
Book Title
Book Editors
IOS Press, 2003

1

Machine Extraction of the
Normalization-by-Evaluation Algorithm

from a Normalization Proof

Dominik Schlenker, Helmut Schwichtenberg

Department of Mathematics
Ludwig-Maximilians-Universität München

Abstract. In this paper a formal proof of normalization of the simply typed
λ-calculus is introduced, which was implemented in the proof system Minlog.
The proof is a version of Tait’s normalization proof, which relies on the notion of
“Strong Computability”. From the implementation a program is extracted which
represents a variant of the well-known normalization-by-evaluation algorithm.

Keywords. program extraction, Tait’s normalization proof, simply typed
λ-calculus, de Bruijn, Minlog, proof system, normalization-by-evaluation

1. Introduction

We formalize a version of Tait’s normalization proof for the simply typedλ-calculus and
machine-extract a program which turns out to implement the well-known normalization-
by evaluation algorithm. The fact that this algorithm is the computational content of
Tait’s proof has first been observed by Berger in [1]. However – as is to be expected –
the formalization turned out to be not at all a trivial matter. This is partially due to the
fact that the proof relied on some “Axioms”, which were not proven. In fact even though
the “Axioms” were chosen to be rather simple looking, the formalization revealed that
also the proofs of the “Axioms” were not at all trivial. This was particularly the case for
“Axiom 1”. For this reason we will give the complete core of the proof of “Axiom 1” in
this paper. Moreover, we intend to describe some of the choices which have simplified
the task considerably. Clearly, a full formalization of the proofis necessary for machine
extraction of a program.

[2] describes such formalizations carried out for the proof assistantsMinlog, Coq
andIsabelle/HOLwhich all have suitable program extraction machineries built in. This
provided a useful occasion to test these machineries in a non-trivial setting and to com-
pare the three proof assistants. The crucial questions, on which the formalizations di-
verge, are how to (1) model the simply typedλ-calculus, (2) represent in the given logical
system the notions introduced in the proof (i.p. Tait’s strong computability predicates),
(3) optimize program extraction in order to get as close as possible to normalization-by
evaluation.

2 /

Here we restrict ourselves to a formalization in Minlog., which has been done essen-
tially in full detail.1 The proof can be run interactively in the Minlog system, which is
available athttp://www.minlog-system.de/. The proof code itself can be found within the
Minlog system in the directory “minlog/examples/tait/diplomarbeit_schlenker/”. In this
paper names in parenthesis next to definitions, lemmas and theorems usually correspond
to the names in the implementation in Minlog. Further details about the formalization
can be found in [3].

The paper consists of five sections. Section 2 introduces the simply typedλ-calculus
in the “de Bruijn” notation, for which normalization is proven. Moreover it shows a way
in this notation how to handle substitution formally. This section acts also as a brief
introduction to Minlog by showing some examples of the proof code. Section 3 is about
the universal information systemΩ and the so-calledadministrative functions. Universal
information systems come into play as we redefine the predicate SC over a new predicate
SCr in form of SCρ

~ρ(r) := ∃aSCrρ
~ρ(a, r). The universal information systemΩ then is

an appropriate domain for the new variable typea. Section 4 presents the normalization
proof. It is divided into a general part, the main part and the part with the proof of the
“Axioms”. Section 5 finally gives the extracted program and shows that it represents the
well-known algorithm called Normalization by Evaluation.

All about the program extraction, which is used in this paper and on which the proof
system Minlog is based upon, can be found in detail in [4] in chapter 4.

Related work

Related normalization algorithms have been machine-extracted from formal proofs in
the type-theoretic proof checker ALF (the precursor of AGDA) [5,6]. However, there
the main ingredients of normalization-by-evaluation, the evaluation function and its in-
verse�, show up explicitely in the proofs already, while in our proof these components
of the algorithm are implicit in the logical argument and are made explicit by the ex-
traction only. There exist also formalized normalization proofs for systems such as the
Calculus of Constructions [7], System F [8], the typedλ-calculus with co-products [9]
andλ-calculi with various weak reduction strategies [10] for which however no program
extraction by machine has been carried out.

2. The Simply Typedλ-Calculus

In this section we define the simply typedλ-calculus, for which we will prove weak
normalization later on. We introduce theλ-calculus in the “de Bruijn” notation, which
allows us to handle substitution formally. This will be needed particularly in the proof of
“Axiom 6”. The “de Bruijn” notation goes without names for bound variables, hence no
alpha conversion is needed here.

To convey a first idea how the formalization is implemented in the proof system
Minlog, we give some simple examples of the proof code in this section. More details
about Minlog can be found at its webpage [11], particularly its reference manual [12]
and the work on the theoretical background of the proof system [4].

1The main part is implemented except for some trivial statements. The part of the “Axioms” is implemented
except for some non-critical auxiliaries.

/ 3

2.1. Definition of the Simply Typedλ-Calculus

For the simply typedλ-calculus (with a single ground type) the set of types is defined
inductively as follows:

Definition 1. T ::= {ι} | T⇒ T

In Minlog such an inductive data structure is defined via a so-calledfree algebrawith the
corresponding commandadd-alg :

(add-alg "type"
’("Iota" "type")
’("Arrow" "type=>type=>type"))

An algebra, which is here calledtype , is built fromconstructors, in this case fromIota
andArrow . While Iota is a nullary constructor,Arrow takes two elements from the
algebratype and constructs another element oftype . Hence for exampleIota is an
element of the algebra as well asArrow Iota Iota andArrow (Arrow Iota
Iota) Iota .

Elements ofT are denoted byρ, σ andτ . In Minlog this corresponds to adding new
variables with the commandadd-var-name :

(add-var-name "rho" "sig" "tau" (py "type"))

(py "type") determines the algebra which the variables refer to.py indicates to the
parser that the name that follows is an algebra.

For the set ofλ-terms we use the “de Bruijn” notation:

Definition 2. Λ ::= N | ΛΛ | λT(Λ)

Again this data structure is implemented in Minlog as an algebra:

(add-alg "term"
’("Var" "nat=>term")
’("App" "term=>term=>term")
’("Abs" "type=>term=>term"))

This time the algebra is calledterm . and the constructors areVar , App andAbs. Here
nat is the predefined algebra in Minlog representing the natural numbers.

Elements ofΛ are denoted byr, s andt. As before this corresponds to adding vari-
ables in Minlog:

(add-var-name "r" "s" "t" (py "term"))

This time the variables denote elements of the algebraterm .
We use the usual abbreviation for applicationsr~s := rs1 . . . sn where~s is the list

with the elementss1, . . . , sn. As we use theChurch type systemfor our calculus we need
contexts for the free variables. In the “de Bruijn” notation contexts can be defined as lists
with types as elements:

Definition 3. LT ::= ø | T ? LT

4 /

Elements ofLT are denoted by~ρ, ~σ and~τ . We will use ? in general for lists, both as a
list constructor and also for appending lists.

