Proofs, Lambda Terms and Control Operators

Helmut Schwichtenberg

Mathematisches Institut, Universitat Minchen,
Theresienstrafie 39, D-80333 Minchen, Germany.
email schwicht@rz.mathematik.uni-muenchen.de

The so-called continuation-passing-style translation (cps-translation) has
been introduced by Fischer [8] for the A-calculus and extended to the A-
calculus with control operators C and A by Felleisen et al. in [7]. By giving
a typing a connection with implicational propositional logic has been es-
tablished by Meyer and Wand [13] for the A-calculus and extended to the
A-calculus with control operators C and A by Griffin [10]. Griffin has shown
that all evaluations with respect to call-by-value -conversion and the stan-
dard conversion rules for C and A terminate. More precisely Griffin extends
the Meyer/Wand typing of Fischers cps-translation M of a term M to the
language involving the control operators C and A. It still holds that if M
has type A, then M has type =—A°, where A° is defined as P° := P and
(A — B)° := A° — =B° — T (which is equivalent to = B° — =A°). Griffin’s
proof of termination of evaluation is based on Plotkin’s [16] technique of the
so-called colon-translation (denoted M:V and typed by M*: V“‘Ao) and con-
text unwrapping (denoted V¥ and typed by requiring V to be of type —B°
and the evaluation context E[] to be of type B with the ‘hole’ of type A).

Here we essentially give an exposition of Griffin’s result, with some sim-
plifications and extensions based on work of Sabry and Felleisen [18]. In
particular we stress its connection with questions of termination of differ-
ent normalization strategies for minimal, intuitionistic and classical logic, or
more precisely their fragments in implicational propositional logic. We also
give some examples (due to Hirokawa) of derivations in minimal and classical
logic which reproduce themselves under certain reasonable conversion rules.

This work clearly owes a lot to other people. Robert Constable and Chet
Murthy have made me aware of the significance of Griffin’s paper. In his
thesis [14] Murthy has explored the relevance of this approach to the problem
of “Extracting Constructive Content from Classical Proofs”; I will also have
to say something about this in the introduction below. Thanks are due to
Stefano Berardi, from whom I have learned the counterexamples for classical
logic due to Sachio Hirokawa. I also would like to thank Ulrich Berger,
Ralph Matthes and in particular Felix Joachimski from Munchen, who have
contributed significantly to the present notes.

1 Introduction

It is well known that from a classical proof of Ya3y B(x,y), B quantifier-
free, one can extract a program ¢ such that Vo B(«,%x) holds. There are two
possibilities to do this (cf. [1, 2]): 1. A direct method, which uses the classical
proof and proof normalization directly as an algorithm. 2. A translation of
the classical proof into an intuitionistic one from which via a realizability
interpretation a program can be extracted. It has been shown that both
methods yield the same algorithm.

Furthermore one can try to answer the question if “programs from classi-
cal proofs” is a useful device practically. In [1, 2] the proof translation has
been applied to a simple but informative example, namely a classical proof
that w.r.t. an unbounded function f:N — I such that f(0) = 0 each n
has a root m, i.e., f(m) < n < f(m + 1) holds. This proof can be trans-
lated and a program root:N — N (depending on f) can be extracted such
that f(root(n)) < n < f(root(n)+ 1) holds for all n. It’s interesting that the
classical proof is extremely easy and short (even if fully formalized); consider-
ably shorter than the intuitionistic proof one would give intuitively. However
the extracted program is unnecessarily complicated. This can be taken as
a motivation to study refinements of the proof translation yielding simpler
programs.

Program extraction can be messy for mainly two reasons: 1. A completely
formalized proof, using the basic axioms of arithmetic only, will in general
be extremely long. This can be remedied by introducing additional global
assumptions which are of such a form that they do not spoil the extraction.
2. When translating a classical derivation into an intuitionistic one, each
atomic formula P is replaced by (P — A) — A, where A is the existential
formula we want to prove. Thus existential formulas are spread all over the
derivation and therefore each subderivation gets computational content. This
means that the extracted program will be at least as long and complicated
as the proof. Furthermore one has to pay for the additional assumptions
introduced in 1., since their translations have to be proved. In general, these
proofs use case splittings which later show up in the program.

In [1, 2] a refined proof translation has been proposed which does not
replace all atoms P by (P — A) — A. By a simple syntactical analysis of
the assumptions used in the derivation one can determine a set of critical
atoms which suffice to be replaced in order to make the translation work.
This refined translation simplifies the resulting programs drastically.

Another interesting example of a classical existence proof (for a formula
with a quantifier-free kernel) which does not obviously contain an algorithm
has been suggested by Yiannis Moschovakis: the ged of two natural numbers
a1 and as 1s a linear combination of the two. The usual classical proof 1s quite
short and elegant: The ideal (aj, a2) generated from a;, as has a least positive
element, since 0 < as. This element has a representation abs(kia; — kaas)

with k1, k2 € N. Tt is a common divisor of a; and as (since otherwise the
remainder of its division by a; would be a smaller positive element of the
ideal), and it is the greatest common divisor (since any common divisor of a;
and as must also be a divisor of abs(kja; — k2as)). — It turns out that in this
example only the divisibility relation -|- will be critical in the sense above. We
have actually carried out the program extraction first by hand and then by
the machine in the interactive prover MINLOG under development in Munich.
The extracted program is quite short, but somewhat different from Euklid’s
algorithm; see [3].

It would be interesting to see if this refined method can be applied suc-
cessfully to larger examples too. A candidate might be the classical proof of
Higman’s Lemma by Higman [11] and Nash-Williams [15]. This proof has
been translated and implemented in the Nuprl system by Murthy [14]. Tt is
not known how the translated proof (which is extremely big) is related to the
known constructive proofs of Higman’s Lemma by Schiitte and Simpson [19]
and Coquand [5]. A refined translation might help answering this.

In these notes we will not go any further into these matters, but rather ex-
plore another aspect of the computational content of classical proofs, namely
its relation to non-local control operators in functional languages (like the
well-known call/cc in SCHEME). We will try to bring out the close connec-
tion to standard axiom schemes for classical logic like the stability scheme or
the Peirce scheme. We will prove in detail that any evaluation sequence of a
simply typed scheme program terminates.

To make the material accessible to a mixed audience we start from scratch.
We begin with the simply typed A-calculus, which is the simplest setting for
proofs with ‘computational content’. The logical system corresponding to it is
minimal propositional logic with implication — as the only logical connective,
and the computational content is given by f-conversion. We present Tait’s
proof of strong normalization, in a form which avoids informal arguments
concerning reduction sequences. This makes it easy to formalize the proof,
and to generalize it to more complex systems.

We then show how intuitionistic and classical logic can be embedded into
minimal logic, again for simplicity in the implicational fragment of proposi-
tional logic. Intuitionistic logic is obtained by adding the ex-falso-quodlibet
scheme F — A, and classical logic by adding the stability scheme = =4 — A,
where —A abbreviates A — F. Here falsity F is just a special propositional
symbol. Writing - (;, k) for derivability in minimal (intuitionistic, classi-
cal) logic one can prove the following simple facts.

A formula A is called negative if any propositional symbol in A (different
from F) occurs negated. For negative A we have - == A — A. For arbitrary
formulas this does not hold, since e.g. I/ ==p — p (p a propositional symbol).
We consider different translations 4 — A’ such that -, A — A’ and . A iff
F A. The Godel-Gentzen negative translation ¢ is defined by

p’ = —p,

Ff = F,
(A—B)yY = A% — BY.

Furthermore we define p* := p, (4 — B)* := =B* — =4" and p° := p,
(A — B = A° - =B° — F. ThenF;, A — A% — A* — A° and
FoA —=FA <=FA —=FA°

It has been observed by Meyer and Wand [13] that if M: A is a simply typed
A-term, then Fischers cps-translation M of M can be typed by M:——A°.
Griffin observed that this corresponds to a logical embedding. To see this
note that F, A <= F A°, hence F, A <= ==A° since A° is negative (if
composed) and hence - ==A° — A°. So we see that from the logical point
of view this embedding is something like an overkill, since it introduces more
negations than necessary.

We also have -, = A iff F; = A (Kuroda [12]). The latter is false if F; is
replaced by F, since e.g. i/ ==(——p — p).

We then discuss the status of a special case of the Peirce scheme, namely
P:(—mA— A)— A

The general Peirce scheme ((A — B) — A) — A can be obtained from it by
replacing falsity F in =A by an arbitrary formula B. On the basis of minimal
logic it 1s weaker than stability, for we have

F(==p—p)— (-p—p) —p,
¥ [(=p — p) — p] = —=p —p.

