially give an exposition of Gri�n's result, with some sim-pli�cations and extensions based on work of Sabry and Felleisen [18]. Inparticular we stress its connection with questions of termination of di�er-ent normalization strategies for minimal, intuitionistic and classical logic, ormore precisely their fragments in implicational propositional logic. We alsogive some examples (due to Hirokawa) of derivations in minimal and classicallogic which reproduce themselves under certain reasonable conversion rules.This work clearly owes a lot to other people. Robert Constable and ChetMurthy have made me aware of the signi�cance of Gri�n's paper. In histhesis [14] Murthy has explored the relevance of this approach to the problemof \Extracting Constructive Content from Classical Proofs"; I will also haveto say something about this in the introduction below. Thanks are due toStefano Berardi, from whom I have learned the counterexamples for classicallogic due to Sachio Hirokawa. I also would like to thank Ulrich Berger,Ralph Matthes and in particular Felix Joachimski from M�unchen, who havecontributed signi�cantly to the present notes.



1 IntroductionIt is well known that from a classical proof of 8x9 y B(x; y), B quanti�er-free, one can extract a program t such that 8xB(x; tx) holds. There are twopossibilities to do this (cf. [1, 2]): 1. A direct method, which uses the classicalproof and proof normalization directly as an algorithm. 2. A translation ofthe classical proof into an intuitionistic one from which via a realizabilityinterpretation a program can be extracted. It has been shown that bothmethods yield the same algorithm.Furthermore one can try to answer the question if \programs from classi-cal proofs" is a useful device practically. In [1, 2] the proof translation hasbeen applied to a simple but informative example, namely a classical proofthat w.r.t. an unbounded function f :N ! N such that f(0) = 0 each nhas a root m, i.e., f(m) � n < f(m + 1) holds. This proof can be trans-lated and a program root:N ! N (depending on f) can be extracted suchthat f(root(n)) � n < f(root(n)+1) holds for all n. It's interesting that theclassical proof is extremely easy and short (even if fully formalized); consider-ably shorter than the intuitionistic proof one would give intuitively. Howeverthe extracted program is unnecessarily complicated. This can be taken asa motivation to study re�nements of the proof translation yielding simplerprograms.Program extraction can be messy for mainly two reasons: 1. A completelyformalized proof, using the basic axioms of arithmetic only, will in generalbe extremely long. This can be remedied by introducing additional globalassumptions which are of such a form that they do not spoil the extraction.2. When translating a classical derivation into an intuitionistic one, eachatomic formula P is replaced by (P ! A) ! A, where A is the existentialformula we want to prove. Thus existential formulas are spread all over thederivation and therefore each subderivation gets computational content. Thismeans that the extracted program will be at least as long and complicatedas the proof. Furthermore one has to pay for the additional assumptionsintroduced in 1., since their translations have to be proved. In general, theseproofs use case splittings which later show up in the program.In [1, 2] a re�ned proof translation has been proposed which does notreplace all atoms P by (P ! A) ! A. By a simple syntactical analysis ofthe assumptions used in the derivation one can determine a set of criticalatoms which su�ce to be replaced in order to make the translation work.This re�ned translation simpli�es the resulting programs drastically.Another interesting example of a classical existence proof (for a formulawith a quanti�er-free kernel) which does not obviously contain an algorithmhas been suggested by Yiannis Moschovakis: the gcd of two natural numbersa1 and a2 is a linear combination of the two. The usual classical proof is quiteshort and elegant: The ideal (a1; a2) generated from a1; a2 has a least positiveelement, since 0 < a2. This element has a representation abs(k1a1 � k2a2)



with k1; k2 2 N. It is a common divisor of a1 and a2 (since otherwise theremainder of its division by ai would be a smaller positive element of theideal), and it is the greatest common divisor (since any common divisor of a1and a2 must also be a divisor of abs(k1a1�k2a2)). { It turns out that in thisexample only the divisibility relation �j�will be critical in the sense above. Wehave actually carried out the program extraction �rst by hand and then bythe machine in the interactive proverMinlog under development in Munich.The extracted program is quite short, but somewhat di�erent from Euklid'salgorithm; see [3].It would be interesting to see if this re�ned method can be applied suc-cessfully to larger examples too. A candidate might be the classical proof ofHigman's Lemma by Higman [11] and Nash-Williams [15]. This proof hasbeen translated and implemented in the Nuprl system by Murthy [14]. It isnot known how the translated proof (which is extremely big) is related to theknown constructive proofs of Higman's Lemma by Sch�utte and Simpson [19]and Coquand [5]. A re�ned translation might help answering this.In these notes we will not go any further into these matters, but rather ex-plore another aspect of the computational content of classical proofs, namelyits relation to non-local control operators in functional languages (like thewell-known call/cc in Scheme). We will try to bring out the close connec-tion to standard axiom schemes for classical logic like the stability scheme orthe Peirce scheme. We will prove in detail that any evaluation sequence of asimply typed scheme program terminates.To make the material accessible to a mixed audience we start from scratch.We begin with the simply typed �-calculus, which is the simplest setting forproofs with `computational content'. The logical system corresponding to it isminimalpropositional logic with implication! as the only logical connective,and the computational content is given by �-conversion. We present Tait'sproof of strong normalization, in a form which avoids informal argumentsconcerning reduction sequences. This makes it easy to formalize the proof,and to generalize it to more complex systems.We then show how intuitionistic and classical logic can be embedded intominimal logic, again for simplicity in the implicational fragment of proposi-tional logic. Intuitionistic logic is obtained by adding the ex-falso-quodlibetscheme F! A, and classical logic by adding the stability scheme ::A! A,where :A abbreviates A ! F. Here falsity F is just a special propositionalsymbol. Writing ` (`i, `c) for derivability in minimal (intuitionistic, classi-cal) logic one can prove the following simple facts.A formula A is called negative if any propositional symbol in A (di�erentfrom F) occurs negated. For negative A we have ` ::A! A. For arbitraryformulas this does not hold, since e.g. 6` ::p! p (p a propositional symbol).We consider di�erent translations A 7! A0 such that `c A$ A0 and `c A i�` A. The G�odel-Gentzen negative translation g is de�ned bypg := ::p;



Fg := F;(A! B)g := Ag ! Bg :Furthermore we de�ne p� := p, (A ! B)� := :B� ! :A� and p� := p,(A ! B)� := A� ! :B� ! F. Then `c A $ Ag $ A� $ A� and`c A ()` Ag ()` A� () ` A�.It has been observed by Meyer and Wand [13] that ifM :A is a simply typed�-term, then Fischers cps-translation M of M can be typed by M :::A�.Gri�n observed that this corresponds to a logical embedding. To see thisnote that `c A () ` A�, hence `c A () ` ::A� since A� is negative (ifcomposed) and hence ` ::A� $ A�. So we see that from the logical pointof view this embedding is something like an overkill, since it introduces morenegations than necessary.We also have `c :A i� `i :A (Kuroda [12]). The latter is false if `i isreplaced by `, since e.g. 6` ::(::p! p).We then discuss the status of a special case of the Peirce scheme, namelyP: (:A! A)! A:The general Peirce scheme ((A! B)! A)! A can be obtained from it byreplacing falsity F in :A by an arbitrary formulaB. On the basis of minimallogic it is weaker than stability, for we have` (::p! p)! (:p! p)! p;6` [(:p! p)! p]! ::p! p:If, however, we add ex-falso-quodlibet, then the converse holds:` (F! p)! [(:p! p)! p]! ::p! p:We then show that some `reasonable' simpli�cation rules for derivations in-volving the Peirce scheme and the ex-falso-quodlibet scheme or else the sta-bility scheme lead { together with �-conversion { to non-termination. Thesecounterexamples are due to Hirokawa.In order to �nd computational content in simply typed �-terms/proofsinvolving A, P and C we discuss global control operators in functional lan-guages. First we �x a deterministic strategy for normalizing (or evaluating)�-terms, the so-called call-by-value strategy. To formulate it we use evalu-ation contexts of Felleisen et al. [7]. We then explain the call-with-current-continuation operator P (well-known from the Lisp dialect Scheme), theabort operator A and Felleisen's control operator C. For P we give some pro-gramming examples. These operators also make sense in a type-free setting.Following Gri�n [10] we then show that the operators P, A and C can betyped by the Peirce-, ex-falso-quodlibet- and stability-schemes, respectively.So we have a computational meaning of these schemes, and we may try to use