In Minlog, lists with elements from an arbitrary algebra form a predefined algebra,
which can be generated by the keywordlist . Hence in order to add contexts to the
system it suffices to write:

(add-var-name "rhos" "sigs" "taus" (py "list type"))

Next we define the recursive functionTyp, which determines the type of aλ-term:

Definition 4. Typ : LT → Λ→ T

Typø(n) := ι
Typ(ρ?~ρ)(0) := ρ

Typ(ρ?~ρ)((n + 1)) := Typ~ρ(n)
Typ~ρ((rs)) := Valtyp(Typ~ρ(r))
Typ~ρ((λ

ρr)) := ρ⇒ (Typ(ρ?~ρ)(r))

where Valtyp(ρ ⇒ σ) := σ and Valtyp(ι) := ι. The irregular cases Valtyp(ι) := ι and
Typø(n) := ι make the function total. They are absorbed by the check of correctness
expressed by the functionCor later on.

In Minlog such a recursive function is implemented by a so-calledprogram constant
for whichcomputation rulescan be defined:

(add-program-constant "Typ" (py "list type=>term=>type") 1)

(add-computation-rule (pt "Typ(Nil type)(Var n)") (pt "Iota"))
(add-computation-rule (pt "Typ(rho::rhos)(Var 0)") (pt "rho"))
(add-computation-rule (pt "Typ(rho::rhos)(Var(Succ n))")

(pt "Typ rhos(Var n)"))
(add-computation-rule (pt "Typ rhos(r s)")

(pt "Valtyp(Typ rhos r)"))
(add-computation-rule (pt "Typ rhos(Abs rho r)")

(pt "rho to Typ(rho::rhos)r"))

The program constantTyp takes as argument an element of the algebralist type
and one of the algebraterm and returns an element of the algebratype . The number1
in the first line indicates that the program constant is supposed to be total.pt indicates
to the parser, similarly aspy before, that a generaltermfollows, that is an element of an
algebra.

The next recursive functionCor checks, whether a term is well-typed:

Definition 5. Cor : LT → Λ→ B

Cor~ρ(n) := n < L(~ρ)
Cor~ρ(rs) := Cor~ρ(r) and Cor~ρ(s) and

Typ~ρ(r) = (Typ~ρ(s)⇒ Valtyp(Typ~ρ(r)))
Cor~ρ(λρr) := Cor(ρ?~ρ)(r)

whereB is the boolean algebra andL the length of a list. Finally we define the type
judgement:

/ 5

Definition 6. `: LT → Λ→ T→ B, (~ρ ` r : ρ) := Cor~ρ(r) and Typ~ρ(r) = ρ

In Minlog both, Cor and̀ , are defined as program constants analogously to Typ.

2.2. Substitution in “de Bruijn” Style

2.2.1. Definition of Substitution

We will define substitution formally, based on the work of Joachimski [13]. Therefore
we first introduce a “lift”, which is used to adapt variables in aλ-term during substitution
in accordance to the “de Bruijn” notation.

Definition 7. ↑: Λ→ N→ N→ Λ

n ↑km :=

{
n + k : n ≥ m

n : otherwise

(rs) ↑km := (r ↑km)(s ↑km)
(λρr) ↑km := λρ(r ↑km+1)

We use the following abbreviationr ↑k:= r ↑k0 . As this lift is used in the example below,
we give also its implemented form here:

(add-program-constant "Lift" (py "term=>nat=>nat=>term") 1)

(add-computation-rule (pt "Lift (Var n) m k")
(pt "[if (n<m) (Var n) (Var(n+k))]"))

(add-computation-rule (pt "Lift (App r s) m k")
(pt "App (Lift r m k)(Lift s m k)"))

(add-computation-rule (pt "Lift(Abs rho r)m k")
(pt "Abs rho (Lift r(m+1)k)"))

Next we define substitution lists, which are lists ofλ-terms ending with a lift:

Definition 8. Θ ::= ↑N | Λ ? Θ

An element ofΘ is denoted byθ. Besides a lift forλ-terms we also need a lift for
substitution lists:

Definition 9. ⇑: Θ→ N→ Θ

↑m⇑n := ↑m+n

(r ? θ) ⇑n := r ↑n ? (θ ⇑n)

Analogously we also use⇑ to lift common lists ofλ-terms. We use the following abbre-
viation θ ⇑ := θ ⇑1. With the above definitions we are now able to define substitution
recursively as follows:

Definition 10 (Substitution). .[.] : Λ→ Θ→ Λ

6 /

0[r ? θ] := r
n[r ? θ] := (n− 1)[θ]
n[↑k] := n + k
(rs)[θ] := (r[θ])(s[θ])
(λρr)[θ] := λρ(r[0 ? θ ⇑])

2.2.2. Properties of Substitution

The substitution introduced above has some nice properties. Particularly it allows to for-
mally handle composition of substitutions. This will be needed for “Axiom 6” in the
Normalization Proof. Detailled proofs can be found in [3].

First we define inductively the composition of two substitution lists:

Definition 11. ◦ : Θ→ Θ→ Θ

↑0 ◦θ := θ
↑n+1 ◦ ↑m := ↑n+1+m

↑n+1 ◦(r ? θ) := ↑n ◦θ
(r ? θ) ◦ θ′ := r[θ′] ? (θ ◦ θ′)

Remark 12. ↑0 is a neutral element on both sides with respect to composition, i.e.
↑0 ◦θ = θ = θ◦ ↑0.

We define↗k
n:= n ? . . . ? (n + k) and the abbreviation↗k:=↗k

0 .

Lemma 13. The following properties hold:

1. r ↑nm↑n
′

m+n= r ↑n+n′

m

2. r ↑nm↑n
′

m= r ↑n+n′

m

3. θ ⇑m⇑n= θ ⇑m+n

4. r ↑nm= r[↗m ? ↑n+m]
5. θ◦ ↑n= θ ⇑n

6. l[θ ⇑m] ↑nm= l[θ ⇑m+n] with l ∈ N
7. r[↗m ? θ ⇑m] ↑nm= r[↗m ? θ ⇑m+n]
8. θ ◦ (θ′ ⇑n) = (θ ◦ θ′) ⇑n

9. r ↑nm [↗m ? (~rn ? θ)] = r[↗m ? θ]
10. θ ⇑n ◦(~rn ? θ′) = θ ◦ θ′

Proof: Properties 1, 2, 4, 7 and 9 hold by induction onr. Properties 3, 5, 6, 8 and 10
hold by induction onθ.

As an example for the way a proof is written in Minlog, we sketch the implementation
of property 1 from above. First thegoalhas to be given by the commandset-goal :

(set-goal (pf "all r,m,n,n1.
Lift (Lift r m n) (m+n) n1 = Lift r m (n+n1)"))

pf indicates to the parser that aformula follows, analogously as beforepy and pt .
The expressionall represents the quantifier∀. The variablen1 corresponds ton′. The
program constantLift was defined above.

Next comes the actual proof in form of a list of commands:

/ 7

(ind)
(ng)
(assume "k" "m" "n" "n1")
(cases (pt "k<m"))
...

The command(ind) causes Minlog to perform an induction on the first variable of the
current goal, in this case on the variabler . The induction is followed by several other
commands, where for example(cases (pt "k<m")) initiates a corresponding case
distinction. Note that Minlog is based onbackward chaining, that is the order of reason-
ing is reverse to the order in a usual proof tree.