If, however, we add ex-falso-quodlibet, then the converse holds:
F(F —p)—=[(=p—p)—pl—~p—p

We then show that some ‘reasonable’ simplification rules for derivations in-
volving the Peirce scheme and the ex-falso-quodlibet scheme or else the sta-
bility scheme lead — together with g-conversion — to non-termination. These
counterexamples are due to Hirokawa.

In order to find computational content in simply typed A-terms/proofs
involving A, P and C we discuss global control operators in functional lan-
guages. First we fix a deterministic strategy for normalizing (or evaluating)
A-terms, the so-called call-by-value strategy. To formulate it we use evalu-
ation contexts of Felleisen et al. [7]. We then explain the call-with-current-
continuation operator P (well-known from the Lisp dialect SCHEME), the
abort operator A and Felleisen’s control operator C. For P we give some pro-
gramming examples. These operators also make sense in a type-free setting.
Following Griffin [10] we then show that the operators P, A and C can be
typed by the Peirce-, ex-falso-quodlibet- and stability-schemes, respectively.
So we have a computational meaning of these schemes, and we may try to use

that as a criterium to decide which simplification rules for proofs we should
accept.

Based on Griffin’s work we then show that the simply typed A-calculus
extended by the P, A and C operators enjoys termination with respect to the
call-by-value strategy. The proof involves a cps-translation into the simply
typed A-calculus and uses strong normalization for the latter. We first intro-
duce a cps-translation for the simply typed A-calculus and then extend it to
the language involving P, A and C.

2 The simply typed lambda calculus

We first recall Gentzen’s natural deduction system, for simplicity restricted
to the implicational fragment of propositional logic. We present Tait’s proof
of strong normalization, in a form which avoids informal arguments concern-
ing reduction sequences. This makes it easy to formalize the proof, and to
generalize it to more complex systems.

2.1. Natural deduction. As our deductive formalism we use the system of
natural deduction introduced by Gerhard Gentzen in [9]. In our implicational
fragment of propositional logic it consists of the following introduction and
elimination rules for —.

For any formula A let countably many assumption variables of type A be

given. We use u?, v, w? to denote assumption variables of type A.

The notions of a derivation term d* in minimal logic and its set FA(d*)
of free assumption vartables are defined inductively by

(A) u? is a derivation term with FA(u?) = {u?}.
(—71) If dP is a derivation term, then
(At dB)A—E
is a derivation term with FA(Au? dB) = FA(d?)\ {u?}.
(—7) If d*~8 and e# are derivation terms, then
(dA—BeA)B
is a derivation term with FA(d4~Be4) = FA(dA~5) U FA(e?).

It is sometimes useful to display derivation terms in the following graphical
fashion. (—7):
u: A

| |
A— B A

B

—

A derivation term d? is called closed, if FA(d4) = (). We write
dPlufr, . . ule]

if the assumption variables free in d? are in the list u’fl, o uln . We also
use the notation d: A instead of d*.

Definition. A formula A is called derivable from assumptions Ay, ..., Ay,
if there is a derivation term d? [u‘fl, ..., u*] with different assumption vari-
ables u‘fl, o ule

Let T be a (finite or infinite) set of formulas. We write T' - B, if the
formula B 1s derivable from finitely many assumptions Aq,..., A, € I'. The
‘m’ here stands for minimal logic.

2.2. Strong normalization. We show in this subsection that any derivation
d can be transformed by appropriate conversion steps into a normal form. A
derivation in normal form has the property that it does not make “detours”,
or more precisely, that it cannot occur that an elimination rule immediately
follows an introduction rule. Derivations in normal form have many pleasant
properties, and can be used for a variety of results.

The arguments in this subsection apply to derivations as well as to terms
of the simply typed A-calculus, which are essentially the same. So let us first
introduce the latter.

Let GG be a set of ground types (e.g. nat and boole). Types (also called
object types or simple types) are formed from G by the operation p — o.
For any type p let a countable infinite set of variables of type p be given. We
denote variables of type p by z”,y”,

We define inductively terms M? of type p and the set FV(M*) of variables
free in M7”.

e 2’ is a term of type p, FV(z?) = {«"}.

o If M is a term of type o, then Az’ M is a term of type p — o.
FV(Az? M) = FV(M)\ {«"}.

e If M is a term of type p — o and N is a term of type p, then M N is a
term of type 0. FV(MN) = FV(M)UFV(N).

For the arguments in this subsection it is convenient to use the following
notation.

e Terms are denoted by M, N, K,
e x,y,z...denote assumption variables as well as object variables.
e We identify terms differing only by the names of their bound variables.

e p,0,7... denote formulas as well as types, and ¢ denotes atomic for-
mulas or F as well as ground types. p — o denotes function types as
well as implications. It is also useful to require that — associates to
the right.

We use M2 to denote the usual substitution operation.

We now define a conversion relation M —q M’ between terms.

Definition. M —y M’ is defined by
(Ax M)N —¢ MY, (8)

A term M is called 8-convertible if it has the form of a left hand side of (7).
Such terms are also called f-redex (for reducible expression).

From —(one derives a one-step reduction relation —4 as follows. Intu-
itively M —3 M’ means that M’ is obtained from M by converting exactly
one subterm.

Definition. M —5 M’ is defined inductively by

MM = M —g M,
M—sM = XeM—sIzM,
M—sM = MN —3M'N,
N—sN = MN—zMN'"

Definition. A term M is S-normal if M has no 3-convertible subterm.

Hence a term M is S-normal if and only if M contains no subterm M’
such that M —z M’'. We now show that —5 is terminating, i.e. that any
reduction sequence starting with M terminates after finitely many steps. By
a reduction sequence we mean a (finite or infinite) sequence

My, Ms, ..., M,,...

such that M;, arises from M; by a fG-conversion of a subterm, i.e. M; —5
Mit1. We write M —>Z; M’ (or M —>2{ M’y if M’ is a member of a reduction
sequence (a reduction sequence with at least two elements) starting with M.
Hence —>’[§ is the reflexive transitive closure of —4.

To prove termination of —5 we make use of a method due to W.W. Tait
and define so-called strong computability predicates. We present the proof

here in a form which avoids intuitive arguments concerning reduction se-
quences and therefore is suitable for formalization in a theory of inductive
definitions.

We begin with a definition of strongly normalizable terms, by a strictly
positive induction.

Definition. If all M’ such that M —s M’ are strongly normalizable (sn),
then so is M.

Obviously M is sn if and only if any reduction sequence starting with M
terminates after a finite number of steps. This can be seen as follows. —-.
Induction on the definition of ‘strongly normalizable’. Consider a reduction
sequence starting with M and therein the first reduct M’. The IH for M’
yields the assertion. <. By induction on the length of the longest reduction
sequence (Konig’s Lemma).

We note a number of the properties of the notion ‘strongly normalizable’,
to be used below.

If all terms M are sn, then so is 2 M. (1)

Proof. Induction on the definition of sn for M. Let 2 M —5 N be given. It
suffices to show that N is sn. From zM —p N it follows that N = xM’,
where M’ arises by substitution of M; by M/ with M; —g M/. It is to be
proved that M’ is sn. This follows from the TH for M’.

If Mz is sn, then so is M. (2)

Proof. Induction on the definition of sn for Mx. Let M —3 M’ be given. It
suffices to show that M’ is sn. From M —s M’ we get Mz —g M'z. The
IH for M’z then yields that M’ is sn.

We now define when a term M? is strongly computable (sc), by induction
on the type p.

Definition.
o M* is sc if M* is sn.
o MP™7 jssc if for any sc N* also (M N)? is sc.

A term M is called strongly computable under substitution if for any sc terms
N also Mxiv is sc.

We note a property of the notion ‘strongly computable” which will be used
below.
M 1is sc if and only if M N is sc for all sc N. (3)

Proof. Induction on the length of N.

2.3. LEMMA.

a. Any sc term MP? is sn.

b. If M are sn, then (xM)p is sc.

Proof by simultaneous induction on the type p. Case ¢. a. By definition. b.
By (1).

Case p — o a. Let M*~% be sc. By IHb (with M empty) and the
definition of strong computability (M «)? is sc. By IHa Mx then is sn. By
(2) M is sn too. b. Consider (J:M)p_”’ with M sn. Let N? be sc. We have
to show that (xMN)U is sc. By IHa N is sn, hence 2 M N is sc by [Hb. O

If M —5 M’ and M is sn, then by the definition of strong normalizability
also M’ is sn. We now show that the corresponding assertion is also valid for
strong computability.

2.4. LEmMA. If M —3 M’ and M is sc, then so is M'.

Proof. We use (3). Let N be alist of sc terms such that M N is of ground type.
Then M N is sc by (3), hence also sn. Furthermore we have MN —3 M'N.
By definition of strong normalizablility M'N is sn. Thus by (3) M"issc. O

2.5. LEMMA. Let N be sn. If Mévf is sn and of a ground type, then so is
(Az M)NL.
Proof by induction by the definition of strong normalizability for N and

Mévf So we consider all the reducts K of (Az M)NE Clearly 1t suffices to
show that any such K is sn.