that as a criterium to decide which simpli�cation rules for proofs we shouldaccept.Based on Gri�n's work we then show that the simply typed �-calculusextended by the P, A and C operators enjoys termination with respect to thecall-by-value strategy. The proof involves a cps-translation into the simplytyped �-calculus and uses strong normalization for the latter. We �rst intro-duce a cps-translation for the simply typed �-calculus and then extend it tothe language involving P, A and C.2 The simply typed lambda calculusWe �rst recall Gentzen's natural deduction system, for simplicity restrictedto the implicational fragment of propositional logic. We present Tait's proofof strong normalization, in a form which avoids informal arguments concern-ing reduction sequences. This makes it easy to formalize the proof, and togeneralize it to more complex systems.2.1. Natural deduction. As our deductive formalism we use the system ofnatural deduction introduced by Gerhard Gentzen in [9]. In our implicationalfragment of propositional logic it consists of the following introduction andelimination rules for !.For any formula A let countably many assumption variables of type A begiven. We use uA, vA, wA to denote assumption variables of type A.The notions of a derivation term dA in minimal logic and its set FA(dA)of free assumption variables are de�ned inductively by(A) uA is a derivation term with FA(uA) = fuAg.(!+) If dB is a derivation term, then(�uA dB)A!Bis a derivation term with FA(�uA dB) = FA(dB) n fuAg.(!�) If dA!B and eA are derivation terms, then(dA!BeA)Bis a derivation term with FA(dA!BeA) = FA(dA!B) [ FA(eA).It is sometimes useful to display derivation terms in the following graphicalfashion. (!+): u:AjBA! B !+ u



(!�): jA! B jAB !�A derivation term dA is called closed , if FA(dA) = ;. We writedB[uA11 ; : : : ; uAnn ]if the assumption variables free in dB are in the list uA11 ; : : : ; uAnn . We alsouse the notation d:A instead of dA.De�nition. A formula A is called derivable from assumptions A1; : : : ; An,if there is a derivation term dB[uA11 ; : : : ; uAnn ] with di�erent assumption vari-ables uA11 ; : : : ; uAnn .Let � be a (�nite or in�nite) set of formulas. We write � ` B, if theformula B is derivable from �nitely many assumptions A1; : : : ; An 2 �. The`m' here stands for minimal logic.2.2. Strong normalization. We show in this subsection that any derivationd can be transformed by appropriate conversion steps into a normal form. Aderivation in normal form has the property that it does not make \detours",or more precisely, that it cannot occur that an elimination rule immediatelyfollows an introduction rule. Derivations in normal form have many pleasantproperties, and can be used for a variety of results.The arguments in this subsection apply to derivations as well as to termsof the simply typed �-calculus, which are essentially the same. So let us �rstintroduce the latter.Let G be a set of ground types (e.g. nat and boole). Types (also calledobject types or simple types) are formed from G by the operation � ! �.For any type � let a countable in�nite set of variables of type � be given. Wedenote variables of type � by x�; y�; : : :.We de�ne inductively terms M� of type � and the set FV(M�) of variablesfree in M�.� x� is a term of type �, FV(x�) = fx�g.� If M is a term of type �, then �x�M is a term of type � ! �.FV(�x�M ) = FV(M ) n fx�g.� If M is a term of type �! � and N is a term of type �, then MN is aterm of type �. FV(MN ) = FV(M ) [ FV(N ).For the arguments in this subsection it is convenient to use the followingnotation.



� Terms are denoted by M;N;K; : : :.� x; y; z : : : denote assumption variables as well as object variables.� We identify terms di�ering only by the names of their bound variables.� �; �; � : : : denote formulas as well as types, and � denotes atomic for-mulas or F as well as ground types. � ! � denotes function types aswell as implications. It is also useful to require that ! associates tothe right.We use MNx to denote the usual substitution operation.We now de�ne a conversion relation M !0 M 0 between terms.De�nition. M !0 M 0 is de�ned by(�xM )N !0 MNx : (�)A term M is called �-convertible if it has the form of a left hand side of (�).Such terms are also called �-redex (for reducible expression).From !0 one derives a one-step reduction relation !� as follows. Intu-itively M !� M 0 means that M 0 is obtained from M by converting exactlyone subterm.De�nition. M !� M 0 is de�ned inductively byM !0 M 0 =) M !� M 0;M !� M 0 =) �xM !� �xM 0;M !� M 0 =) MN !� M 0N;N !� N 0 =) MN !� MN 0:De�nition. A term M is �-normal if M has no �-convertible subterm.Hence a term M is �-normal if and only if M contains no subterm M 0such that M !� M 0. We now show that !� is terminating, i.e. that anyreduction sequence starting with M terminates after �nitely many steps. Bya reduction sequence we mean a (�nite or in�nite) sequenceM1;M2; : : : ;Mn; : : :such that Mi+1 arises from Mi by a �-conversion of a subterm, i.e. Mi !�Mi+1. We write M !�� M 0 (or M !+� M 0) if M 0 is a member of a reductionsequence (a reduction sequence with at least two elements) starting with M .Hence !�� is the reexive transitive closure of !�.To prove termination of !� we make use of a method due to W.W. Taitand de�ne so-called strong computability predicates. We present the proof



here in a form which avoids intuitive arguments concerning reduction se-quences and therefore is suitable for formalization in a theory of inductivede�nitions.We begin with a de�nition of strongly normalizable terms, by a strictlypositive induction.De�nition. If all M 0 such that M !� M 0 are strongly normalizable (sn),then so is M .Obviously M is sn if and only if any reduction sequence starting with Mterminates after a �nite number of steps. This can be seen as follows. =).Induction on the de�nition of `strongly normalizable'. Consider a reductionsequence starting with M and therein the �rst reduct M 0. The IH for M 0yields the assertion. (=. By induction on the length of the longest reductionsequence (K�onig's Lemma).We note a number of the properties of the notion `strongly normalizable',to be used below. If all terms ~M are sn, then so is x ~M . (1)Proof. Induction on the de�nition of sn for ~M . Let x ~M !� N be given. Itsu�ces to show that N is sn. From x ~M !� N it follows that N = x ~M 0,where ~M 0 arises by substitution of Mi by M 0i with Mi !� M 0i . It is to beproved that x ~M 0 is sn. This follows from the IH for ~M 0.If Mx is sn, then so is M . (2)Proof. Induction on the de�nition of sn for Mx. Let M !� M 0 be given. Itsu�ces to show that M 0 is sn. From M !� M 0 we get Mx !� M 0x. TheIH for M 0x then yields that M 0 is sn.We now de�ne when a term M� is strongly computable (sc), by inductionon the type �.De�nition.� M � is sc if M � is sn.� M�!� is sc if for any sc N� also (MN )� is sc.A termM is called strongly computable under substitution if for any sc terms~N also M ~N~x is sc.We note a property of the notion `strongly computable' which will be usedbelow. M is sc if and only if M ~N is sc for all sc ~N . (3)Proof. Induction on the length of ~N .