When the prove is finished, it can be saved for example under the name "LiftTwice":

(save "LiftTwice")

Through the command(use "LiftTwice") one can then use this lemma later on in
another proof.

With the above properties one can finally show the main property:

Theorem 14. (SubSub)r[θ] [θ′] = r[θ ◦ θ′]

Proof: Induction onr, case distinction on the form ofθ and induction onθ′.

3. Semantics

In order to extract a complete program we will redefine the original definition for Strong
Computability “SC” in the Normalization Proof and replace it by SC:= ∃a. SCr . For the
variablea we need an appropriate domain. In this subsection we introduce theuniversal
information system, which will be such a domain. It is based on the notion ofinformation
systemsdeveloped by Dana Scott.

Besides the universal information system we introduce the so-calledadministrative
functionsMod and Hat and for the ground typeι the functions ModIota and HatIota. The
administrative functions will appear as realizers of the SC-Lemmas.

Information systems [14,15] can be seen as an intuitive approach to deal construc-
tively with ideal, infinite objects in function spaces, by means of their finite approxima-
tions. One works with atomic units of information, calledtokens, and a notion ofconsis-
tencyfor finite sets of tokens. Finally there is anentailmentrelation, between consistent
finite sets of tokens and single tokens. Theideals(or objects) of an information system
are defined to be the consistent and deductively closed sets of tokens; we write|A| for
the set of ideals ofA.

Let N andΛ be information systems representing the natural numbersN and the
termsΛ, andCρ⇒σ := Cρ → Cσ. The definition ofCι asN → Λ, instead of justΛ
is due to the specific requirements of the normalization proof. This will be explained in
more detail later on.

We defineΩ to be the disjoint union of allCρ. Since the token sets of theCρ are all
disjoint, we take as set of tokens ofΩ simply the union of the sets of tokens of allCρ.
A finite set of tokens ofΩ is called consistent if it is a consistent in someCρ. Similarly,
the entailment relation is inherited from theCρ.

8 /

In Ω, consider the setF of pairs(U, b), where for someρ, σ, bothU andb have
typeρ ⇒ σ, andU ` b. By definition,F can be viewed as an approximable map from
Ω → Ω to Ω, and also as an approximable map fromΩ to Ω → Ω. By the bijective
correspondence between the continuous mapsf : |A| → |B| and the approximable maps
from A to B we can viewF as a map Hat: (|Ω| → |Ω|) → |Ω| and also as a map
Mod: |Ω| → |Ω| → |Ω|. By construction, Hat and Mod are inverse to each other.

Clearly we have canonical injections and projections, that is, continuous maps
inρ : |Cρ| → |Ω| and outρ : |Ω| → |Cρ|. Both are determined by the same approximable
map, consisting of all(U, b) with U ` b where bothU andb are of typeρ. In the special
case of the typeι, recall thatCι := N → Λ. The injection inι : |Cι| → |Ω| is denoted
by HatIota. Similarly, the projection outι : |Ω| → |Cι| is called ModIota.

We can easily define a continuous map Part(.) from |Ω| to the information system
for types, which assigns to an idealx ∈ |Ω| the “part” of the disjoint union it belongs to.

It is easy to verify that

Mod(inρ⇒σ(u)) = inσ ◦ u ◦ outρ,

Hat(h) =
⋃
ρ,σ

inρ⇒σ(outσ ◦ h ◦ inρ).

Let Hatρ,σ := outρ⇒σ ◦ Hat.

4. The Normalization Theorem

4.1. Introduction

4.1.1. “Strong Computability”

The normalization proof due to Tait relies essentially on the notion of “Strong Com-
putability”. The corresponding predicate is SC.2 Computability implies normalizability
of a λ-term, as is to be shown in “Lemma 1”. Hence the proof’s intrinsic ambition is to
show computability of all well-typedλ-terms.

Strong computability is originally defined along the type (cf. [1]):

SCι(r) := FNι(r)
SCρ⇒σ(r) := ∀s.SCρ(s)→ SCσ(rs)

FN(r) means, thatr is normalizable. In the formalization which this paper is based on
we work in terms ofweaknormalization, that is FN(r) means there existsa long normal
form of r. With respect to program extraction (cf. [4], section 4) it is essential, that
FN(r) und therefore SCι(r) and also SCρ(r) of arbitrary typeρ do have computational
content. What is special about the definition however is, that the typeCρ := τ(SCρ)
of the predicate depends onρ, where theCρ in correspondance toρ can get arbitrarily
complex. That would make a programming language with dependent types necessary

Hence the notion of Strong Computability is strictly speaking not a single predicate,
but a family of countably many different predicates. In first order logic, which the proof

2As we restrict ourselves in this formalization toweaknormalization, we use a kind of “weak” computability.
Nevertheless we keep the established symbol SC.

/ 9

system Minlog is also based on, such a family of predicates cannot be defined. If one
defined SC through axioms, corresponding labels would appear in the extracted program,
for which one could not determine the computational contents.

For this reason we run a different path here, which has in addition the essential
advantage, that the realizer of “Lemma 2” turns out to be simply the identity. We define
the predicate SC through a new predicate SCr . We use SC then only as an abbreviation.
In accordance to ourλ-calculus we add contexts:

SCρ
~ρ(r) := ∃aSCrρ

~ρ(a, r)

We will define SCr in such a way, that it hasno computational content, which is then
“sourced out” intoa. Accordinglya has to be of a universal type, which covers all the
typesCρ of the original predicate SC. The appropriate structure for such a type is the
universal information systemΩ from the previous section. SimultanouslyΩ represents an
appropriate model for the simply typedλ-calculus. That is the variablea can be looked at
as aλ-term interpreted in the model. This perspective will play a role in the next section,
when it comes to Normalization by Evaluation.

With respect to the constructiveη-expansion we define FNι(r) not just as∃sNρ
~ρ(r, s),

but as∀k. Frρ~ρ(r, k)→ ∃sNρ
~ρ(r, s). AccordinglyCι is N→ Λ, which fits to the definition

of the universal information system in the previous section. Furthermore we need to
handle the variablesa as partial variables and write “

.
a” as before.

The new predicate SCr is defined in such a way, that the original definition of SC
still holds, but now in form of lemmas. We call these lemmasSC-Lemmas. For example
caseι reads a little simplified as:

∀nc~ρ, r. ∃ .
aSCr ι

~ρ(
.
a, r)↔ ∀k. Frι~ρ(r, k)→ ∃sNι

~ρ(r, s)

It will turn out that the realizers of the SC-Lemmas are exactly the administrative func-
tions ModIota, HatIota, Mod and Hat. In the above example it holds for the direction
from left to right:

ModIotar ∀nc~ρ, r. ∃ .
aSCr ι

~ρ(
.
a, r)→ ∀k. Frι~ρ(r, k)→ ∃sNι

~ρ(r, s)

and therefore also

∀nc~ρ, r. ∀ .
a. SCr ι

~ρ(
.
a, r)→ ModIota(

.
a) r ∀k. Frι~ρ(r, k)→ ∃sNι

~ρ(r, s)

where the part∀k. Frι~ρ(r, k) → ∃sNι
~ρ(r, s) at the end matches the original definition of

SCι
~ρ(r). Therefore by masking the administrative functions one could say suggestively

that SCr (
.
a, r) is defined such that

.
a realizes the original definition of SC(r):

“SCr (
.
a, r)→ .

a r SC(r)”

4.1.2. The structure of the proof

We devide the normalization proof into three parts:

I. The General Part
II. The Main Part

III. The Part of the Axioms

10 /

The first part introduces the general notions and global auxiliaries used in the other two
parts. The second part represents the main part of the normalization proof. The third part
proves the “Axioms”, which are used in the main part.