Case K = MM L, i.e. we have an outer B-conversion. Hence K is sn by
assumption.

Case K = (Ax M’)NE with M —3 M’. Then we have MNL —3 ML
By definition of strong normalizability M’Jxvf is sn. Hence by IH K 1is sn.

Case K = (Ax M)N’E with N —g N'. Then we have MNL —% MN'L.
By definition of strong normalizability Mé\ﬂf and N’ are sn. Hence by IH K
is sn.

Case K = (Ax M)NE’ with L; —g Lj for i and L; = L for j # i. Then
we have MN L —3 MNT'. By definition of strong normalizability MY L' is
sn. Hence by IH K is sn. a

2.6. CorROLLARY. If MY is sc for all sc N, then also Az M is sc.

Proof. Let M be sc for all sc N. We have to show that Az M is sc. So let
N and L be sc such that (Az M)NL is of ground type. We must show that

(Ax M)NE is sc. Since M} is sc by assumption, Mévf is sc too and hence
also sn. Since by Lemma 2.3a N is also sn, by Lemma 2.5 it follows that
(Az M)N L is sn and hence also sc. O

2.7. LEMMA. Any term M is sc under substitution.

Proof by induction on M. Case z. The claim follows from Lemma 2.3b or
by assumption.

Case MN. K be sc. We have to show that M§N§ are sc. This clearly
holds, since by TH fo(as well as Nxf(are sc.

Case At M. K be sc. We have to show that Az ng 1s sc. We now

apply Corollary 2.6. Let N be sc. By IH for M also Miv’x.k is sc. Hence by
Corollary 2.6 the claim follows. a
From Lemma 2.7 and Lemma 2.3 we directly get

2.8. THEOREM. —g Is terminating, i.e. any term M is sn. a

This proof can easily be extended to terms with pairing (My, M1} and pro-
jections mo(M), m1(M). Tt can also be extended to terms that are built with
primitive recursion operators (see for example Troelstra [6, 25] or Schwicht-
enberg [20]), the general recursion operator or the fixed point operator (see
Plotkin [17]) or the bounded fixed point operator (see Schwichtenberg/Wainer
21]).

One can also show that the normal form is uniquely determined. A sim-
ple proof which uses the technique of parallel reduction (originating from

W.W. Tait) has recently been published by Takahashi in [23].

3 Logical embeddings

We now show how intuitionistic and classical logic can be embedded into
minimal logic, again for simplicity in the implicational fragment of proposi-
tional logic; a more complete treatment can be found in [24]. Intuitionistic
logic 1s obtained by adding the ex-falso-quodlibet scheme F — A, and clas-
sical logic by adding the stability scheme =—A — A, where = A abbreviates
A — F. Alternatively one can also obtain classical logic by adding the Peirce
schema (mA — A) — A plus the ex-falso-quodlibet scheme F — A to minimal
logic. We then show that some ‘reasonable’ simplification rules for deriva-
tions involving the Peirce scheme and the ex-falso-quodlibet scheme or else
the stability scheme lead — together with [-conversion — to non-termination.
These counterexamples are due to Hirokawa.

3.1. Embedding classical and intuitionistic logic into minimal logic. Deriva-
tion terms in intuitionistic and in classical logic are obtained by adding to
the first (assumption-) clause of the definition

e in the case of intuitionistic logic: For any propositional symbol p we let
Ap:F —p
be a derivation term with FA(A,) = 0 (Ex-falso-quodlibet axiom).

e in the case of classical logic: For any propositional symbol p we let
Cp: ——p—=p
be a derivation term with FA(C,) = 0 (Stability axiom).

Here falsity F is just a special propositional symbol, and —A abbreviates
A — F. Wewrite ' = A (' k; A, Tk, A), if there is a derivation term d4
in minimal (intuitionistic, classical) logic such that for any u? € FA(d) we
have B € T

By obvious reasons the stability axiom is also called the principle of indi-
rect proof for the propositional symbol p. We now want to show that from
our stability axioms we can derive the principle of indirect proof for arbitrary
formulas (in our —-language).

3.2. LEMMA. (Stability Lemma). From stability assumptions C, for any
propositional symbol p occurring in a formula A we can derive =—A — A.

Proof by induction on A. Case p. Use Cp.
Case F. --F—=F=(F—=F)—=F)—F

(F—>F)—>F F—F
F

Case A — B. Use
I—(—|—|B—>B)—>—|—|(A—>B)—>A—>B,

It can be derived by

v:A— B A
u: B B

~~(A — B) ~(A—B) ' O
F
--B—B ——B
B

U

Similarly we can show that from our ex-falso-quodlibet axioms we can
derive ex-falso-quodlibet for arbitrary formulas (again in our —-language).

3.3. LEMMA. (Ex-falso-quodlibet Lemma). From assumptions A, for any
propositional symbol p occurring in a formula A we can derive F — A in
intuitionistic logic.

Proof. By induction on A. a
From == A — A one can clearly derive F — A. Hence any formula deriv-
able in intuitionistic logic is also derivable in classical logic.
Having defined classical and intuitionistic logic, we now want to derive
some embedding results.

Definition. A formula A is negative if any propositional symbol in A (dif-
ferent from F) occurs negated.

If one extends this notion to first order logic, then one also has to require
that V,3 do not occur in A.

3.4. LEMMA. For negative A we have F == A — A.

Proof. This follows from the Stability Lemma, using = =—=p — —p; here is

a derivation of it:
u: —p p

F

N.B. t/ =—p —p.

Definition. (Gédel-Gentzen negative translation ¢).

p’ = —p,
Ff = F,
(A—B)yY = A% — BY.

3.5. THEOREM. For all A,
a. k. A A9,
b. T'F. AffT9F A9,

Proof. a. Clear. b. <. Clear by a. =—. By induction on the classical
derivation. Case Cp. (m—p — p)d = =———p — ——p, which is easily derivable.
Case —T1. Assume

u: A

Then by TH

we A9 u: A9
| and hence |
o ;2
A9 —ps — U
Case —~. Assume | |
A—B A
B
Then by TH
| | | |
A9 s BY A9 and hence g7 _. B¢ A d
-

B9

3.6. COROLLARY. For negative A we have -, A iff = A.

Proof. By the theorem ., A iff F AY9. Since A is negative, any atom # F
in A is negated and hence appears in A9 under a triple negation (as ——-p),
and F ———p — —p. a

N.B. tf ==p — p, hence the corollary does not hold for all formulas A.

3.7. COROLLARY. Let A* be defined by p* := p and (A — B)* := -B* —
—A*, and A° be defined by p° := p and (A — B)® := A° — -B® — F. Then

F. A < F A" <—F A°.

Proof. Case x. For an atom p both sides are false, and for A composed A* 1s
negative, and clearly . A — A*. Case o. Clearly - A* — A°. |

Remark. Tt has been observed by Meyer and Wand [13] that if M: A is a
simply typed A-term, then Fischers cps-translation M of M can be typed
by M:—=A°. Griffin observed that this corresponds to a logical embedding.
To see this note that by what we just proved . A iff b A° hence . A iff
F —=—=A° since A° is negative (if composed) and hence F ==4° — A°. So
we see that from the logical point of view this embedding i1s something like
an overkill, since by what we have proved it introduces more negations than
necessary.

We now give the Kuroda interpretation. First note that

but

For example, a derivation for (4) is

u:—q q
F v
F
F
—|—|q

A derivation for (5) can be obtained similarly. Hence we have

3.8. CoroLLARY. (Kuroda [12]). For all A we have . ~A iff -; = A.

Proof. <—=. Clear. =—. Assume I, =A. Then I, =A9. Since AY is negative,
by the corollary above - =AY, Using (6) we can push the == outside (we
need = ==F «— F here; cf. the proof of the Stability Lemma) and obtain
F; =-—=—A, hence ; - A. O
N.B. tf ==(==p — p), hence Corollary 3.8 does not hold for - instead of F;.

Finally we discuss the status of a special case of the Peirce scheme, namely
P:(—mA— A)— A

The general Peirce scheme ((A — B) — A) — A can be obtained from it by
replacing falsity F in =A by an arbitrary formula B. On the basis of minimal
logic it 1s weaker than stability, for we have

F(==p—p)—=(p—p) —p
7 (-p—p) —pl——p—p
If, however, we add ex-falso-quodlibet, then the converse holds:
F(F —p)—=[(=p—p)—pl—~p—p

Hence we could also define classical logic by adding to minimal logic the
ex-falso-quodlibet axioms as well as the Peirce scheme. In fact, it suffices to
add the Peirce axioms (-p — p) — p for all propositional symbols p # F.