2.3. Lemma.a. Any sc term Mp is sn.b. If ~M are sn, then (x ~M )� is sc.Proof by simultaneous induction on the type �. Case �. a. By de�nition. b.By (1).Case � ! � a. Let M�!� be sc. By IHb (with ~M empty) and thede�nition of strong computability (Mx)� is sc. By IHa Mx then is sn. By(2) M is sn too. b. Consider (x ~M)�!� with ~M sn. Let N� be sc. We haveto show that (x ~MN )� is sc. By IHa N is sn, hence x ~MN is sc by IHb. �If M !� M 0 and M is sn, then by the de�nition of strong normalizabilityalsoM 0 is sn. We now show that the corresponding assertion is also valid forstrong computability.2.4. Lemma. If M !� M 0 and M is sc, then so is M 0.Proof. We use (3). Let ~N be a list of sc terms such thatM ~N is of ground type.Then M ~N is sc by (3), hence also sn. Furthermore we have M ~N !� M 0 ~N .By de�nition of strong normalizablilityM 0 ~N is sn. Thus by (3) M 0 is sc. �2.5. Lemma. Let N be sn. If MNx ~L is sn and of a ground type, then so is(�xM )N~L.Proof by induction by the de�nition of strong normalizability for N andMNx ~L. So we consider all the reducts K of (�xM )N~L. Clearly it su�ces toshow that any such K is sn.Case K = MNx ~L, i.e. we have an outer �-conversion. Hence K is sn byassumption.Case K = (�xM 0)N~L with M !� M 0. Then we have MNx ~L !� M 0Nx ~L.By de�nition of strong normalizabilityM 0Nx ~L is sn. Hence by IH K is sn.Case K = (�xM )N 0~L with N !� N 0. Then we have MNx ~L !�� MN 0x ~L.By de�nition of strong normalizabilityMN 0x ~L and N 0 are sn. Hence by IH Kis sn.Case K = (�xM )N~L0 with Li !� L0i for i and Lj = L0j for j 6= i. Thenwe have MNx ~L !� MNx ~L0. By de�nition of strong normalizability MNx ~L0 issn. Hence by IH K is sn. �2.6. Corollary. If MNx is sc for all sc N , then also �xM is sc.Proof. Let MNx be sc for all sc N . We have to show that �xM is sc. So letN and ~L be sc such that (�xM )N~L is of ground type. We must show that



(�xM )N~L is sc. Since MNx is sc by assumption, MNx ~L is sc too and hencealso sn. Since by Lemma 2.3a N is also sn, by Lemma 2.5 it follows that(�xM )N~L is sn and hence also sc. �2.7. Lemma. Any term M is sc under substitution.Proof by induction on M . Case x. The claim follows from Lemma 2.3b orby assumption.Case MN . ~K be sc. We have to show that M ~K~x N ~K~x are sc. This clearlyholds, since by IH M ~K~x as well as N ~K~x are sc.Case �xM . ~K be sc. We have to show that �xM ~K~x is sc. We nowapply Corollary 2.6. Let N be sc. By IH for M also MN; ~Kx;~x is sc. Hence byCorollary 2.6 the claim follows. �From Lemma 2.7 and Lemma 2.3 we directly get2.8. Theorem. !� is terminating, i.e. any term M is sn. �This proof can easily be extended to terms with pairing hM0;M1i and pro-jections �0(M ), �1(M ). It can also be extended to terms that are built withprimitive recursion operators (see for example Troelstra [6, 25] or Schwicht-enberg [20]), the general recursion operator or the �xed point operator (seePlotkin [17]) or the bounded �xed point operator (see Schwichtenberg/Wainer[21]).One can also show that the normal form is uniquely determined. A sim-ple proof which uses the technique of parallel reduction (originating fromW.W. Tait) has recently been published by Takahashi in [23].3 Logical embeddingsWe now show how intuitionistic and classical logic can be embedded intominimal logic, again for simplicity in the implicational fragment of proposi-tional logic; a more complete treatment can be found in [24]. Intuitionisticlogic is obtained by adding the ex-falso-quodlibet scheme F ! A, and clas-sical logic by adding the stability scheme ::A ! A, where :A abbreviatesA! F. Alternatively one can also obtain classical logic by adding the Peirceschema (:A! A)! A plus the ex-falso-quodlibet scheme F! A to minimallogic. We then show that some `reasonable' simpli�cation rules for deriva-tions involving the Peirce scheme and the ex-falso-quodlibet scheme or elsethe stability scheme lead { together with �-conversion { to non-termination.These counterexamples are due to Hirokawa.3.1. Embedding classical and intuitionistic logic into minimal logic. Deriva-tion terms in intuitionistic and in classical logic are obtained by adding tothe �rst (assumption-) clause of the de�nition



� in the case of intuitionistic logic: For any propositional symbol p we letAp: F! pbe a derivation term with FA(Ap) = ; (Ex-falso-quodlibet axiom).� in the case of classical logic: For any propositional symbol p we letCp:::p! pbe a derivation term with FA(Cp) = ; (Stability axiom).Here falsity F is just a special propositional symbol, and :A abbreviatesA ! F. We write � ` A (� `i A, � `c A), if there is a derivation term dAin minimal (intuitionistic, classical) logic such that for any uB 2 FA(d) wehave B 2 �.By obvious reasons the stability axiom is also called the principle of indi-rect proof for the propositional symbol p. We now want to show that fromour stability axioms we can derive the principle of indirect proof for arbitraryformulas (in our !-language).3.2. Lemma. (Stability Lemma). From stability assumptions Cp for anypropositional symbol p occurring in a formula A we can derive ::A! A.Proof by induction on A. Case p. Use Cp.Case F. ::F! F = ((F! F)! F)! F(F! F)! F F! FFCase A! B. Use` (::B ! B) ! ::(A! B)! A! B:It can be derived by::B ! B ::(A! B) u::B v:A! B ABF v:(A! B)F u::BB �Similarly we can show that from our ex-falso-quodlibet axioms we canderive ex-falso-quodlibet for arbitrary formulas (again in our !-language).



3.3. Lemma. (Ex-falso-quodlibet Lemma). From assumptions Ap for anypropositional symbol p occurring in a formula A we can derive F ! A inintuitionistic logic.Proof. By induction on A. �From ::A! A one can clearly derive F! A. Hence any formula deriv-able in intuitionistic logic is also derivable in classical logic.Having de�ned classical and intuitionistic logic, we now want to derivesome embedding results.De�nition. A formula A is negative if any propositional symbol in A (dif-ferent from F) occurs negated.If one extends this notion to �rst order logic, then one also has to requirethat _; 9 do not occur in A.3.4. Lemma. For negative A we have ` ::A! A.Proof. This follows from the Stability Lemma, using ` :::p ! :p; here isa derivation of it: :::p u::p pF u::pF �N.B. 6` ::p! p.De�nition. (G�odel-Gentzen negative translation g).pg := ::p;Fg := F;(A! B)g := Ag ! Bg :3.5. Theorem. For all A,a. `c A$ Ag,b. � `c A i� �g ` Ag.Proof. a. Clear. b. (=. Clear by a. =). By induction on the classicalderivation. Case Cp. (::p! p)g = ::::p! ::p, which is easily derivable.Case !+. Assume u:AjB !+ uA! B



Then by IH u:AgjBg and hence u:AgjBg !+ uAg ! BgCase !�. Assume jA! B jABThen by IH jAg ! Bg jAg and hence jAg ! Bg jAgBg �3.6. Corollary. For negative A we have `c A i� ` A.Proof. By the theorem `c A i� ` Ag. Since A is negative, any atom 6= Fin A is negated and hence appears in Ag under a triple negation (as :::p),and ` :::p$ :p. �N.B. 6` ::p! p, hence the corollary does not hold for all formulas A.3.7. Corollary. Let A� be de�ned by p� := p and (A ! B)� := :B� !:A�, and A� be de�ned by p� := p and (A! B)� := A� ! :B� ! F. Then`c A () ` A� () ` A�:Proof. Case �. For an atom p both sides are false, and for A composed A� isnegative, and clearly `c A$ A�. Case �. Clearly ` A� $ A�. �Remark. It has been observed by Meyer and Wand [13] that if M :A is asimply typed �-term, then Fischers cps-translation M of M can be typedby M :::A�. Gri�n observed that this corresponds to a logical embedding.To see this note that by what we just proved `c A i� ` A�, hence `c A i�` ::A� since A� is negative (if composed) and hence ` ::A� $ A�. Sowe see that from the logical point of view this embedding is something likean overkill, since by what we have proved it introduces more negations thannecessary.We now give the Kuroda interpretation. First note that` ::(p! q)! ::p! ::q; (4)` (F! q)! (::p! ::q)! ::(p! q); (5)but 6` (::p! ::q)! ::(p! q):