The “Axioms” from the main part have no computational content and therefore have
no effect on the extracted program. In the main part the predicates “N”, “A” and “Head”
are not defined concretely, but are just delimited by the “Axioms”. That is the proof solely
uses the properties of the predicates, which are given through the “Axioms”.

Even though the main part does give the complete extracted program, it does not
provide a proof, that such predicates can be defined at all. Moreover it remains open, that
there are such definitions, which grasp the intuitive meaning of the predicates and hence,
that the extracted program does in fact what it is supposed to do: to compute the long
normal form of a well-typedλ-term.

In the third part we finally give appropriate definitions for the predicates “N”, “A”
and “Head”. That is we define them in such a way that they carry the intended meaning
and prove that they satisfy the “Axioms” from the main part. All three parts together
make up the complete normalization proof.

4.2. Part I: The General Part of the Normalization Proof

4.2.1. Particular Definitions for the Normalization Proof

The PredicatesN, A, Headand Fr. As explained above we declare the predicates N,
A and Head without giving concrete definitions. Those will be given in the part of the
“Axioms”. Moreover we define the predicate Fr. All four predicates are supposed to have
no computational content. The intuitive meaning of the predicates is as follows:

Nρ
~ρ(r, s): r ands are of typeρ in the context~ρ, ands is a long normal form of

r, i.e. there is aβ-normal form ofr, whoseη-expanded form iss.

Aρ
~ρ(r, s): r and s are of typeρ in the context~ρ; r is of the form r =

kr1r2 . . . rn ands of the forms = ks1s2 . . . sn and Nρ
~ρ(ri, si) holds

for all i ∈ {1, . . . , n}.

Head(r1, r2): r1 is of the formr1 = (λρt)s~s andr2 of the formr2 = (t[s ? ↑0])~s

Frρ~ρ(r, k): r is of type ρ in the context~ρ, andk is greater than all the free
variables inr.

For simplicity we define the predicate Fr already here in the general part of the proof.

Definition 15 (Fr). We defineFr : (LT, T,Λ, N) as

Frρ~ρ(r, k) :⇔ (~ρ ` r : ρ) ∧ (k ≥ L(~ρ))

Even though the definition slightly differs from the intuitive meaning above, it suffices
for our purpose to get afreshvariablek.

FN andFA. We introduce FN and FA just as abbreviations.

/ 11

Definition 16. FNρ
~ρ(r) ≡ ∀k. Frρ~ρ(r, k)→ ∃sNρ

~ρ(r, s)

Definition 17. FAρ
~ρ(r) ≡ ∀k. Frρ~ρ(r, k)→ ∃sAρ

~ρ(r, s)

The use of Frρ~ρ(r, k) is justified from a computational point of view, since we will need a
fresh variablek to construct the long normal form.

SCandSCr . As explained above we introduce SC by means of the new predicate SCr ,
which is defined as a predicate constant by the following axioms:

Definition 18 (SCr). We defineSCr : (LT, T,Ω,Λ) as

SCr ι
~ρ(

.
a, r) ↔ (~ρ ` r : ι) ∧ (Part(

.
a) = ι) ∧

(∀k. Frι~ρ(r, k)→ Nι
~ρ(r, ModIota(

.
a)(k)))

SCrρ⇒σ
~ρ (

.
a, r)↔ (~ρ ` r : ρ⇒ σ) ∧ (Part(

.
a) = ρ⇒ σ) ∧

(∀~σ,
.

b, s. SCrρ
~ρ?~σ(

.

b, s)→ SCrσ
~ρ?~σ(Mod(

.
a)(

.

b), rs))

The original predicate SC is then only used as the following abbreviation:

Definition 19. SCρ
~ρ(r) ≡ ∃

.
aSCrρ

~ρ(
.
a, r)

4.2.2. The SC-Lemmas

The original definition of SC still holds after its redefinition, now in form of lemmas,
which we callSC-Lemmas.

Lemma 20 (LemmaSCIota). ∀nc~ρ, r. SCι
~ρ(r)↔ ((~ρ ` r : ι) ∧ FNι

~ρ(r))

Proof: Case “→” is obvious. Case “←” is provable with the Axiom of Choice.

Lemma 21 (LemmaSC). .

∀nc~ρ, ρ, σ, r. SCρ⇒σ
~ρ (r)→ ((~ρ ` r : ρ⇒ σ) ∧ ∀nc~σ, s. SCρ

~ρ?~σ(s)→ SCσ
~ρ?~σ(rs))

∀nc~ρ, r∀ρ, σ. SCρ⇒σ
~ρ (r)← ((~ρ ` r : ρ⇒ σ) ∧ ∀nc~σ, s. SCρ

~ρ?~σ(s)→ SCσ
~ρ?~σ(rs))

Proof: Case “→” is obvious. Case “←” is provable with the Axiom of Choice, Indepen-
dence of Premises and a Uniformity Principle.

SCandSCr . We introduce pluralformsSC andSCr respectively with lists as arguments,
meaning that SC and SCr apply on each single element of the list. In order to allow case
distinction on lists with partial elements we introduce the notion ofstructurally totaland

its corresponding predicate STotal(
.

~a).

Definition 22 (SCrs). We defineSCr : (LT, LT, LΩ, LΛ) as

“SCrsDefNil” : SCr
ø
~σ(ø, ø)

“SCrsDef” : STotal(
.

~a)→ SCrρ
~σ(

.
a, s)→ SCr

~ρ

~σ(
.

~a,~s)→ SCr
ρ?~ρ

~σ (
.
a ?

.

~a, s ? ~s)

12 /

Then it follows by induction onSCr :

Lemma 23 (SCrsSTotal).SCr
~ρ

~σ(
.

~a,~s)→ STotal(
.

~a)

4.2.3. Specific Definitions

The abbreviationλρ
ks represents the binding of thek-th variable in the terms by a leading

λρ.

Definition 24 (ABS). We defineλ−− : N→ T→ Λ→ Λ as

λρ
ks := λρ(s[↗k

1 ? 0 ? ↑k+2])

Furthermore we need the extensionερ
k(~ρ) of a context~ρ, such thatk lies in ~ρ ? ερ

k(~ρ),
which we also abbreviate as~ρ ? ερ

k:

Definition 25 (ExtCtx). We defineε : LT → N→ T→ LT by

ερ
0(ø) := ρ

ερ
0(σ ? ~ρ) := ø

ερ
k+1(ø) := ρ ? (ερ

k(ø))
ερ

k+1(σ ? ~ρ) := ερ
k(~ρ)

Definition 26 (thof). We definek m~l as thek-th element of an arbitrary list.