3.9. Counterexamples for classical logic. Counterexamples for classical logic
have been given by Sachio Hirokawa; I have learned them form Stefano Be-
rardi (personal communication). To obtain the first example we use our
special case of the Peirce formula, i.e. P: (-4 — A) — A. For derivations

involving P, the conversion rule (P-rule) mapping

| N
- A A
F
mnto
| N | M
| M A A —A
- A A
F

is correct. The corresponding derivation term is
M(PN) —p M(NM).

To formulate the counterexample we introduce some abbreviations. Let
K = Audvu =: du,v.u and N = Az.zw with a free parameter w. The
counterexample is K(PN)(PN), which can be typed by

P:(F—F)—TF)—F,
K:F—=F—=F,
N:(F—TF)—TF,

w: F.

It is a counterexample, for we have

K(PN)(PN)
—p K(PN)[N{K(PN)}] by the P-rule with M := K(PN)
—p K(PN)[K(PN)w]
—g K(PN)(PN)

or more explicitely

(Au, v.u)(P(Az. zw))(P Az.zw
—p (Au,v.u)(P(Az.zw))
=5 (Au,v.u)(P(Az.zw))

=5 (Au,vu)(P(Az.zw))[P(Az.2w

Hence we have reproduced the original term.

From this we can also obtain a counterexample for the language involv-
ing stability C: == A — A instead of the Peirce formula P. For derivations
involving C the following conversion rule is correct.

| M ur A

C:—mA— A -—A | G
A —c | M F (C-rule)

| G ——A —A

F F

The corresponding derivation terms are
G[CM] —¢ M(AuGlu]).

Here GG is an ‘application context’; in particular, free assumption variables
should not be bound in G, for otherwise the resulting derivation would contain
these assumption variables free.

First note that it is easy to derive P form C:

v:i—=A— A u:—A
u:—A A
F
C:/——A— A ——A
A v
(mFA—=A4)— A

U

The corresponding derivation term is
P = Av.Chu.u(vu).
It turns out that with this definition we can derive the P-rule from the C-rule:

M(PN) = M(([Av.Chuu(vu)]N)
—g M(Cluu(Nu))
—c¢ (Auu(Nu))(Ae.Mz)
—5 (Az.Mz)(N(Az.Mz))
—5 M(N(Az.Mz)),
which is the right hand side of the P-rule up to n-expansion of the final M.

Hence 1t is not surprising that we obtain the following counterexample for
derivations involving C instead of P. We use the abbreviations

P o= dv.Cilu.u(vu),
K = Jludvu,
N = Az.zw with a free parameter w.

Then the counterexample again is K(PN)(PN), which can be typed as be-
fore. It is a counterexample, for we have

K(PN)PN) = K(PN)([Av.Cruu(vu)]N)
—g K(PN)(Clu.u(Nu))
= G[CM] with G := K(PN)[], M := Au.u(Nu),
—c¢ M(Ax Glz))
= (Auu(Nuw)(Az.K(PN)z)
—g (Az.K(PN)x)[NAx K(PN)x]

—g K(PN)[NAz.K(PN)z] using call-by-name
—g K(PN)[(Az.K(PN)x)w]

—g K(PN)[K(PN)w]

—g K(PN)(PN).

Hence we have seen that a reasonable conversion rule for C together with 5-
conversion (allowing call-by-name) leads to non-termination of the classical
implicational calculus.

Note that the C-rule is applied here in a context M;(CMs). This seems to
be responsible for non-termination; c¢f. Gunnar Stalmark [22].

4 Global control operators

In order to find computational content in simply typed A-terms/proofs in-
volving A, P and C we now discuss global control operators in functional
languages. We fix the call-by-value strategy for normalizing (or evaluating)
A-terms. To formulate it we use evaluation contexts of Felleisen et al. [7]. We
then explain the call-with-current-continuation operator call/cc or P (well-
known from the Lisp dialect SCHEME), the abort operator A and Felleisen’s
control operator C. For P we give some programming examples. These op-
erators also make sense in a type-free setting. Following Griffin [10] we then
show that the P, A and C operators can be typed by the Peirce-, ex-falso-
quodlibet- and stability-schemes, respectively. So we have a computational
meaning of these schemes, and we may try to use that as a criterium to decide
which simplification rules for proofs we should accept.

4.1. Evaluation contexts. Type-free A-terms are defined by
M:u=z|XaM|MM.

Terms of the form Az M are called abstractions; variables and abstractions are
called values and will be denoted by U, V,TW. A term of the form (Az M)V
with a value V 1s called a f,-redex. A natural call-by-value strategy to
evaluate closed terms takes the leftmost 3,-redex not within an abstractions
and converts it. Felleisen et al. [7] have introduced the notion of an evaluation
contexrt to deal conveniently with this situation. In this subsection we study
evaluation contexts in some detail.

First note that any term M is either a value V, or it has a uniquely
determined leftmost position not under a lambda-abstraction of the form
V1 Vs. Examples:

Ty

z(Ayy),

The ‘rest’ of the term 1s an evaluation contexrt which can be defined in-
ductively by

Definition. (Evaluation context).
E:=[|VE|EM.

If F is an evaluation context, then E[M] denotes the result of replacing
the ‘hole’ [] in E by the term M.

4.2. LEMMA. Any term M can be written uniquely in the from V or E[V1 V5].

Proof. Existence. By induction on M. It clearly suffices to consider the case
MN.Incase M = Vusethe IHfor N. IfN =V let £ =[]. f N = [V} V5]
let ' =VE. Incase M = E1[V1V2] let E = E1N.
Uniqueness. By induction on M. It again suffices to consider the case
MN. So assume
MN = E[WVs] = E'[V]V]].

Case B =1[]. f B/ =[], then V1 V2 = V/'V{ and hence Vi = V{ and V, = V5.
If B/ = V'EY{, then ViV, = V' E{[V/V]]. But then Vo = E{[V/VY], which is
impossible. If B/ = F{ N, then V1V, = E{[V/VJ]N. But then V; = E{[V{ V3],
which is impossible.

Case E = VE;. By symmetry reasons we may assume E' # []. If
E' = V'E{, then MN = VE [WV:] = V'E{[V/V]] and hence V = V'
and F1[ViVa] = E{[V{V4] = N. The IH for N yields £y = F{, V3 = V/
and Vo = VJ. If B/ = E{N', then VE1[WV3] = E{[V{V]]N’ and hence
V = E{[V{ V4], which is impossible.

Case £ = E;N. By symmetry reasons we may assume B’ # [] and
E'# V'EL. Solet B/ = E{N'. We obtain MN = Ei[ViVa]N = E![VIVIIN'.
But then N = N/ hence M = E1[V1 V3] = E{[V{V{], and the TH for M yields
the claim. d

4.3. LEMMA. FE[P'] is an evaluation context.

Proof by induction on E. Case []. Clear. Case VE,. Then (VE)[E'] =
VE;[E'] and the claim follows from the TH. Case FyM. Then (E1M)[E'] =
FE1[E']M and the claim again follows from the TH. O

Sabry and Felleisen [18, p. 16] give a different but equivalent definition of
evaluation contexts, which will be useful later.

Definition. (Sabry/Felleisen evaluation context).

Fa={1FVIFIM].
4.4. LEMMA. F[F"] is an evaluation context in the sense of Sabry/Felleisen.

Proof by induction on F'. Case [|. Clear. Case F[V]]]. We must show that
F[V[F']] is again an evaluation context (in the sense of Sabry/Felleisen).
The TH for VT[] yields that V[F'] is an evaluation context. The TH for F
yields that F[V[F]] is an evaluation context. Case F[[JM]. We must show
that F[[F'|M] is again an evaluation. The TH for [|M yields that [F']M is
an evaluation context. The IH for F' yields that F[[F']M] is an evaluation
context. d

4.5. LEMMA.

a. Any F is an F.
b. Any E is an F'.

Proof. a. By induction on F. Case [|. Clear. Case F[V[]]. By IH F is an
E. We must show that E[V[]] is an E’. But this follows from the Lemma 4.3
concerning substitution of E’s. Case F[[JM]. By IH F is an E. We must
show that E[[]M]is an E’. But this again follows from Lemma 4.3.

b. By induction on E. Case []. Clear. Case VE. By IH EF is an F'. We
must show that VF is an F’. But this follows from Lemma 4.4 concerning
substitution of F’s. Case EM. By IH E i1s an F'. We must show that F' M
is an F’. But this again follows from Lemma 4.4. d

Because of this coincidence we will use F also for evaluation contexts in
the sense of Sabry/Felleisen.

4.6. LEMMA. Any term M can be written uniquely in the form E[V] with
E # E'[[]N] (i.e. the hole [] in E is not the left hand side of an application).

Proof. Clearly we may assume that M is not a value.