For example, a derivation for (4) is::p ::(p! q) u::q v: p! q w: pqF v:(p! q)F w:pF u::qA derivation for (5) can be obtained similarly. Hence we have`i ::(p! q)$ (::p! ::q): (6)3.8. Corollary. (Kuroda [12]). For all A we have `c :A i� `i :A.Proof. (=. Clear. =). Assume `c :A. Then `c :Ag. Since Ag is negative,by the corollary above ` :Ag . Using (6) we can push the :: outside (weneed ` ::F $ F here; cf. the proof of the Stability Lemma) and obtain`i :::A, hence `i :A. �N.B. 6` ::(::p! p), hence Corollary 3.8 does not hold for ` instead of `i.Finally we discuss the status of a special case of the Peirce scheme, namelyP: (:A! A)! A:The general Peirce scheme ((A! B)! A)! A can be obtained from it byreplacing falsity F in :A by an arbitrary formulaB. On the basis of minimallogic it is weaker than stability, for we have` (::p! p)! (:p! p)! p;6` [(:p! p)! p]! ::p! p:If, however, we add ex-falso-quodlibet, then the converse holds:` (F! p)! [(:p! p)! p]! ::p! p:Hence we could also de�ne classical logic by adding to minimal logic theex-falso-quodlibet axioms as well as the Peirce scheme. In fact, it su�ces toadd the Peirce axioms (:p! p)! p for all propositional symbols p 6= F.3.9. Counterexamples for classical logic. Counterexamples for classical logichave been given by Sachio Hirokawa; I have learned them form Stefano Be-rardi (personal communication). To obtain the �rst example we use ourspecial case of the Peirce formula, i.e. P: (:A ! A) ! A. For derivations



involving P, the conversion rule (P-rule) mappingj M:A P: (:A! A)! A j N:A! AAFinto j M:A j N:A! A j M:AAFis correct. The corresponding derivation term isM (PN )!P M (NM ):To formulate the counterexample we introduce some abbreviations. LetK := �u�v u =: �u; v:u and N := �z:zw with a free parameter w. Thecounterexample is K(PN )(PN ), which can be typed byP: ((F! F)! F)! F;K: F! F! F;N : (F! F)! F;w: F:It is a counterexample, for we haveK(PN )(PN )!P K(PN )[NfK(PN )g] by the P-rule with M := K(PN )!� K(PN )[K(PN )w]!� K(PN )(PN )or more explicitely(�u; v:u)(P(�z:zw))(P(�z:zw))!P (�u; v:u)(P(�z:zw))[(�z:zw)f(�u; v:u)(P(�z:zw))g]!� (�u; v:u)(P(�z:zw))[(�u; v:u)(P(�z:zw))w]!� (�u; v:u)(P(�z:zw))[P(�z:zw)]:Hence we have reproduced the original term.From this we can also obtain a counterexample for the language involv-ing stability C:::A ! A instead of the Peirce formula P. For derivationsinvolving C the following conversion rule is correct.C:::A! A j M::AAj GF !C j M::A u:Aj GF u:AF (C-rule)



The corresponding derivation terms areG[CM ]!C M (�uG[u]):Here G is an `application context'; in particular, free assumption variablesshould not be bound inG, for otherwise the resulting derivation would containthese assumption variables free.First note that it is easy to derive P form C:C:::A! A u::A v::A! A u::AAF u::AA v(:A! A)! AThe corresponding derivation term isP := �v:C�u:u(vu):It turns out that with this de�nition we can derive the P-rule from the C-rule:M (PN ) = M ([�v:C�u:u(vu)]N )!� M (C�u:u(Nu))!C (�u:u(Nu))(�x:Mx)!� (�x:Mx)(N (�x:Mx))!� M (N (�x:Mx));which is the right hand side of the P-rule up to �-expansion of the �nal M .Hence it is not surprising that we obtain the following counterexample forderivations involving C instead of P. We use the abbreviationsP := �v:C�u:u(vu);K := �u�v u;N := �z:zw with a free parameter w.Then the counterexample again is K(PN )(PN ), which can be typed as be-fore. It is a counterexample, for we haveK(PN )(PN ) = K(PN )([�v:C�u:u(vu)]N )!� K(PN )(C�u:u(Nu))= G[CM ] with G := K(PN )[], M := �u:u(Nu),!C M (�xG[x])= (�u:u(Nu))(�x:K(PN )x)!� (�x:K(PN )x)[N�x:K(PN )x]



!� K(PN )[N�x:K(PN )x] using call-by-name!� K(PN )[(�x:K(PN )x)w]!� K(PN )[K(PN )w]!� K(PN )(PN ):Hence we have seen that a reasonable conversion rule for C together with �-conversion (allowing call-by-name) leads to non-termination of the classicalimplicational calculus.Note that the C-rule is applied here in a context M1(CM2). This seems tobe responsible for non-termination; cf. Gunnar St�almark [22].4 Global control operatorsIn order to �nd computational content in simply typed �-terms/proofs in-volving A, P and C we now discuss global control operators in functionallanguages. We �x the call-by-value strategy for normalizing (or evaluating)�-terms. To formulate it we use evaluation contexts of Felleisen et al. [7]. Wethen explain the call-with-current-continuation operator call/cc or P (well-known from the Lisp dialect Scheme), the abort operator A and Felleisen'scontrol operator C. For P we give some programming examples. These op-erators also make sense in a type-free setting. Following Gri�n [10] we thenshow that the P, A and C operators can be typed by the Peirce-, ex-falso-quodlibet- and stability-schemes, respectively. So we have a computationalmeaning of these schemes, and we may try to use that as a criterium to decidewhich simpli�cation rules for proofs we should accept.4.1. Evaluation contexts. Type-free �-terms are de�ned byM ::= x j �xM jMM:Terms of the form �xM are called abstractions; variables and abstractions arecalled values and will be denoted by U; V;W . A term of the form (�xM )Vwith a value V is called a �v-redex. A natural call-by-value strategy toevaluate closed terms takes the leftmost �v-redex not within an abstractionsand converts it. Felleisen et al. [7] have introduced the notion of an evaluationcontext to deal conveniently with this situation. In this subsection we studyevaluation contexts in some detail.First note that any term M is either a value V , or it has a uniquelydetermined leftmost position not under a lambda-abstraction of the formV1V2. Examples: x;x(�y y);



x(y(�z z));x((�y y)z);x((�y y)z)(z1(�y1 y1));x((�y y)(z1(�y1 y1))):The `rest' of the term is an evaluation context which can be de�ned in-ductively byDe�nition. (Evaluation context).E ::= [] j V E j EM:If E is an evaluation context, then E[M ] denotes the result of replacingthe `hole' [] in E by the term M .4.2. Lemma. Any termM can be written uniquely in the from V orE[V1V2].Proof. Existence. By induction on M . It clearly su�ces to consider the caseMN . In case M = V use the IH for N . If N = V1 let E = []. If N = E1[V1V2]let E = V E1. In case M = E1[V1V2] let E = E1N .Uniqueness. By induction on M . It again su�ces to consider the caseMN . So assume MN = E[V1V2] = E0[V 01V 02 ]:Case E = []. If E0 = [], then V1V2 = V 01V 02 and hence V1 = V 01 and V2 = V 02 .If E0 = V 0E01, then V1V2 = V 0E01[V 01V 02 ]. But then V2 = E01[V 01V 02 ], which isimpossible. If E0 = E01N , then V1V2 = E01[V 01V 02 ]N . But then V1 = E01[V 01V 02 ],which is impossible.Case E = V E1. By symmetry reasons we may assume E0 6= []. IfE0 = V 0E01, then MN = V E1[V1V2] = V 0E01[V 01V 02 ] and hence V = V 0and E1[V1V2] = E01[V 01V 02 ] = N . The IH for N yields E1 = E01, V1 = V 01and V2 = V 02 . If E0 = E01N 0, then V E1[V1V2] = E01[V 01V 02 ]N 0 and henceV = E01[V 01V 02 ], which is impossible.Case E = E1N . By symmetry reasons we may assume E0 6= [] andE0 6= V 0E01. So let E0 = E01N 0. We obtain MN = E1[V1V2]N = E01[V 01V 02 ]N 0.But then N = N 0, hence M = E1[V1V2] = E01[V 01V 02 ], and the IH for M yieldsthe claim. �4.3. Lemma. E[E0] is an evaluation context.Proof by induction on E. Case []. Clear. Case V E1. Then (V E1)[E0] =V E1[E0] and the claim follows from the IH. Case E1M . Then (E1M )[E0] =E1[E0]M and the claim again follows from the IH. �Sabry and Felleisen [18, p. 16] give a di�erent but equivalent de�nition ofevaluation contexts, which will be useful later.