We introduce the plural form� of the type judgement̀:

Definition 27 (TypJs). We define�: LT → LΛ → LT → B as

~σ � ø : ø := T
~σ � ø : (ρ ? ~ρ) := F
~σ � (r ? ~r) : ø := F
~σ � (r ? ~r) : (ρ ? ~ρ) := (~σ ` r : ρ) and(~σ � ~r : ~ρ)

4.2.4. The “Axioms”

The following “Axioms” are assumed in the main part and proven in the third part. As
the predicates are supposed to have no computational content, the “Axioms” have none
either.

“Ax1” : Frρ⇒σ
~ρ (r, k)→ Nσ

~ρ?ερ
k
(rk, s)→ Nρ⇒σ

~ρ (r, λρ
ks)

“Ax2” : Aι
~ρ(r, s)→ Nι

~ρ(r, s)
“Ax3” : (~ρ ` k : ρ)→ Aρ

~ρ(k, k)
“Ax4” : Aρ⇒σ

~ρ (r1, s1)→ (~ρ ` r2 : ρ)→ Nρ
~ρ(r2, s2)→ Aσ

~ρ (r1r2, s1s2)
“Ax5” : Head(r1, r2)→ Nρ

~ρ(r2,
.
s)→ (~ρ ` r1 : ρ)→ Nρ

~ρ(r1,
.
s)

“Ax6” : Head((λρr)[θ]s, r[s ? θ])
“Ax7” : Head(r, s)→ Head(rt, st)
“Ax8” : Head(r, s)→ Frρ~ρ(r, k)→ Frρ~ρ(s, k)
“Ax9” : Nρ

~ρ(r,
.
s)→ Nρ

~ρ?~σ(r,
.
s)

“Ax10” : Aρ
~ρ(r, s)→ Aρ

~ρ?~σ(r, s)

/ 13

4.2.5. Global Auxiliaries

The following global auxiliaries are used in Part II and in Part III of the proof:

Lemma 28 (TypJAppIntro). (~ρ ` r : ρ⇒ σ)→ (~ρ ? ~σ ` s : ρ)→ (~ρ ? ~σ ` rs : σ)

Lemma 29 (SubVar). k < L(~s)→ k[~s ? ↑m] = k m ~s

Lemma 30 (SCrsLh). SCr
~ρ

~σ(
.

~a,~s)→ L(
.

~a) = L(~ρ) ∧ L(~ρ) = L(~s)

Lemma 31 (TypJSub). (~ρ ` r : ρ)→ (~σ � ~s : ~ρ)→ (~σ ` r[~s ? ↑0] : ρ)

Lemma 32 (TypJExtCtx). (~ρ ` r : ρ)→ (~ρ ? ~σ ` r : ρ)

Proof: Lemma 28 clearly holds. Lemma 29 holds by induction onk and~s. Lemma 30
holds by induction onSCr . Lemma 31 holds by induction onr andρ. Lemma 32 holds
by induction onr andρ.

4.3. Part II: The Main Part of the Normalization Proof

Traditionally the proof of the main part consists of three main lemmas and the final
Normalization Theorem. The detailed proofs can be found in [3].

4.3.1. “Lemma 1", “Lemma 2" and “Lemma 3"

Lemma 33 (“Lemma 1”, LemmaOne). .

∀ρ∀nc~ρ, r. (~ρ ` r : ρ)→ (SCρ
~ρ(r)→ FNρ

~ρ(r)) ∧ (FAρ
~ρ(r)→ SCρ

~ρ(r))

Proof: Induction onρ and by means of the “Axioms 1”, “Axioms 2”, “Axioms 3”, “Ax-
ioms 4” and “Axioms 10”.

Lemma 34 (“Lemma 2”, LemmaTwo). .

∀ncρ, ~ρ, r, s.(~ρ ` r : ρ)→ SCρ
~ρ(s)→ Head(r, s)→ SCρ

~ρ(r)

Proof: By the generalization

∀ncρ, ~ρ, r, s,
.
a.(~ρ ` r : ρ)→ SCrρ

~ρ(
.
a, s)→ Head(r, s)→ SCrρ

~ρ(
.
a, r)

which holds by induction onρ and by “Axioms 5”, “Axioms 7” and “Axioms 8”.

Lemma 35 (“Lemma 3”, LemmaThree). .

∀r, ~ρ∀nc~σ, ρ,~s. (~ρ ` r : ρ)→ SC
~ρ

~σ(~s)→ SCρ
~σ(r[~s ? ↑0])

Proof: Induction onr and by means of “Axioms 6” and “Axioms 9”.

14 /

4.3.2. The Normalization Theorem

The following auxiliaries are used in the Normalization Theorem:

Lemma 36 (TypJVar). (~σ ? ρ ? ~ρ ` L(~σ) : ρ)

Lemma 37 (SubIds). Cor~ρ(r)→ r[↗L(~ρ) ? ↑0] = r

Lemma 38 (FrIntro1). (~ρ ` r : ρ)→ Frρ~ρ(r,L(~ρ))

Lemma 39 (SCrsSeq).SC
~ρ

~σ?~ρ(↗
L(~ρ)
L(~σ))

Proof: Lemma 36 holds by simple induction on~σ. Lemma 37 holds by induction onr.
Lemma 38 holds by definition of Fr. Lemma 39 holds by induction on~ρ and by means
of “Axiom 3” and lemma 36.

Remark 40. The above lemma 39 (“SCrsSeq”), which also uses “Axiom 3”, has com-
putational content and does appear in the extracted program.

Theorem 41 (“Normalization Theorem”, NTheorem). .

∀~ρ, r. Cor~ρ(r)→ ∃sN
Typ~ρ(r)

~ρ (r, s)

Proof: Cor~ρ(r) is given. By settingρ := Typ~ρ(r) we have~ρ ` r : ρ. From lemma 39 it

follows thatSC
~ρ

~ρ(↗L(~ρ)). From this and by “Lemma 3” we get SCρ
~ρ(r[↗L(~ρ) ? ↑0]),

which can be simplified by lemma 37 to SCρ
~ρ(r). By “Lemma 1” FNρ

~ρ(r) follows. Due to
lemma 38 we have Frρ

~ρ(r,L(~ρ)). Thus by the definition of FN we get∃sNρ
~ρ(r, s).

4.4. Part III: The Part of the Axioms

We will give concrete definitions of the predicates “N”, “A” and “Head” and then prove
the “Axioms” from the main part (see section 4.2.4). “Axiom 1” is by far the most com-
plex. We will therefore focus on this “Axiom” and give the core of its proof in full detail.

4.4.1. The Definition of the Predicates

The Definition of “N” . Nρ
~ρ(r, s) is supposed to express, thatr ands are of typeρ in the

context~ρ and thats is a long normal form ofr. For that purpose we define two more
predicates “BN” (forβ-normal form) and “Exp” (forη-expansion), and simultaneously
their plural forms “BN” and “Exp”.