Existence. By Lemma 4.2 M is of the form M = E'[V1V5]. Take E :=
EA(]-

Uniqueness. Assume M = E[V] = BE'[V']. Again F = Ej[Vi[]] and
E' = E{[V/[]], hence E[V] = E1[VWV] and E'[V'] = E{[V{V']. So we have

Ey[ViV] = Ef[ViV]

and therefore by Lemma 4.2 £; = E, V3 = V{ and V = V’'. But then
E = FE' follows. O

Later we will also need

4.7. LEMMA. Any evaluation context E can be written uniquely in one of
the forms

0, El=0], El(rzM)[]), E[]M].

Proof. Existence. This follows immediately from Sabry/Felleisen’s charac-
terization of evaluation contexts.

Uniqueness. This is clear, since there is a unique hole [] in E, and [] (in
case £ # []) is either the right hand side or else the left hand side of an
application. a

Since by Lemma 4.6 any closed non-normal term can be written uniquely in
the form E[(Az M)V], we can express call-by-value f-conversion conveniently
as

El(Ax M)V]— E[M)].

If MY is not a value, then any further computation step can only take place
within MY . Hence, in a precise sense, £ represents the rest of the compu-
tation (or continuation) still to be done after the evaluation of (Az M)V is
complete. So the notion of an evaluation context makes it possible to formu-
late precisely the effect of program constructs that deal with global control,
such as call/cc in SCHEME. To these we turn next.

4.8. Manipulating continuations. In the programming language SCHEME
the call/cc construct (call/cc proc) is informally described as follows (in
the Revised? Report [4]). “The procedure call/cc packages up the current
continuation as an ‘escape procedure’ and passes it as an argument to proc.
The escape procedure is a SCHEME procedure of one argument that, if later
passed a value, will ignore whatever continuation is in effect at that later
time and will give the value instead to the continuation that was in effect
when the escape procedure was created”.

We now give some simple example programs involving call/cc.

(define (occurs? var term)
(call/cc
(lambda (return) ; return is the continuation; calling
; return with one argument has the effect that the result
; will be returned immediately as the result of the
; call/cc expression
(let occurs-help ((term term))
(cond ((variable? term)
(if (eq? var term)
(return #t)))
; 1f found, return #t immediately
((fct-app-form? term)
(for-each occurs-help

(fct-app-form-to-args term)))

((app-form? term)

(occurs-help (app-form-to-op term))
(occurs-help (app-form-to-arg term)))
((lambda-form? term)

(if

(not (eq? var (lambda-form-to-symbol term)))

(occurs-help (lambda-form-to-kernel term)))))

#£))))

(define (unify terml term2)
(call/cc
(lambda (return)
(do ((x (1list empty-subst terml term2)
(let* ((subst (car x))
(t1 (cadr x))
(t2 (caddr x))
(p (disagreement-pair t1 t2)))
(if (not p)
(return subst)
(let ((1 (car p)) (r (cadr p)))
(cond
((and (variable? 1)
(not (occurs? 1 r)))
(1ist (extend subst 1 r)
(term-substitute
t1 (list p))
(term-substitute
t2 (list p))))
((and (variable? r)
(not (occurs? r 1)))
(1ist (extend subst r 1)
(term-substitute
t1 (list (reverse p)))
(term-substitute
t2 (list (reverse p)))))
(else (return ’no))))))))
(#£)))))

The procedure prod expects a list argument and forms the product of the
elements of the list. If one of the elements is 0, it returns 0 immediately.

(define (prod 1)
(call/cc
(lambda (return)
(let aux ((x 1))

(cond ((null? x) 1)
((zero? (car x)) (return 0))
(else (* (car x) (aux (cdr x)))))))))

A continuation-passing-style version of prod is

(define (prod-cps 1)
(let aux ((x 1)
(k (lambda (y) y)))
(cond ((null? x) (k 1))
((zero? (car x)) 0)
(else (aux (cdr x)
(lambda (y) (* (car x) (k y))))))))

We will also deal with an abort operator (e.g. error in most implemen-
tations of SCHEME), which throws away the current continuation and imme-
diately returns its argument. Finally, we will also discuss a control operator
introduced by Felleisen. Its effect is very similar to that of call/cc. How-
ever, it also throws away the continuation in effect when it is called, and
returns immediately.

To deal with these constructs in our present setting, we extend our notion
of a term by adding the global control operators P, C and A. We view these
operators not as separate values but rather as term constructors. Hence we
extend our definition of a term as follows.

M=z |XaM|MM|PM|CM | AM.
The notion of a value remains unchanged
Vi=a| e M,

and also the definition of evaluation contexts stays the same.

We now have to extend our lemmata concerning unique representations of
terms to the extended language. To Lemma 4.2 there corresponds

4.9. LEMMA. Any term M can be written uniquely in one of the forms V,
E[ViVs], E[PM], E[CM] or E[AM)].

Proof. Existence. By induction on M. It clearly suffices to consider the case
MN. In case M = V use the IH for N. If N = V; let F = []. If N has one of
the forms E1[ViVa], E1[PM], E1[CM] or E1[AM] let E = VE;. In case M
has one of the forms By [V1Va], E1[PM], E1[CM] or E1[AM] let E = E1N.
Uniqueness. By induction on M. It again suffices to consider the case
MN. The proof proceeds just as for Lemma 4.2; one only has to consider
some more cases. O

To Lemma 4.6 there corresponds

4.10. LEMMA. Any term M can be written uniquely in one of the forms
E[V], E[PM], E[CM] or E[AM] with E # E'[[|N] (i.e. the hole [| in F is
not the left hand side of an application).

Proof. Just as for Lemma 4.6; one again only has to consider some more
cases. |

The conversion rules for P, C and A can now be formulated:
E[PM] —p E[MXz. AE[Z]],
E[CM] —¢ MAz AE[Z],

Clearly these conversion rules express what we informally have said before.

4.11. Typing the conversion rules for control operators. The conversion rules
for P, C and A are

E[PM] —p E[MXz. AE[Z]],

E[CM] —¢ MAz AE[Z],

We now want to type these conversion rules. It can be seen easily that the
only possible way to do this is as follows. For the P-rule

| M
P(mA—A)— A -A— A
A
| E
F
is transformed into
2 A
| E
A:F —=F F
| M F_
-A— A —-A
A
| E
F
and for the C-rule we have
M 2 A
C./—mA— A ——A AF—F PLE
N —
1|4E o M L
——A -A

F F

Note that the appearance of the A-axioms F — F in these derivations clearly
is unneccessary from the logical point of view. However, as will be apparent
soon, they are essential from the operational point of view for the derivation
terms.

| M
A —A (A-rule)
B ’
F
At this point the connection of the global control operators to classical logic
becomes apparent. Starting from the conversion rules which have been moti-
vated solely by operational considerations we arrive necessarily at the typing

P:(—mA— A)— A,
C:——A — A,
A F — A

for P, C and A, which make them correspond to the Peirce, stability and
ex-falso-quodlibet schemes, respectively.

However, there is one problem with this typing. Assume that we have
a closed term possibly involving P, C and A to which we wish to apply the
conversion rules above. As we just have seen, this is only possible if the whole
term has type F. But there is no closed term of type F, for this would mean
that -, F.

To solve this problem, recall that in the presence of P, C and A we essen-
tially are in the realm of classical logic. Hence instead of deriving A we may
as well derive == A 1.e. F from an additional assumption —A.

A slightly different way to formulate this has been used by Griffin. He
defines the conversion rules by

C(Mk E[(Ax M)V]) —p, C(Ak E[MY)),
C(Mk E[PM]) —5p C(Mk E[M Az AE[2])),
C(Mk E[CM]) —pc C(Ak Mz . AE[2]),
C(Mk EJAM]) —p.4 C(Ak M).

— — —a —

5 Termination of evaluation

Based on Griffin’s work [10] we now show that the simply typed A-calculus
extended by the P, A and C operators enjoys termination with respect to the
call-by-value strategy. The proof involves a cps-translation into the simply
typed A-calculus and uses strong normalization for the latter. We first intro-
duce a cps-translation for the simply typed A-calculus and then extend it to
the language involving P, A and C.

5.1. A cps-translation of the simply typed lambda calculus. We define si-
multaneously a ‘term transformation” Ty (M) and an ‘evaluation context
transformation’ Ky (F). Tw (M) is closely related to Plotkin’s [16] and Grif-
fin’s [10] ‘colon translation’ M: W, and Ky (E) is closely related to their W¥Z.
However, our definition — which is based on Sabry/Felleisen [18] — is more
‘compacting’ in the sense that it avoids ‘administrative redexes’.