De�nition. (Sabry/Felleisen evaluation context).F ::= [] j F [V []] j F [[]M ]:4.4. Lemma. F [F 0] is an evaluation context in the sense of Sabry/Felleisen.Proof by induction on F . Case []. Clear. Case F [V []]. We must show thatF [V [F 0]] is again an evaluation context (in the sense of Sabry/Felleisen).The IH for V [] yields that V [F 0] is an evaluation context. The IH for Fyields that F [V [F 0]] is an evaluation context. Case F [[]M ]. We must showthat F [[F 0]M ] is again an evaluation. The IH for []M yields that [F 0]M isan evaluation context. The IH for F yields that F [[F 0]M ] is an evaluationcontext. �4.5. Lemma.a. Any F is an E.b. Any E is an F .Proof. a. By induction on F . Case []. Clear. Case F [V []]. By IH F is anE. We must show that E[V []] is an E0. But this follows from the Lemma 4.3concerning substitution of E's. Case F [[]M ]. By IH F is an E. We mustshow that E[[]M ] is an E0. But this again follows from Lemma 4.3.b. By induction on E. Case []. Clear. Case V E. By IH E is an F . Wemust show that V F is an F 0. But this follows from Lemma 4.4 concerningsubstitution of F 's. Case EM . By IH E is an F . We must show that FMis an F 0. But this again follows from Lemma 4.4. �Because of this coincidence we will use E also for evaluation contexts inthe sense of Sabry/Felleisen.4.6. Lemma. Any term M can be written uniquely in the form E[V ] withE 6= E0[[]N ] (i.e. the hole [] in E is not the left hand side of an application).Proof. Clearly we may assume that M is not a value.Existence. By Lemma 4.2 M is of the form M = E0[V1V2]. Take E :=E0[V1[]].Uniqueness. Assume M = E[V ] = E0[V 0]. Again E = E1[V1[]] andE0 = E01[V 01[]], hence E[V ] = E1[V1V ] and E0[V 0] = E01[V 01V 0]. So we haveE1[V1V ] = E01[V 01V 0]and therefore by Lemma 4.2 E1 = E01, V1 = V 01 and V = V 0. But thenE = E0 follows. �Later we will also need



4.7. Lemma. Any evaluation context E can be written uniquely in one ofthe forms []; E[x[]]; E[(�xM )[]]; E[[]M ]:Proof. Existence. This follows immediately from Sabry/Felleisen's charac-terization of evaluation contexts.Uniqueness. This is clear, since there is a unique hole [] in E, and [] (incase E 6= []) is either the right hand side or else the left hand side of anapplication. �Since by Lemma4.6 any closed non-normal term can be written uniquely inthe formE[(�xM )V ], we can express call-by-value �-conversion convenientlyas E[(�xM )V ] 7! E[MVx ]:If MVx is not a value, then any further computation step can only take placewithin MVx . Hence, in a precise sense, E represents the rest of the compu-tation (or continuation) still to be done after the evaluation of (�xM )V iscomplete. So the notion of an evaluation context makes it possible to formu-late precisely the e�ect of program constructs that deal with global control,such as call/cc in Scheme. To these we turn next.4.8. Manipulating continuations. In the programming language Schemethe call/cc construct (call=cc proc) is informally described as follows (inthe Revised4 Report [4]). \The procedure call/cc packages up the currentcontinuation as an `escape procedure' and passes it as an argument to proc.The escape procedure is a Scheme procedure of one argument that, if laterpassed a value, will ignore whatever continuation is in e�ect at that latertime and will give the value instead to the continuation that was in e�ectwhen the escape procedure was created".We now give some simple example programs involving call/cc.(define (occurs? var term)(call/cc(lambda (return) ; return is the continuation; calling; return with one argument has the effect that the result; will be returned immediately as the result of the; call/cc expression(let occurs-help ((term term))(cond ((variable? term)(if (eq? var term)(return #t))); if found, return #t immediately((fct-app-form? term)(for-each occurs-help



(fct-app-form-to-args term)))((app-form? term)(occurs-help (app-form-to-op term))(occurs-help (app-form-to-arg term)))((lambda-form? term)(if(not (eq? var (lambda-form-to-symbol term)))(occurs-help (lambda-form-to-kernel term)))))#f))))(define (unify term1 term2)(call/cc(lambda (return)(do ((x (list empty-subst term1 term2)(let* ((subst (car x))(t1 (cadr x))(t2 (caddr x))(p (disagreement-pair t1 t2)))(if (not p)(return subst)(let ((l (car p)) (r (cadr p)))(cond((and (variable? l)(not (occurs? l r)))(list (extend subst l r)(term-substitutet1 (list p))(term-substitutet2 (list p))))((and (variable? r)(not (occurs? r l)))(list (extend subst r l)(term-substitutet1 (list (reverse p)))(term-substitutet2 (list (reverse p)))))(else (return 'no))))))))(#f)))))The procedure prod expects a list argument and forms the product of theelements of the list. If one of the elements is 0, it returns 0 immediately.(define (prod l)(call/cc(lambda (return)(let aux ((x l))



(cond ((null? x) 1)((zero? (car x)) (return 0))(else (* (car x) (aux (cdr x)))))))))A continuation-passing-style version of prod is(define (prod-cps l)(let aux ((x l)(k (lambda (y) y)))(cond ((null? x) (k 1))((zero? (car x)) 0)(else (aux (cdr x)(lambda (y) (* (car x) (k y))))))))We will also deal with an abort operator (e.g. error in most implemen-tations of Scheme), which throws away the current continuation and imme-diately returns its argument. Finally, we will also discuss a control operatorintroduced by Felleisen. Its e�ect is very similar to that of call/cc. How-ever, it also throws away the continuation in e�ect when it is called, andreturns immediately.To deal with these constructs in our present setting, we extend our notionof a term by adding the global control operators P, C and A. We view theseoperators not as separate values but rather as term constructors. Hence weextend our de�nition of a term as follows.M ::= x j �xM jMM j PM j CM j AM:The notion of a value remains unchangedV ::= x j �xM;and also the de�nition of evaluation contexts stays the same.We now have to extend our lemmata concerning unique representations ofterms to the extended language. To Lemma 4.2 there corresponds4.9. Lemma. Any term M can be written uniquely in one of the forms V ,E[V1V2], E[PM ], E[CM ] or E[AM ].Proof. Existence. By induction on M . It clearly su�ces to consider the caseMN . In case M = V use the IH for N . If N = V1 let E = []. If N has one ofthe forms E1[V1V2], E1[PM ], E1[CM ] or E1[AM ] let E = V E1. In case Mhas one of the forms E1[V1V2], E1[PM ], E1[CM ] or E1[AM ] let E = E1N .Uniqueness. By induction on M . It again su�ces to consider the caseMN . The proof proceeds just as for Lemma 4.2; one only has to considersome more cases. �To Lemma 4.6 there corresponds



4.10. Lemma. Any term M can be written uniquely in one of the formsE[V ], E[PM ], E[CM ] or E[AM ] with E 6= E0[[]N ] (i.e. the hole [] in E isnot the left hand side of an application).Proof. Just as for Lemma 4.6; one again only has to consider some morecases. �The conversion rules for P, C and A can now be formulated:E[PM ]!P E[M�z:AE[z]];E[CM ]!C M�z:AE[z];E[AM ]!A M:Clearly these conversion rules express what we informally have said before.4.11. Typing the conversion rules for control operators. The conversion rulesfor P, C and A are E[PM ]!P E[M�z:AE[z]];E[CM ]!C M�z:AE[z];E[AM ]!A M:We now want to type these conversion rules. It can be seen easily that theonly possible way to do this is as follows. For the P-ruleP: (:A! A)! A j M:A! AAj EFis transformed into j M:A! A A: F! F z:Aj EFF z:AAj EFand for the C-rule we haveC:::A! A j M::AAj EF !C j M::A A: F! F z:Aj EFF z:AF