Definition 42 (BN, BNs). BN : (Λ,Λ), BN : (LΛ, LΛ)

“BNVar” : BN(~r,~s)→ BN(n~r, n~s)
“BNAbs” : BN(r, s)→ BN(λρr, λρs)
“BNBeta” : BN(r[s ? ↑0]~r, t)→ BN(λρr(s ? ~r), t)

“BNsNil” : BN(ø, ø)
“BNsCons”: BN(r, s)→ BN(~r,~s)→ BN(r ? ~r, s ? ~s)

/ 15

Remark 43. The definition is motivated by the alternative representation of the
λ-calculusΛ ::= n~r | λρr | (λρr)(s ? ~r), where the set ofβ-normal forms can be
generated by the first two cases asNFβ ::= n~r | λρr.

For the predicate Exp we need a context due toη-expansion. One could try to define Exp
recursively unlike in the case of BN, where the proof of totality would in fact correspond
to a proof of (strong) normalization. But the inductive approach for Exp turns out to be
advantageous in the proof.

The part of Exp however, which is called theoutside expansionand denoted byη,
we define recursively. Here the recursive approach is more straightforward and clearer.

Definition 44 (Eta). We defineη : T→ Λ→ Λ as

ηι(r) := r
ηρ⇒σ(r) := λρ(ησ(r ↑1 ηρ(0))

Definition 45. We define�: LT → T→ T as

ø � ρ := ρ
(σ ? ~ρ) � ρ := σ ⇒ (~ρ � ρ)

Definition 46 (Exp, Exps). Exp : (LT, T,Λ,Λ), Exp : (LT, LT, LΛ, LΛ)

“ExpVar” : (~ρ ` k : ~σ � ρ)→ Exp
~σ
~ρ (~r,~s)→ (t = ηρ(k~s))→ Expρ

~ρ(k~r, t)
“ExpAbs” : (~ρ1 ? ~ρ2 ? ~σ ` k : ρ)→ Expσ

~ρ1?~ρ2
(r, s)→

(~ρ1 ` λρ
kr : ρ⇒ σ)→ Expρ⇒σ

~ρ1?~τ (λρ
kr, λρ

ks)

“ExpsNil” : Exp
ø
~ρ(ø, ø)

“ExpsCons”: Expρ
~ρ(r, s)→ Exp

~σ
~ρ (~r,~s)→ Exp

ρ?~σ
~ρ (r ? ~r, s ? ~s)

Remark 47. The definition ofExp is motivated by the alternative representation of the
λ-calculus as in case ofBN before. Since we needExponly as part ofN, we can restrict
the predicate toλ-terms which are alreadyβ-reduced (cf. remark 43) thus making proofs
shorter.

The definition of Exp particularly takes into account the requirements of “Axiom 1” and
“Axiom 9”. “Axiom 1” requires that the context can be reduced, while “Axiom 9” on the
contrary requires an extension of the context. It suffices to take this into consideration in
the second case “ExpAbs” only, however one has to be all the more careful here.

If there the contexts in the subformulas were kept fixed, the definition would clearly
not suffice. Induction on Exp would fail for the extension as well as for the reduction
of the context. If on the other hand an arbitrary context would be in the last part of the
formula, cases would occur, where Expρ

~ρ(r, s) holds and evenr ands are of typeρ in the
context~ρ, but neverthelesss not being the long normal form ofr.

The type judgement(~ρ1 ` λρ
kr : ρ ⇒ σ) and the extended context~τ in the last

part of the formula however do lead to thisprecisedefinition of the predicate. While~τ
obviously allows to extend the context, the type judgement allows to reduce the original
context(~ρ1 ? ~ρ2) appropriately to~ρ1 avoiding irregular cases. In fact the type judgement
even suffices to get the following desirable result:

16 /

Lemma 48 (ExpTypJ). Expρ
~ρ(r, s)→ (~ρ ` r : ρ) ∧ (~ρ ` s : ρ)

Proof: (~ρ ` r : ρ) can be proven by induction on Exp.(~ρ ` s : ρ) holds due to the fact,
that in the definition of Expρ~ρ(r, s) the free variables ofr ands are kept identical at each
stage.

We can now define the predicate N as follows:

Definition 49 (N). We defineN : (LT, T,Λ,Λ)

“NIntro” : (~ρ ` r : ρ)→ BN(r, t)→ Expρ
~ρ(t, s)→ Nρ

~ρ(r, s)

Remark 50. In the definitiontotal variables are used (as in all definitions of the predi-
cates). This guarantees that fromNρ

~ρ(
.
r,

.
s) it follows thatr ands are total.

As required in the informal description of N from subsection 4.2.1, it remains to show,
that alsos is of correct type. For that we need the so-calledSubject Reduction, which
also appears in the proofs of “Axiom 1” and “Axiom 8”.

Lemma 51 (“Subject Reduction”, SR). (~ρ ` (λσr)s : ρ)→ (~ρ ` r[s ? ↑0] : ρ)

Proof: Provable on the basis of lemma 31.

Remark 52. .

1. The suggesting attempt to prove the Subject Reduction by induction onr fails in
the abstraction case.

2. The converse of the Subject Reduction(~ρ ` r[s ? ↑0] : ρ)→ (~ρ ` (λσr)s : ρ) is
clearlynotderivable.

With the Subject Reduction we also get preservation of type for BN:

Lemma 53 (BNTypJ). BN(r, s)→ ∀~ρ, ρ. (~ρ ` r : ρ)→ (~ρ ` s : ρ)

Proof: Provable on the basis of theSubject Reduction(lemma 51).

Remark 54. The converse∀r, s. BN(r, s) → ∀~ρ, ρ. (~ρ ` s : ρ) → (~ρ ` r : ρ) doesnot
hold in general (cf. remark 52). That’s why the type judgement(~ρ ` r : ρ) is in the defi-
nition ofN. Otherwise one could derive the type forr already fromExpρ

~ρ(t, s).

We finally get preservation of type for N:

Lemma 55 (NTypJ). Nρ
~ρ(r, s)→ (~ρ ` r : ρ) ∧ (~ρ ` s : ρ)

Proof: By means of lemma 53 and lemma 48.

Hence the predicate N corresponds with its informal description from section 4.2.1.

Definition 56 (Head). We defineHead: (Λ,Λ) as

“HeadCon”: Head((λρr)s~r, r[s ? ↑0]~r)

/ 17

Definition 57 (A). We defineA : (LT, T,Λ,Λ) as

“AIndVar” : (~ρ ` k : ρ)→ Aρ
~ρ(k, k)

“AIndApp” : Aρ⇒σ
~ρ (r, s)→ (~ρ ` r1 : ρ)→ Nρ

~ρ(r1, s1)→ Aσ
~ρ (rr1, ss1)

Lemma 58 (ATypJ). ∀~ρ, ρ, r, s. Aρ
~ρ(r, s)→ (~ρ ` r : ρ)

Proof: Induction on A.