Definition. a. For any value W:—-A* and term M:A we define a term

Tw(M):F by

Tw (V) = W),
Tw(E[zV]) = «"Kw(E)®(V), where : B — C, *:=-C* — = B*,
Tw(E[(Az MHV])) = (A" Tw(E[M])®(V), where z: A, M:B, z*: A"

b. For any value V: A we define a value ®(V): A* by
O(z) = z*,
S(Ax M) = M, z"Ty(M),
where x: A, M: B, and {: ~B* is a newly created variable.

c. For any value W:—A* and evaluation context E[-P]: A we define a value

Kw(E):—~B* by

Kw() = W,
Kw(Elz[]]) = «"Kw(E), wherex:B — C, 2*:-C* — =B*,
Kw (E[(Az M)[]]) = Ae"Tw(E[M]), where x: B, z*: B*,
Kw(E[[[M]) = A*Tw(E[zM]).

where in the last clause [B — C, ©: B — C, 2*:=C* — =B* and z is a

newly created variable.

We now show that this is a good definition. First note that ® can be
eliminated by replacing each 7()-clause by two for the two possible forms of
V and inserting there the definition of ®. We define a measure | M| for terms
M and |E| for evaluation contexts E such that in each clause of the definition
the measure decreases.

Definition. (Measure).

M| = 2-vars(M),
|E| = 2-vars(F)+ 3,

where vars(-) is the total number of variable occurrences in the term or eval-
uation context -, including the bound occurrences.

Now the well-definedness of 7() and K() follows from

[ElVI > [E],

[E[Qz M)V]| > [E[M]],
[l > [E],
[E[Qz M) > [E[M]],

[E[M]] > [EleM]|.

5.2. LEMMA. (Context unwrapping).
a. iy (m) (M) —5 Tw (E[M]), where E[Bl: A, W:=A*, M:B,
b. Kxw(e)(E'") =5 Kw (E[E']), where E[B]: A, W:=A*, E'[.°]: B.

Proof. To be able to give a proof by induction we have to prove simultaneously
with parts a and b the following special cases of the substitution lemma (to
be proved in general form as our next lemma):

c. TW(M);{),EV) —% Tw (MY) with M = E[zN], where z is not free in E,
N and W.

d. ICW(E);{)*(V) —5 Kw (EY) with E = Ey[zE5], where z is not free in F,
Ey and W.

We prove parts a-d simultaneously by induction on the following measure.
e For part a: |E|+ |M]|.
e For part b: |E|+ |E'|.
e For part c: |M|+ |V].
e For part d: |E|+ |V].

a. We first prove part a for values V', by cases on E. If E does not have
the hole [] on the left hand side of an application, then

Tewe)(V) = Kw(E)2(V)
= Tw(E[V]).
The last equation follows from the fact that the clauses in the definition of

Tw (V) and Kw (F) look very similar. It can be proved easily by considering
the cases [|, F[«[]] and E[(Az M)[]] for E.

So it remains to consider the case E[[|M].
Tewema(V) = Kw(E[JM])(V)
= (A™Tw(E[zM])D(V)
—5 Tw(ExM)*Y)
—% Tw(E[VM]) by IHe for E[zM], V.

Note here that the IHc is applicable since |E[zM]|+ |V | < |E[[|M]|+ |V]. —
We now prove part a for the case where M is not a value. Case E'[zV].

Tiew () (E'l2V]) = 2™ Ky (E)R(V)
—% " Kw(E[ET)®(V) by IHb for £, £’
= Tw(E[E2V]).
Note that the THb is applicable since |E|+ |E'| < |E| + |E'[#V]]. Case
E'[(Az M)V].
Ticw () (E'[(Ax M)V])
= (A" Ty m)(E'[M])®
=5 (A" Tw (BIEM]])@(
= Tw(E[E[(Ax M)V]]).
Note that the THa is applicable since |F|+ |E/[M]| < |E| + |E'[(Az M)V]|.
b. In case B = [] we have Kxy(z)([]) = Kw(E) by definition. Case
Zal])
Kiwm(F'2l]) = 2" Krym(F)
—% «"Kw(E[E]) by IHb for E, E'
= Kw(E[E[=[]]).
Note that the THb is applicable since |E| + |E'| < |E| + |E'[z]]]]. Case
E'(Ae M)]-
Kicw) (E' 1Az M) = A" Ty (m)(E'[M])
—% A" Tw(E[E'[M]]) by IHa for E, E'[M]
= Kw(E[E[(Ae M)

(V)
V) by IHa for E, E'[M]

Note that the THa is applicable since |E|+ |F/[M]]| < |F| + |E'[(Az M)[]]]-
Case E'[[|[M].

Krwe)(EIM]) = ATy, m)(E' e M])
—% A" Tw (E[E'[¢M]]) by IHa for E, E'[xM]

= Kw(E[EIM]).
Note that the THa is applicable since |E| + |F'[zM]| < |E| + |E'[[]M]].
¢. First note that we can only have the following cases for M: E[zU],
ElzE'[yU]] and E[zE'[(Ay M)U]]. Case E[zU].

Tw (E[zU)EY) (" Kw (E)®(U)2")

o*

= O(V)Kw(E)PU).

In case V = y this is

and in case V = Ay N this is
= (ALY TN (B)D()

=5 (A Ty (m)(N)2(U)
_% Ay Tw(E[N])®(U) by IHa for B, N
= Tw(E[(Ay N)U]).

Note that the THa is applicable since |E| 4+ |N| < |E[zy]| + |Az N|. Case
Ele E'yU]].
3V « 3V
Tw (BB U = Kw (B)R
. 3V
=y Kw(ERED W)
—% Y Tw(E[VE]OU) by Hd for ElzE], V
= Tw(E[VEUL).
Note that the THd is applicable since |E[zE']| + |V| < |E[yU]| + |V|. Case
ElzF'[(Ay MHU]].

Tw (E[zE'[(0y MUY

= (W Tw(E[E'[M]]
= (A Tw(ERE M)

—% (A Tw(E[VE'[M]]))®(U) by IHe for ElzE'[M]], V
= TW(E[VE’[(AyM)U]]).

e
)e(U))e”

*

Note that the THc is applicable since |E[z E'/[M]]|+|V] < |E[(Ay M)U]|+|V].
d. First note that we can only have the following cases for E: E[z[]],
Ela 'y, EleE[(Ay M)[)]] and Elz £'TIM]]. Case Elz]]].

K (B = @K
= dV)Kw(E).
In case V = y this is
= Y Kw(E)
= Kw(EWD,

and in case V = Ay N this is
= (Mg T(N)Kw(F)
—5 /\y*TKW(E)(N)
—% Ay Tw(E[N]) by IHafor £, N
= Kw(E[(Ay N

Note that the THa is applicable since |E| + |N| < |E[z]]]| + |V]|. Case
Elx E'Ty[]]]-

Kw(EETINS = (Kw(ERED)N
=y Kw(ERE)
—% v Kw(E[VE']) byIHd for E[zE'], V
= Kw(E[VEI).

Note that the THd is applicable since |E[zE']| + |V| < |E[zE'[y[]]]| + [V].
Case E[xE'[(Ay M)[]]]-

11

Kw (E[xE'[(\y M)
)

— (A Tw (E[EM
= W Tw (BB M)
—% M Tw(E[VE'[M]]) by IHc for ElzE'[M]], V
= Kw(EWVE [y M)
Note that the THc is applicable since |E[z E'[M]]|4+|V] < |E[z E'[(Ay M)[]]]]1+
|V]. Case E[zE'[[|M]].

Kw (E[z E'IM])"
B(V)

= (W Tw(E[xEyM]])),-
—% A Tw (E[VE'[yM]]) by IHc for E[xE'[yM]], V
= Kw(E[VEIM]).

Note that the THc is applicable since |E[yM,]| + |V| < |E[[[M5]| + |V]. O
5.3. LEMMA. (Substitution). Let # be not free in V. Then

xr

a. Tw(M)f*(v) —>’[§ TW<I>*(V)(MV).

xr

b, oW —x a(WY).

o*

e Kw (B)p") =5 Koo (BY).

Proof. We prove parts a-c simultaneously by induction on the following mea-
sure, using the previous lemma on context unwrapping.

e For part a: |[M|*.

e For part b: |IW]|*.

e For part c: |E|T.

Here |M|T and |E|t are defined similarly to |M|, |F| exept that binding
occurrences of variables now count.

a. First note that we can have the following cases for M: y, =, Ay M,
E[yU], E[xU] and E[(Ay M)U]. Case y.

,Z-W(y)@*(‘/) — (Wy*)q:(‘/)

xr xr

= Wy

= wa*(v)(y).

Case x.
Tw(l‘)é(v) = (Wa*)¢(V)
= w2Vawv)

= Tyan(V).

Case Ay M.
Tw(Qy M)ZY = (WY T(M)))
= WEOLy T
—% Wﬁ(v)(/\ﬁ, Yy ’TZ(MxV)) by IHa for M
= TW<1>*(V)(Ay M;/)

Note that the IHa is applicable since by the definition of |- |7 we have |[M|T <
|[Ay M|T. Case E[yU].