Note that the appearance of the A-axioms F! F in these derivations clearlyis unneccessary from the logical point of view. However, as will be apparentsoon, they are essential from the operational point of view for the derivationterms. A: F! A j MFAj EF !A j MF (A-rule)At this point the connection of the global control operators to classical logicbecomes apparent. Starting from the conversion rules which have been moti-vated solely by operational considerations we arrive necessarily at the typingP: (:A! A)! A;C:::A! A;A: F! Afor P, C and A, which make them correspond to the Peirce, stability andex-falso-quodlibet schemes, respectively.However, there is one problem with this typing. Assume that we havea closed term possibly involving P, C and A to which we wish to apply theconversion rules above. As we just have seen, this is only possible if the wholeterm has type F. But there is no closed term of type F, for this would meanthat `c F.To solve this problem, recall that in the presence of P, C and A we essen-tially are in the realm of classical logic. Hence instead of deriving A we mayas well derive ::A, i.e. F from an additional assumption :A.A slightly di�erent way to formulate this has been used by Gri�n. Hede�nes the conversion rules byC(�kE[(�xM )V ])!�v C(�kE[MVx ]);C(�kE[PM ])!�P C(�kE[M�z:AE[z]]);C(�kE[CM ])!�C C(�kM�z:AE[z]);C(�kE[AM ])!�A C(�kM ):5 Termination of evaluationBased on Gri�n's work [10] we now show that the simply typed �-calculusextended by the P, A and C operators enjoys termination with respect to thecall-by-value strategy. The proof involves a cps-translation into the simplytyped �-calculus and uses strong normalization for the latter. We �rst intro-duce a cps-translation for the simply typed �-calculus and then extend it tothe language involving P, A and C.



5.1. A cps-translation of the simply typed lambda calculus. We de�ne si-multaneously a `term transformation' TW (M ) and an `evaluation contexttransformation' KW (E). TW (M ) is closely related to Plotkin's [16] and Grif-�n's [10] `colon translation'M :W , and KW (E) is closely related to theirWE .However, our de�nition { which is based on Sabry/Felleisen [18] { is more`compacting' in the sense that it avoids `administrative redexes'.De�nition. a. For any value W ::A� and term M :A we de�ne a termTW (M ): F byTW (V ) := W�(V );TW (E[xV ]) := x�KW (E)�(V ); where x:B ! C, x�::C� ! :B�,TW (E[(�xM )V ]) := (�x�TW (E[M ]))�(V ); where x:A, M :B, x�:A�.b. For any value V :A we de�ne a value �(V ):A� by�(x) := x�;�(�xM ) := �`; x�:T`(M );where x:A, M :B, and `::B� is a newly created variable.c. For any value W ::A� and evaluation context E[�B]:A we de�ne a valueKW (E)::B� byKW ([]) := W;KW (E[x[]]) := x�KW (E); where x:B ! C, x�::C� ! :B�,KW (E[(�xM )[]]) := �x�TW (E[M ]); where x:B, x�:B�,KW (E[[]M ]) := �x�TW (E[xM ]):where in the last clause []:B ! C, x:B ! C, x�::C� ! :B� and x is anewly created variable.We now show that this is a good de�nition. First note that � can beeliminated by replacing each T()-clause by two for the two possible forms ofV and inserting there the de�nition of �. We de�ne a measure jM j for termsM and jEj for evaluation contexts E such that in each clause of the de�nitionthe measure decreases.De�nition. (Measure). jM j := 2 � vars(M );jEj := 2 � vars(E) + 3;where vars(�) is the total number of variable occurrences in the term or eval-uation context �, including the bound occurrences.Now the well-de�nedness of T() and K() follows fromjE[xV ]j > jEj;



jE[(�xM )V ]j > jE[M ]j;jE[x[]]j > jEj;jE[(�xM )[]]j > jE[M ]j;jE[[]M ]j > jE[xM ]j:5.2. Lemma. (Context unwrapping).a. TKW (E)(M )!�� TW (E[M ]), where E[�B]:A, W ::A�, M :B,b. KKW (E)(E0)!�� KW (E[E0]), where E[�B]:A, W ::A�, E0[�C]:B.Proof. To be able to give a proof by induction we have to prove simultaneouslywith parts a and b the following special cases of the substitution lemma (tobe proved in general form as our next lemma):c. TW (M )�(V )x� !�� TW (MVx ) with M = E[xN ], where x is not free in E,N and W .d. KW (E)�(V )x� !�� KW (EVx ) with E = E1[xE2], where x is not free in E1,E2 and W .We prove parts a-d simultaneously by induction on the following measure.� For part a: jEj+ jM j.� For part b: jEj+ jE0j.� For part c: jM j+ jV j.� For part d: jEj+ jV j.a. We �rst prove part a for values V , by cases on E. If E does not havethe hole [] on the left hand side of an application, thenTKW (E)(V ) = KW (E)�(V )= TW (E[V ]):The last equation follows from the fact that the clauses in the de�nition ofTW (V ) and KW (E) look very similar. It can be proved easily by consideringthe cases [], E[x[]] and E[(�xM )[]] for E.So it remains to consider the case E[[]M ].TKW (E[[]M ])(V ) = KW (E[[]M ])�(V )= (�x�TW (E[xM ]))�(V )!� TW (E[xM ])�(V )x�!�� TW (E[VM ]) by IHc for E[xM ], V .



Note here that the IHc is applicable since jE[xM ]j+ jV j < jE[[]M ]j+ jV j. {We now prove part a for the case where M is not a value. Case E0[xV ].TKW (E)(E0[xV ]) = x�KKW (E)(E0)�(V )!�� x�KW (E[E0])�(V ) by IHb for E, E0= TW (E[E0[xV ]]):Note that the IHb is applicable since jEj + jE0j < jEj + jE0[xV ]j. CaseE0[(�xM )V ]. TKW (E)(E0[(�xM )V ])= (�x�TKW (E)(E0[M ]))�(V )!�� (�x�TW (E[E0[M ]]))�(V ) by IHa for E, E0[M ]= TW (E[E0[(�xM )V ]]):Note that the IHa is applicable since jEj+ jE0[M ]j < jEj+ jE0[(�xM )V ]j.b. In case E0 = [] we have KKW (E)([]) = KW (E) by de�nition. CaseE0[x[]]. KKW (E)(E0[x[]]) = x�KKW (E)(E0)!�� x�KW (E[E0]) by IHb for E, E0= KW (E[E0[x[]]]):Note that the IHb is applicable since jEj + jE0j < jEj + jE0[x[]]j. CaseE0[(�xM )[]].KKW (E)(E0[(�xM )[]]) = �x�TKW (E)(E0[M ])!�� �x�TW (E[E0[M ]]) by IHa for E, E0[M ]= KW (E[E0[(�xM )[]]]):Note that the IHa is applicable since jEj + jE0[M ]j < jEj + jE0[(�xM )[]]j.Case E0[[]M ].KKW (E)(E0[[]M ]) = �x�TKW (E)(E0[xM ])!�� �x�TW (E[E0[xM ]]) by IHa for E, E0[xM ]= KW (E[E0[[]M ]]):Note that the IHa is applicable since jEj+ jE0[xM ]j < jEj+ jE0[[]M ]j.c. First note that we can only have the following cases for M : E[xU ],E[xE0[yU ]] and E[xE0[(�yM )U ]]. Case E[xU ].TW (E[xU ])�(V )x� = (x�KW (E)�(U )�(V )x�= �(V )KW (E)�(U ):In case V = y this is