This finishes the definition of the predicates. We now give the proofs of the “Axioms”.
Some of the basic proof ideas of “Axiom 1” and “Axiom 2” are due to Pierre Letouzey.

4.4.2. The Proof of Axiom 1

For “Axiom 1” we need the auxiliaries listed below. Moreover “Axiom 1” requires the
possibility toreducethe context in the predicate Expρ

~ρ(r, s). This is allowed by the spe-
cific definition of Exp (see definition 46).

Lemma 59 (BNsTypJ). BN(~r,~s)→ (~ρ � ~r : ~σ)→ (~ρ � ~s : ~σ)

Lemma 60 (ExpsRedCtx).Exp
~σ
~ρ1?~ρ2

(~r,~s)→ (~ρ1 � ~r : ~σ)→ Exp
~σ
~ρ1

(~r,~s)

Lemma 61 (ExpsTypJs).Exp
~σ
~ρ (~r,~s)→ (~ρ � ~r : ~σ) ∧ (~ρ � ~s : ~σ)

Lemma 62 (SubThroughEta). ηρ(r)[θ] = ηρ(r[θ])

Lemma 63 (ABSLift). Frρ~ρ(r, k)→ r[↗k
1 ? 0 ? ↑k+2] = r ↑1

Remark 64. From lemma 63 it immediately follows thatFrρ~ρ(r, k)→ λρ
kr = λρ(r ↑1)

Lemma 65 (Ax1Aux21). BN(r1[k ? ↑0] , t)→ ∃t1. t = t1[k ? ↑0] ∧ BN(r1, t1)

Lemma 66 (Ax1Aux22). Frρ⇒σ
~ρ (λρr, k)→ Frσρ?~ρ(r, (k + 1))

Lemma 67 (Ax1Aux23). Frτ~ρ(r, (k + 1))→ λρr = λρ
k(r[k ? ↑0])

Lemma 68 (Ax1Aux24). BN(r, t)→ Frρ~ρ(r, k)→ Frρ~ρ(t, k)

Proof: Lemma 59 holds by means of lemma 53. Lemma 60 holds by induction on~r and
by the definition of Exp. Lemma 61 holds by means of lemma 48. Lemma 62 holds by
induction onρ. Lemma 63 follows from the more general lemma

Frρ~ρ(r, k)→ r[↗m ? ↗k
m+1 ? m ? ↑(m+k)+2] = r ↑1m

which holds by induction onr. Lemma 65 holds by induction on BN. Lemma 66 holds
by the definition of Fr. Lemma 67 holds by induction onk. Lemma 68 holds by means
of lemma 53.

Lemma 69 (“Axiom 1”, Ax1). Frρ⇒σ
~ρ (r, k)→ Nσ

~ρ?ερ
k
(rk, s)→ Nρ⇒σ

~ρ (r, λρ
ks)

18 /

Proof: Given Frρ⇒σ
~ρ (r, k) and Nσ

~ρ?ερ
k
(rk, s), we need to show Nρ⇒σ

~ρ (r, λρ
ks). Through

inversion on Nσ~ρ?ερ
k
(rk, s) we get(~ρ ? ερ

k ` rk : σ), BN(rk, t) and Expσ~ρ?ερ
k
(t, s). In

order to obtain a strong enough induction hypothesis, we setr̃ := rk and show the
generalization

∀rα . r̃ = rαk → Expσ
~ρ?ερ

k
(t, s)→ Frρ⇒σ

~ρ (rα, k)→ Nρ⇒σ
~ρ (rα, λρ

ks)

We prove this by induction on BN(r̃, t):

1. Case“BNVar” :
BN(n~r, n~t) is given through BN(~r,~t). Moreover we haven~r = rαk,
Expσ

~ρ?ερ
k
(n~t, s) and Frρ⇒σ

~ρ (rα, k). We need to show Nρ⇒σ
~ρ (rα, λρ

ks). From the
assumptions it follows thatrα is of the form rα = n~r1 and ~r of the form
~r = (~r1 ? k). Hence we haveBN((~r1 ? k),~t) and therefore~t = (~t1 ? k). We
obtain

41: Expσ
~ρ?ερ

k
(n(~t1 ? k), s)

42: Frρ⇒σ
~ρ (n~r1, k)

43: BN(~r1,~t1)

We need to show Nρ⇒σ
~ρ (n~r1, λ

ρ
ks). By the definition of N it suffices to show:

I: (~ρ ` n~r1 : ρ⇒ σ)
II: BN(n~r1, n~t1)

III: Expρ⇒σ
~ρ (n~t1, λ

ρ
ks)

I follows from42 by the definition of Fr.II follows from43 by the definition
of BN. III we prove by inversion on41: We obtain

44: (~ρ ? ερ
k ` n : ~σ � σ)

45: s = ησ(n~s)
46: Exp

~σ
~ρ?ερ

k
((~t1 ? k), ~s)

46 implies that~s is of the form~s = ~s1 ? s1 and~σ of the form~σ = ~σ1 ? σ1.
Moreover it follows that

47: Exp
~σ1

~ρ?ερ
k
(~t1, ~s1)

48: Expσ1
~ρ?ερ

k
(k, s1)

Together with42 it follows thatσ1 = ρ. Now in order to showIII it suffices by
the definition of Exp to show:

III.1: ~ρ ` n : ~σ1 � (ρ⇒ σ)
III.2: Exp

~σ1

~ρ (~t1, ~s1)
III.3: λρ

ks = ηρ⇒σ(n~s1)

III.1 follows from44, the form of~σ and by means of42. This implies as well
~ρ � ~r1 : ~σ1. By lemma 59 and43 we get~ρ � ~t1 : ~σ1. By lemma 60 using47
this implies

49: Exp
~σ1

~ρ (~t1, ~s1)

that isIII.2. It remains to showIII.3. Lemma 61,42 and49 lead to

410: : Frρ⇒σ
~ρ (n~s1, k)

/ 19

From48 we get by inversions1 = ηρ(k). Together with45 and the form of~s
this impliess = ησ((n~s1)ηρ(k)). Hence we have to show

III.3′: λρ
k(ησ((n~s1)ηρ(k))) = ηρ⇒σ(n~s1)

For the right side it holds that

ηρ⇒σ(n~s1) = λρ(ησ((n~s1) ↑1 ηρ(0)))

For the left side it holds that

λρ
k(ησ((n~s1)ηρ(k)))

= λρ(ησ((n~s1)ηρ(k))[↗k
1 ? 0 ? ↑k+2])

= λρ(ησ(((n~s1)ηρ(k))[↗k
1 ? 0 ? ↑k+2])) Lem. 62

= λρ(ησ((n~s1)[. . .]ηρ(k)[. . .]))
= λρ(ησ((n~s1) ↑1 ηρ(k)[↗k

1 ? 0 ? ↑k+2])) Lem. 63 u.410
= λρ(ησ((n~s1) ↑1 ηρ(k[↗k

1 ? 0 ? ↑k+2]))) Lem. 62
= λρ(ησ((n~s1) ↑1 ηρ(0)))