Tw (B0 = (7 Kw(B)(U))5"
= Yy Kw(E)<1>(V)<I)(U)<p(v>
¥ Ko (BY) WU by THe for B
. (UY) by IHb for U

—

5
—>;§ y*ICW<I>*(V)(EV)
= TW‘I>*(V)(E[yU]x)
Note that the THc is applicable since |F|* < |E[yU]|*, and the THb is appli-
cable since |U|* < |E[yU]|*. Case E[zU].
Tw (BlU])x"
= <*me><»“”
= o(V)kw(E)2 Y a)"

—

B(V)K 2 (EY)@(U)3) by He for £

—

5
5 (VK en (B VYO(UY) by THb for U.

In case V = y this is
= y*IC <I>(V)() (UV)

= wa*(v)([l’U]x),

and in case V = Ay N this is
= (Ay*'TKW4>(V)(E;/)(N))@(UZ“/)

—% (/\y*.’TW@(v)(EX [N))®(UY) by context unwrapping
= Ty (EBULY).

Note that the THc is applicable since |E|* < |E[zU]|*, and the THb is appli-
cable since |U|* < |E[zU]|*. Case E[(Ay M)U].

T (E[(hy MUY

= (" Tw (E[M])) (V)

V)
= Ay Tw(BEM)IHew))
)@

T*

—5 (W e (BY [MY1)@(U)3) by Ha for E[M]

—5 (A Ty e (B[M V)@Y by IHD for U

Ty s (E[(hy MUIY).

Note that the THa is applicable since |E[M]|* < |E[(Ay M)U]|T, and the THb
is applicable since |U|* < |E[(Ay M)U]|*.
b. Case z. Clear. Case y # x. Clear. Case Ay M.

Oy MY = (y T

= My T
—% M, y".Ty(M)) by IHa for M.

Note that the IHa is applicable since by the definition of |- |7 we have |[M|T <

[Ay M|T.

¢. Case Elx[]].
a(v) . B(V)
Kw B[z = (@ Kw(E)),-

(V) Kw (E)EY).

o*

In case V = y this is

= y*ICW(E)f*(V)
—% ICWq;(v)(E[y[]]) by IHc for £,

and in case V = Ay N this is
= Oy TN Kw (B)2Y)
—% (M, y" TU(N)K, o0 (E)) by IHe for E

—5 /\y*TKWq;(v)(E;/)(N)
—% /\y*TWq>(v)(E[N]X) by context unwrapping
= KW5*<V>(E[$[]]X)~
Note that the IHec is applicable since |E|* < |E[z[]]|T. Case E[y[]].
Kw(BlD" = @ Kw ()"

= yhkw(E)"
—% Y Kyeon(E) by IHe for E
= Kyyaon (B
Note that the IHec is applicable since |E|* < |E[y[]]|*. Case E[(Ay M)[].
Kw (B[O MDY = Oy Tw (F[M]);2
—% /\y*TWq;(v)(EX [MY]) by IHa for E[M]

= Kypen (B (0w M),

Note that the [Ha is applicable since |E[M]|T < |E[(Ay M)[]]|T. Case E[[]M].

Kw (EMDZY = O Tw (BlyM]));:
—% /\y*TWf*(v)(EX [yMY]) by IHa for E[yM]
= Ky (BVMY].
Note that the IHa is applicable since |E[yM]|t < |E[[]M]|T. O

We now show that to any g-conversion step there corresponds a nonempty
finite list of B-conversion steps in the cps-translation.

+ Ty (M),

5.4. LEMMA. (Simulation). If M —5 M', then Ty (M) —5

Proof. Consider E[(Ax M)V] —5 E[MY]. Then we have
Tw(E[(Ae M)V]) = (A" Tw (E[M])) (V)

—5 Tw(EM];")
—% Tw(E[MY]) by the substitution lemma 5.3.

Note that the original redex in M = E[(Az M)V], which may have been
deep inside the term, is transported to the top level by the cps-translation
It follows from the simulation lemma that to any (-conversion there cor-
responds a finite nonempty sequence of S-conversions in the cps-translation.

5.5. Addition of global control operators. The simultaneous definition of
Tw (M), ®(V) and Kw (F) has to be extended by three additional clauses for

Tw(E[PM]) = Thororkw(E)A* Tw(ERD)) (M),
Tw(E[CM]) = Do orwne o)) (M),
Tw(E[AM]) = Tu(M), where k:=Ae.Ax:F —F.

To see that this is a good definition we have to change our measure to also
count the control constants:

Definition. (Measure).
M| = 2-vars(M)+ cconsts(M),
|E| = 2-vars(F)+ 3+ cconsts(M),

where vars(-) is the total number of variable occurrences in the term or evalu-
ation context -, including the bound occurrences, and cconsts(M) is the total
number of control constants in M.

Then the well-definedness of 7() and K() follows from

[El=V]] > |E],

[E[Qz M)V]| > [E[M]],
|[E[PM]| > [E]|E[]], [M],
[ElcM]l > |BLE M),
|[EAM]| > |M],

[Ell > |£],

[E[Qz M) > [E[M]],

[E[M]] > [EleM]|.

For the extended definition we will need an additional lemma:

5.6. LEmMmaA. If W —3 W/, then Tw(M) —3 TW/(M), @(W) —3 @(W/)
and]Cw(E) —pB]CW/(E)

Proof by induction on the simultaneous definition of 7w (V), ®(WW) and
Kw(E). O

Again we have

5.7. LEMMA. (Context unwrapping).
a. Ty () (M) —% Tw(E[M]), where E[P]: A, W:=A*, M: B,
b. Kxw(e)(E'") =5 Kw (E[E']), where E[B]: A, W:=A*, E'[.°]: B.

Proof as before. To be able to give a proof by induction we have prove simul-
taneously with parts a and b the following special cases of the substitution
lemma (to be proved in general form as our next lemma):

c. TW(M);{)*(V) —% Tw (M) with M = E[zN], where z is not free in E,
N and W.

d. ICW(E);{)*(V) —5 Kw (EY) with E = Ey[zE5], where z is not free in F,
Ey and W.

We prove parts a-d simultaneously by induction on the following measure.
e For part a: |E|+ |M]|.
e For part b: |E|+ |E'|.
e For part c: |M|+ |V].
e For part d: |E|+ |V].

We just have to add two additional clauses at the end of parts a and c.
a. Case B'[PM].

Tiwm)(E'[PM]) = Thurwrin,, (B0 Ty 5y (B1D) (M),
—% Do Kw (BED* T (BET]) (M),
= Tw(E[E'[PM]).

Note that we have used the above Lemma 5.6 here. Case E'[AM].
Ticw(e)(E'TAM]) = Tp(M)
= Tw(E[E'TAM]).

c. Here we have to add three more cases for M: E[xE'[PM]], E[zE'[CM]]
and B[z E'[AM]]. Case E[xE'[PM]].

Ty (Bl E'[PM]));1
= TAu*.u*KW(E[xEI])(M,z*.TW(E[xEI[z]]))(M)f*(v)

|

TAu*.u*KW(E[xE’])f,EV)(AZ,z*.TW(E[xE’[z]])f,EV))(M)

¥ Q¥

|

Thwr Koy (E[V E)(AL 2+ T (E[V E'[) (M)
by THd for E[zE'], V and IHc for E[zE'[z]], V
= Tw(E[zE'. [PM)).

Note that the THd is applicable since |E[zE']| + |V| < |E[zE'[PM]]| + |V,
and the THe is applicable since |E[zE'[2]]| + |V| < |E[« E'[PM]]|+ |V]. Case
E[CM]. Similarly. Case E[zE'[AM]].

Tw (Bl ETAM))) = T2t
= Tp(M), since z isnotin M
= Tw(E[ET, [AM]).

5.8. LEMMA. (Substitution).

a. Tw (M3 —5 Ty (MY).

o*

b, o(W)2) —x a(WY).

e Kw (B)p") =5 Koo (BY).

o*

Proof. We again prove parts a-c simultaneously by induction on the following
measure, using the previous lemma on context unwrapping.

e For part a: |[M|T.
e For part b: |IW]|*.
e For part c: |E|T.

Here |M|T and |E|t are defined similarly to |M|, |F| exept that binding
occurrences of variables now count.

a. Here we have to add three more cases for M: E[PM], F[CM] and
E[AM]. Case E[PM].

Tw (E[PM])EY)
(V)

o*

Thur ur Ky (EYA2* Ty (E[2])) (M)

|

v
TAu*.u*Kw(E)f,EV)(M,z*.TW(E[z])f,EV))(Mx) by IHa for M

mE ¥

|

Vv
Taur Koy (BY YA T, oy (BY D) (M)

by THd for E and THc for E[z]

Note that the THc is applicable since |E|T < |E[PM]|*, and the THa is
applicable since |E[z]|T < |E[PM]|T. Case E[CM]. Similarly. Case E[AM].