= y�KW (E)�(U )= TW (E[yU ]);and in case V = �y N this is= (�`; y�:T`(N ))KW (E)�(U )!� (�y�TKW (E)(N ))�(U )!�� (�y�TW (E[N ]))�(U ) by IHa for E, N= TW (E[(�y N )U ]):Note that the IHa is applicable since jEj + jN j < jE[xy]j + j�z N j. CaseE[xE0[yU ]].TW (E[xE0[yU ]])�(V )x� = (y�KW (E[xE0])�(U ))�(V )x�= y�KW (E[xE0])�(V )x� �(U )!�� y�TW (E[V E0])�(U ) by IHd for E[xE0], V= TW (E[V E0[yU ]]):Note that the IHd is applicable since jE[xE0]j + jV j < jE[yU ]j + jV j. CaseE[xE0[(�yM )U ]].TW (E[xE0[(�yM )U ]])�(V )x�= ((�y�TW (E[xE0[M ]]))�(U ))�(V )x�= (�y�TW (E[xE0[M ]])�(V )x� )�(U )!�� (�y�TW (E[V E0[M ]]))�(U ) by IHc for E[xE0[M ]], V= TW (E[V E0[(�yM )U ]]):Note that the IHc is applicable since jE[xE0[M ]]j+ jV j < jE[(�yM )U ]j+ jV j.d. First note that we can only have the following cases for E: E[x[]],E[xE0[y[]]], E[xE0[(�yM )[]]] and E[xE0[[]M ]]. Case E[x[]].KW (E[x[]])�(V )x� = (x�KW (E))�(V )x�= �(V )KW (E):In case V = y this is = y�KW (E)= KW (E[y[]]);and in case V = �y N this is= (�`; y�:T`(N ))KW (E)!� �y�TKW (E)(N )!�� �y�TW (E[N ]) by IHa for E, N= KW (E[(�y N )[]]):



Note that the IHa is applicable since jEj + jN j < jE[x[]]j + jV j. CaseE[xE0[y[]]].KW (E[xE0[y[]]])�(V )x� = (y�KW (E[xE0]))�(V )x�= y�KW (E[xE0])�(V )x�!�� y�KW (E[V E0]) by IHd for E[xE0], V= KW (E[V E0[y[]]]):Note that the IHd is applicable since jE[xE0]j+ jV j < jE[xE0[y[]]]j+ jV j.Case E[xE0[(�yM )[]]].KW (E[xE0[(�yM )[]]])�(V )x�= (�y�TW (E[xE0[M ]]))�(V )x�= �y�TW (E[xE0[M ]])�(V )x�!�� �y�TW (E[V E0[M ]]) by IHc for E[xE0[M ]], V= KW (E[V E0[(�yM )[]]]):Note that the IHc is applicable since jE[xE0[M ]]j+jV j < jE[xE0[(�yM )[]]]j+jV j. Case E[xE0[[]M ]].KW (E[xE0[[]M ]])�(V )x�= (�y�TW (E[xE0[yM ]]))�(V )x�!�� �y�TW (E[V E0[yM ]]) by IHc for E[xE0[yM ]], V= KW (E[V E0[[]M ]]):Note that the IHc is applicable since jE[yMx]j+ jV j < jE[[]Mx]j+ jV j. �5.3. Lemma. (Substitution). Let x be not free in V . Thena. TW (M )�(V )x� !�� TW�(V )x� (MVx ).b. �(W )�(V )x� !�� �(W Vx ).c. KW (E)�(V )x� !�� KW�(V )x� (EVx ).Proof. We prove parts a-c simultaneously by induction on the following mea-sure, using the previous lemma on context unwrapping.� For part a: jM j+.� For part b: jW j+.



� For part c: jEj+.Here jM j+ and jEj+ are de�ned similarly to jM j, jEj exept that bindingoccurrences of variables now count.a. First note that we can have the following cases for M : y, x, �yM ,E[yU ], E[xU ] and E[(�yM )U ]. Case y.TW (y)�(V )x� = (Wy�)�(V )x�= W�(V )x� y�= TW�(V )x� (y):Case x. TW (x)�(V )x� = (Wx�)�(V )x�= W�(V )x� �(V )= TW�(V )x� (V ):Case �yM .TW (�yM )�(V )x� = (W (�`; y�:T`(M )))�(V )x�= W�(V )x� (�`; y�:T`(M )�(V )x� )!�� W�(V )x� (�`; y�:T`(MVx )) by IHa for M= TW�(V )x� (�yMVx ):Note that the IHa is applicable since by the de�nition of j � j+ we have jM j+ <j�yM j+. Case E[yU ].TW (E[yU ])�(V )x� = (y�KW (E)�(U ))�(V )x�= y�KW (E)�(V )x� �(U )�(V )x�!�� y�KW�(V )x� (EVx )�(U )�(V )x� by IHc for E!�� y�KW�(V )x� (EVx )�(UVx ) by IHb for U= TW�(V )x� (E[yU ]Vx ):Note that the IHc is applicable since jEj+ < jE[yU ]j+, and the IHb is appli-cable since jU j+ < jE[yU ]j+. Case E[xU ].TW (E[xU ])�(V )x�= (x�KW (E)�(U ))�(V )x�= �(V )KW (E)�(V )x� �(U )�(V )x�



!�� �(V )KW�(V )x� (EVx )�(U )�(V )x� by IHc for E!�� �(V )KW�(V )x� (EVx )�(UVx ) by IHb for U .In case V = y this is= y�KW�(V )x� (EVx )�(UVx )= TW�(V )x� (E[xU ]Vx );and in case V = �y N this is= (�y�:TKW�(V )x� (EVx )(N ))�(UVx )!�� (�y�:TW�(V )x� (EVx [N ]))�(UVx ) by context unwrapping= TW�(V )x� (E[xU ]Vx ):Note that the IHc is applicable since jEj+ < jE[xU ]j+, and the IHb is appli-cable since jU j+ < jE[xU ]j+. Case E[(�yM )U ].TW (E[(�yM )U ])�(V )x�= ((�y�TW (E[M ]))�(U ))�(V )x�= (�y�TW (E[M ])�(V )x� )�(U )�(V )x�!�� (�y�TW�(V )x� (EVx [MVx ]))�(U )�(V )x� by IHa for E[M ]!�� (�y�TW�(V )x� (E[M ]Vx ))�(UVx ) by IHb for U= TW�(V )x� (E[(�yM )U ]Vx ):Note that the IHa is applicable since jE[M ]j+ < jE[(�yM )U ]j+, and the IHbis applicable since jU j+ < jE[(�yM )U ]j+.b. Case x. Clear. Case y 6= x. Clear. Case �yM .�(�y M )�(V )x� = (�`; y�:T`(M ))�(V )x�= �`; y�:T`(M )�(V )x�!�� �`; y�:T`(MVx ) by IHa for M .Note that the IHa is applicable since by the de�nition of j � j+ we have jM j+ <j�yM j+.c. Case E[x[]].KW (E[x[]])�(V )x� = (x�KW (E))�(V )x�= �(V )KW (E)�(V )x� :In case V = y this is



= y�KW (E)�(V )x�!�� KW�(V )x� (E[y[]]) by IHc for E,and in case V = �y N this is= (�`; y�:T`(N ))KW (E)�(V )x�!�� (�`; y�:T`(N ))KW�(V )x� (EVx ) by IHc for E!� �y�TKW�(V )x� (EVx )(N )!�� �y�TW�(V )x� (E[N ]Vx ) by context unwrapping= KW�(V )x� (E[x[]]Vx ):Note that the IHc is applicable since jEj+ < jE[x[]]j+. Case E[y[]].KW (E[y[]])�(V )x� = (y�KW (E))�(V )x�= y�KW (E)�(V )x�!�� y�KW�(V )x� (E) by IHc for E= KW�(V )x� (E[y[]]):Note that the IHc is applicable since jEj+ < jE[y[]]j+. Case E[(�yM )[]].KW (E[(�yM )[]])�(V )x� = (�y�TW (E[M ]))�(V )x�!�� �y�TW�(V )x� (EVx [MVx ]) by IHa for E[M ]= KW�(V )x� (EVx [(�yMVx )[]]):Note that the IHa is applicable since jE[M ]j+ < jE[(�yM )[]]j+. Case E[[]M ].KW (E[[]M ])�(V )x� = (�y�TW (E[yM ]))�(V )x�!�� �y�TW�(V )x� (EVx [yMVx ]) by IHa for E[yM ]= KW�(V )x� (EVx )[[]MVx ]:Note that the IHa is applicable since jE[yM ]j+ < jE[[]M ]j+. �We now show that to any �-conversion step there corresponds a nonempty�nite list of �-conversion steps in the cps-translation.5.4. Lemma. (Simulation). If M !� M 0, then TW (M )!+� TW (M 0).Proof. Consider E[(�xM )V ]!� E[MVx ]. Then we haveTW (E[(�xM )V ]) = (�x�TW (E[M ]))�(V )!� TW (E[M ])�(V )x�!�� TW (E[MVx ]) by the substitution lemma 5.3.