Tw (BEJAMDEY) = 7(an) V)

T (MY), by IHa for M
Ty (Y AN]).

We now show that in our extended setting with control operators to any -
conversion step there corresponds a nonempty finite list of S-conversion steps
in the cps-translation, and to any control conversion step there corresponds
a possibly empty finite list of S-conversion steps in the cps-translation. In

b—d let M be of type F and k := Az . Az:F — F.

Recall again that k is a special variable to be viewed as the top continua-
tion. It has type —=A* if M has type A.

5.9. LEMMA. (Simulation).
a. If M —g M’ then Tyy (M) —F Tw(M’).
b. If M —p M', then Ty(M) —% Tp(M").
w(M').
d. If M —4 M', then Tp(M) = To(M").

c. If M —¢ M’, then T;(M) —>Z; T

Proof. a. Unchanged.

b. We have to consider a P-conversion E[PM] —p E[MAz.AE[z]]. Then
we have

Ty(E[PM])
= Dororkn(B)M,2* To(B[:]) (M) by definition of 7() for P

Taar.a*Kn(EYA, 2+ To(AE]) (M) by definition of 7() for A

Tres o Kn(B)0(r2.AE[:]) (M) Dby definition of &()

Tre+Tu(Elerz.AE[])(M) by definition of 7()
= Tx,(Bqr-.Ael) (M) by definition of K()
—%5 Tp(E[MAz. AE[Z]]) by context unwrapping.

¢. We have to consider a C-conversion E[CM] —¢ MAz.AE[z]. Then we
have

Te(BlCM))
= Daewovk(re,:= T (E[:])(M) by definition of 7() for C
Treovk(re,» To(AE[]) (M) by definition of 7() for A
TAx*.x*k@(Az,AE[z])(M) by definition of &()
Tre+Tu(erz. AE[:)(M) by definition of 7() and K()
= Txu@rearp) (M) by definition of K()

*

—% Tw(M Az AE[z]) by context unwrapping.

d. We have to consider an A-conversion E[AM] —4 M. Then we have

Tw(E[AM]) = Tp(M) by definition of 7() for A.

5.10. THEOREM. (Griffin). Let M:A be a term of the simply typed A-
calculus extended by the P, C and A constructs. Any reduction (or evalua-
tion) sequence starting with M, which uses call-by-value 3-conversion and in
addition P-, C- and A-conversions, must terminate after finitely many steps.

Proof. We may assume M:TF (otherwise consider u: M with a new variable
u:—A). Let k := dz.Ax:F — F. After the cps-translation M — 7;(M) the
reduction sequence gives rise to a reduction sequence in the simply typed
A-calculus, of the following form.

e To any call-by-value (-conversion there corresponds a nonempty se-
quence of [-conversions.

e To any P- or C-conversion there corresponds a (possibly empty) se-
quence of [-conversions.

e To any A-conversion there corresponds no S-conversion.

Hence by the strong normalization result for the simply typed A-calculus we
are done if we can show that there cannot be an infinite sequence P-, C-
or A-conversions in the original sequence. But this is clear, since any such
conversion reduces the total number of P, C or A operators not under a
A-abstraction. d

References

[1] Ulrich Berger and Helmut Schwichtenberg. Program development by
proof transformation. In H. Schwichtenberg, editor, Proof and Compu-
tation, volume 139 of Series F: Computer and Systems Sciences, pages
1-45. NATO Advanced Study Institute, International Summer School
held in Marktoberdorf, Germany, July 20 — August 1, 1993, Springer
Verlag, Berlin, Heidelberg, New York, 1995.

[2] Ulrich Berger and Helmut Schwichtenberg. Program extraction from
classical proofs. In D. Leivant, editor, Logic and Computational Com-
plexity, International Workshop LCC ’94, Indianapolis, IN, USA, Oc-
tober 1994, volume 960 of Lecture Notes in Computer Science, pages
77-97. Springer Verlag, Berlin, Heidelberg, New York, 1995.

[3] Ulrich Berger and Helmut Schwichtenberg. The greatest common di-
visor: a case study for program extraction from classical proofs. In
S. Berardi and M. Coppo, editors, Types for Proofs and Programs. In-
ternational Workshop TYPES ’95, Torino, Italy, June 1995. Selected
Papers, volume 1158 of Lecture Notes in Computer Science, pages 36—
46. Springer Verlag, Berlin, Heidelberg, New York, 1996.

[4]

[14]

[15]

William Clinger, Jonathan Rees (editors) H. Abelson, N.I. Adams IV,
D.H. Bartley, G. Brooks, R.K. Dybvig, D.P. Friedman, R. Halstead,
C. Hanson, C.T. Haynes, E. Kohlbecker, D. Oxley, K.M. Pitman, G.J.
Rozas, G.L. Steele Jr., G.J. Sussman, and M. Wand. Revised* Report
on the Algorithmic Language Scheme, 1991. Appeared in ACM Lisp
Pointers 1V, July-September 1991, and also as MIT Al Memo 848b.
It can be obtained by anonymous ftp at the two Scheme Repositories,
altdorf.ai.mit.edu and nexus.yorku.ca.

Thierry Coquand. A proof of Higman’s lemma by structural induction,

April 1993.

Anne S. Troelstra (editor). Metamathematical Investigation of Intuition-
wstic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathemat-
tes. Springer Verlag, Berlin, Heidelberg, New York, 1973.

Matthias Felleisen, Daniel P.Friedman, E. Kohlbecker, and B.F. Duba.
A syntactic theory of sequential control. Theoretical Computer Science,
52:205-237,1987. Preliminary version: Reasoning with Continuations, in

Proceedings of the 1st IEEE Symposium on Logic in Computer Science,
1986.

M. Fischer. Lambda calculus schemata. Sigplan Notices, 7:104-109,
1972.

Gerhard Gentzen. Untersuchungen uber das logische Schlielen. Mathe-
matische Zeitschrift, 39:176-210, 405-431, 1934.

Timothy G. Griffin. A formulae—as—types notion of control. In Confer-
ence Record of the Seventeenth Annual ACM Symposium on Principles
of Programming Languages, pages 47-58, 1990.

G. Higman. Ordering by divisibility in abstract algebras. Proc. London
Math. Soc., 2:326-336, 1952.

Sigekatu Kuroda. Intuitionistische Untersuchungen der formalistischen
Logik. Nagoya Mathematical Journal, 2:35-47, 1951.

A .R. Meyer and M. Wand. Continuation semantics in typed lambda—
calculi. In Proceedings Workshop Logic of Programs, volume 193 of Lec-
ture Notes in Computer Science, pages 219-224. Springer Verlag, Berlin,
Heidelberg, New York, 1985.

Chetan Murthy. Extracting constructive content from classical proofs.
Technical Report 90-1151, Dep.of Comp.Science, Cornell Univ., Ithaca,
New York, 1990. PhD thesis.

C. St. J. A. Nash-Williams. On well-quasi—ordering finite trees. Proc.
Cambridge Phil. Soc., 59:833-835, 1963.

[16] Gordon D. Plotkin. Call-by—name, call-by—value and the A—calculus.
Theoretical Computer Science, 1:125-159, 1975.

[17] Gordon D. Plotkin. LCF considered as a programming language. The-
oretical Computer Science, 5:223-255, 1977.

[18] Amr Sabry and Matthias Felleisen. Reasoning about programs in
continuation—passing style. Lisp and Symbolic Computation, 6:289-360,
1993.

[19] Kurt Schiitte and Stephen G. Simpson. Ein in der reinen Zahlentheorie
unbeweisbarer Satz uiber endliche Folgen von naturlichen Zahlen. Archiv
fur Mathematische Logik und Grundlagenforschung, 25:75-89, 1985.

[20] Helmut Schwichtenberg. Primitive recursion on the partial continuous
functionals. In M. Broy, editor, Informatik und Mathematik, pages 251—
269. Springer Verlag, Berlin, Heidelberg, New York, 1991.

[21] Helmut Schwichtenberg and Stanley S. Wainer. Ordinal bounds for pro-
grams. In P. Clote and J. Remmel, editors, Feasible Mathematics 11,
pages 387-406. Birkhauser, Boston, 1995.

[22] Gunnar Stalmark. Normalization theorems for full first order classical
natural deduction. The Journal of Symbolic Logic, 56(1):129-149, 1991.

[23] Masako Takahashi. Parallel reductions in A-calculus. Information and

Computation, 118:120-127, 1995.

[24] Anne S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory.
Cambridge University Press, 1996.

[25] Anne S. Troelstra and Dirk van Dalen. Constructivism in Mathematics.
An Introduction, volume 121, 123 of Studies in Logic and the Foundations
of Mathematics. North—Holland, Amsterdam, 1988.