Note that the original redex in M = E[(�xM )V ], which may have beendeep inside the term, is transported to the top level by the cps-translationTW (M ) of M .It follows from the simulation lemma that to any �-conversion there cor-responds a �nite nonempty sequence of �-conversions in the cps-translation.5.5. Addition of global control operators. The simultaneous de�nition ofTW (M ), �(V ) and KW (E) has to be extended by three additional clauses forT(): TW (E[PM ]) := T�x�:x�KW (E)(�`;z�:TW (E[z]))(M );TW (E[CM ]) := T�x�:x�W (�`;z�:TW (E[z]))(M );TW (E[AM ]) := Tk(M ); where k := �x:Ax: F! F.To see that this is a good de�nition we have to change our measure to alsocount the control constants:De�nition. (Measure).jM j := 2 � vars(M ) + cconsts(M );jEj := 2 � vars(E) + 3 + cconsts(M );where vars(�) is the total number of variable occurrences in the term or evalu-ation context �, including the bound occurrences, and cconsts(M ) is the totalnumber of control constants in M .Then the well-de�nedness of T() and K() follows fromjE[xV ]j > jEj;jE[(�xM )V ]j > jE[M ]j;jE[PM ]j > jEj; jE[z]j; jM j;jE[CM ]j > jE[z]j; jM j;jE[AM ]j > jM j;jE[x[]]j > jEj;jE[(�xM )[]]j > jE[M ]j;jE[[]M ]j > jE[xM ]j:For the extended de�nition we will need an additional lemma:5.6. Lemma. If W !� W 0, then TW (M ) !� TW 0(M ), �(W ) !� �(W 0)and KW (E)!� KW 0 (E).Proof by induction on the simultaneous de�nition of TW (V ), �(W ) andKW (E). �Again we have



5.7. Lemma. (Context unwrapping).a. TKW (E)(M )!�� TW (E[M ]), where E[�B]:A, W ::A�, M :B,b. KKW (E)(E0)!�� KW (E[E0]), where E[�B]:A, W ::A�, E0[�C]:B.Proof as before. To be able to give a proof by induction we have prove simul-taneously with parts a and b the following special cases of the substitutionlemma (to be proved in general form as our next lemma):c. TW (M )�(V )x� !�� TW (MVx ) with M = E[xN ], where x is not free in E,N and W .d. KW (E)�(V )x� !�� KW (EVx ) with E = E1[xE2], where x is not free in E1,E2 and W .We prove parts a-d simultaneously by induction on the following measure.� For part a: jEj+ jM j.� For part b: jEj+ jE0j.� For part c: jM j+ jV j.� For part d: jEj+ jV j.We just have to add two additional clauses at the end of parts a and c.a. Case E0[PM ].TKW (E)(E0[PM ]) = T�x�:x�KKW (E)(E0)(�`;z�:TKW (E)(E0[z]))(M );!�� T�x�:x�KW (E[E0])(�`;z�:TW (E[E0[z]]))(M );= TW (E[E0[PM ]]):Note that we have used the above Lemma 5.6 here. Case E0[AM ].TKW (E)(E0[AM ]) = Tk(M )= TW (E[E0[AM ]]):c. Here we have to add three more cases for M : E[xE0[PM ]], E[xE0[CM ]]and E[xE0[AM ]]. Case E[xE0[PM ]].TW (E[xE0[PM ]])�(V )x�= T�u�:u�KW (E[xE0 ])(�`;z�:TW (E[xE0[z]]))(M )�(V )x�!�� T�u�:u�KW (E[xE0 ])�(V )x� (�`;z�:TW (E[xE0 [z]])�(V )x� )(M )!�� T�u�:u�KW (E[V E0 ])(�`;z�:TW (E[V E0[z]]))(M )by IHd for E[xE0], V and IHc for E[xE0[z]], V= TW (E[xE0]Vx [PM ]):



Note that the IHd is applicable since jE[xE0]j+ jV j < jE[xE0[PM ]]j+ jV j,and the IHc is applicable since jE[xE0[z]]j+ jV j < jE[xE0[PM ]]j+ jV j. CaseE[CM ]. Similarly. Case E[xE0[AM ]].TW (E[xE0[AM ]])�(V )x� = Tk(M )�(V )x�= Tk(M ); since x is not in M= TW (E[xE0]Vx [AM ]):5.8. Lemma. (Substitution).a. TW (M )�(V )x� !�� TW�(V )x� (MVx ).b. �(W )�(V )x� !�� �(W Vx ).c. KW (E)�(V )x� !�� KW�(V )x� (EVx ).Proof. We again prove parts a-c simultaneously by induction on the followingmeasure, using the previous lemma on context unwrapping.� For part a: jM j+.� For part b: jW j+.� For part c: jEj+.Here jM j+ and jEj+ are de�ned similarly to jM j, jEj exept that bindingoccurrences of variables now count.a. Here we have to add three more cases for M : E[PM ], E[CM ] andE[AM ]. Case E[PM ].TW (E[PM ])�(V )x�= T�u�:u�KW (E)(�`;z�:TW (E[z]))(M )�(V )x�!�� T�u�:u�KW (E)�(V )x� (�`;z�:TW (E[z])�(V )x� )(MVx ) by IHa for M!�� T�u�:u�KW�(V )x� (EVx )(�`;z�:TW�(V )x� (EVx [z]))(MVx )by IHd for E and IHc for E[z]= TW�(V )x� (EVx [PMVx ]):Note that the IHc is applicable since jEj+ < jE[PM ]j+, and the IHa isapplicable since jE[z]j+ < jE[PM ]j+. Case E[CM ]. Similarly. Case E[AM ].TW (E[AM ])�(V )x� = Tk(M )�(V )x�= Tk(MVx ); by IHa for M= TW�(V )x� (EVx [AMVx ]):



We now show that in our extended setting with control operators to any �-conversion step there corresponds a nonempty �nite list of �-conversion stepsin the cps-translation, and to any control conversion step there correspondsa possibly empty �nite list of �-conversion steps in the cps-translation. Inb{d let M be of type F and k := �x:Ax: F! F.Recall again that k is a special variable to be viewed as the top continua-tion. It has type :A� if M has type A.5.9. Lemma. (Simulation).a. If M !� M 0, then TW (M )!+� TW (M 0).b. If M !P M 0, then Tk(M )!�� Tk(M 0).c. If M !C M 0, then Tk(M )!�� Tk(M 0).d. If M !A M 0, then Tk(M ) = Tk(M 0).Proof. a. Unchanged.b. We have to consider a P-conversion E[PM ]!P E[M�z:AE[z]]. Thenwe have Tk(E[PM ])= T�x�:x�Kk(E)(�`;z�:Tk(E[z]))(M ) by de�nition of T() for P= T�x�:x�Kk(E)(�`;z�:T`(AE[z]))(M ) by de�nition of T() for A= T�x�:x�Kk(E)�(�z:AE[z])(M ) by de�nition of �()= T�x�Tk(E[x�z:AE[z]])(M ) by de�nition of T()= TKk(E[[]�z:AE[z]])(M ) by de�nition of K()!�� Tk(E[M�z:AE[z]]) by context unwrapping.c. We have to consider a C-conversion E[CM ] !C M�z:AE[z]. Then wehave Tk(E[CM ])= T�x�:x�k(�`;z�:Tk(E[z]))(M ) by de�nition of T() for C= T�x�:x�k(�`;z�:T`(AE[z]))(M ) by de�nition of T() for A= T�x�:x�k�(�z:AE[z])(M ) by de�nition of �()= T�x�Tk(x�z:AE[z])(M ) by de�nition of T() and K()= TKk([]�z:AE[z])(M ) by de�nition of K()!�� Tk(M�z:AE[z]) by context unwrapping.d. We have to consider an A-conversion E[AM ]!A M . Then we haveTk(E[AM ]) = Tk(M ) by de�nition of T() for A.
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