This showsIII.3′, hence alsoIII.3.
2. Case“BNAbs” : We haveλρr1 = rαk. This leads to falsum and therefore

yields the claim.
3. Case“BNBeta” : We have BN(λτr1(s1 ? ~r1), t) through

41: BN(r1[s1 ? ↑0]~r1, t)

By instantiatingrα we get

42: λτr1(s1 ? ~r1) = rαk
43: Expσ

~ρ?ερ
k
(t, s)

44: Frρ⇒σ
~ρ (rα, k)

Moreover by the induction hypothesis we additionally have

45: ∀rβ . (r1[s1 ? ↑0]~r1 = rβk)→ Expσ
~ρ?ερ

k
(t, s)→

Frρ⇒σ
~ρ (rβ , k)→ Nρ⇒σ

~ρ (rβ , λρ
ks)

We have to show Nρ⇒σ
~ρ (rα, λρ

ks). From42 it follows for some~r2 that

s1 ? ~r1 = ~r2 ? k andrα = (λτr1)~r2

We do a case distinction on~r2:

(a) Case~r2 = ø : It follows that~r1 = ø,s1 = k andrα = λτr1. This implies

41′: BN(r1[k ? ↑0] , t)
44′: Frρ⇒σ

~ρ (λτr1, k)
From44′ we getτ = ρ. By lemma 65 and41′ it follows for somet1 that

46: t = t1[k ? ↑0]
47: BN(r1, t1)

We need to show Nρ⇒σ
~ρ (λρr1, λ

ρ
ks). By the definition of N it suffices to show

I: ~ρ ` λρr1 : ρ⇒ σ

II: BN(λρr1, λ
ρt1)

III: Expρ⇒σ
~ρ (λρt1, λ

ρ
ks)

20 /

I follows from44′. II follows from47 and the definition of BN. It remains
to showIII: From44′ it follows by lemma 66 that

48: Frσρ?~ρ(r1, (k + 1))
From this,47 and lemma 68 it follows that Frσ

ρ?~ρ(t1, (k + 1)). By lemma 67
we get

49: λρt1 = λρ
k(t1[k ? ↑0])

Hence we need to show Expρ⇒σ
~ρ (λρ

k(t1[k ? ↑0] , λρ
ks). By the definition of

Exp it suffices to show

III.1: ~ρ ? ερ
k ` k : ρ

III.2: Expσ
~ρ?ερ

k
(t1[k ? ↑0] , s)

III.3: ~ρ ` λρ
k(t1[k ? ↑0]) : ρ⇒ σ

III.1 follows from44′. III.2 follows from43 and46. III.3 we show as
follows:48 entails(ρ ? ~ρ ` r1 : σ). By lemma 53 and47 we get(ρ ? ~ρ `
t1 : σ). This implies(~ρ ` λρt1 : ρ⇒ σ). Using49 finally showsIII.3.

(b) Case~r2 = (r3 ? ~r3) : We haves1 = r3, ~r1 = (~r3 ? k) and therefore
rα = (λτr1)(s1 ? ~r3). Thus we have

41′′: BN(r1[s1 ? ↑0] (~r3 ? k), t)
42′′: λτr1(s1 ? ~r3 ? k) = rαk

44′′: Frρ⇒σ
~ρ (λτr1(s1 ? ~r3), k)

We need to show

I: Nρ⇒σ
~ρ (λτr1(s1 ? ~r3), λ

ρ
ks)

Firstly we show Nρ⇒σ
~ρ (r1[s1 ? ↑0]~r3, λ

ρ
ks) by means of the induction hy-

pothesis45, that is we instantiaterβ with r1[s1 ? ↑0]~r3. For this it re-
mains to show Frρ⇒σ

~ρ (r1[s1 ? ↑0]~r3, k) and for this again it remains to show
(~ρ ` r1[s1 ? ↑0]~r3 : ρ⇒ σ). By44′′ it holds that

410: ~ρ ` λτr1(s1 ? ~r3) : ρ⇒ σ

By means of theSubject Reduction(lemma 51) we get(~ρ ` r1[s1 ? ↑0]~r3 :
ρ⇒ σ). Hence it holds that

411: Nρ⇒σ
~ρ (r1[s1 ? ↑0]~r3, λ

ρ
ks)

By inversion on411 we get

412: BN(r1[s1 ? ↑0]~r3, t
′)

413: Expρ⇒σ
~ρ (t′, λρ

ks)
From412 it follows by the definition of BN that

414: BN(λτr1(s1 ? ~r3), t′)
I follows from410,413,414 and the definition of N. This completes the
proof.

4.4.3. The proofs of “Axiom 2” to “Axiom 10”

For the proof of “Axiom 2” we introduce an auxiliary predicate Ã, which is implied by A.

/ 21

Definition 70 (Atwo). We defineÃ : (LT, T,Λ,Λ) as

“AtwoIntro” : BN(~r,~t)→ Exp
~σ
~ρ (~t, ~s)→ (~ρ ` n : ~σ � ρ)→ Ã

ρ
~ρ(n~r, n~s)

Lemma 71 (AAtwo). Aρ
~ρ(r, s)→ Ã

ρ
~ρ(r, s)

Proof: Induction on A.

Lemma 72 (“Axiom 2”, Ax2). Aι
~ρ(r, s)→ Nι

~ρ(r, s)

Proof: By means of lemma 71 and inversion.

Remark 73. Axiom 3 and Axiom 4 follow immediately from the definition ofA.

Lemma 74 (“Axiom 5”, Ax5). Head(r1, r2)→ Nρ
~ρ(r2,

.
s)→ (~ρ ` r1 : ρ)→ Nρ

~ρ(r1,
.
s)

Proof: Induction on Head and N.

Lemma 75 (Ax6Aux). (θ ⇑) ◦ (s ? ↑0) = θ

Proof: Induction onθ.

Lemma 76 (“Axiom 6”, Ax6). Head((λρr)[θ]s, r[s ? θ])

Proof: By means of lemma 75 and theorem 14.

Remark 77. Note that the proof of “Axiom 6” uses theorem 14 about composition of
substitutions, which was the main result of section 2.

Lemma 78 (“Axiom 7”, Ax7). Head(r, s)→ Head(rt, st)

Proof: Induction on Head.

Lemma 79 (HeadTypJ). Head(r, s)→ (~ρ ` r : ρ)→ (~ρ ` s : ρ)

Proof: By means of theSubject Reduction(lemma 51).

Lemma 80 (“Axiom 8”, Ax8). Head(r, s)→ Frρ~ρ(r, k)→ Frρ~ρ(s, k)

Proof: By lemma 79 and the definition of Fr.

The following auxiliary represents the core in the proof of “Axiom 9”. Its proof partic-
ularly requires the possibility toextendthe context in the predicate Expρ

~ρ(r, s). This is
allowed by the specific definition of Exp (see definition 46).

Lemma 81 (ExpExtCtx). Expρ
~ρ(r, s)→ Expρ

~ρ?~τ (r, s)

Proof: Simultaneous induction on Exp andExp.

Lemma 82 (“Axiom 9”, Ax9). Nρ
~ρ(r,

.
s)→ Nρ

~ρ?~σ(r,
.
s)

Proof: Induction on N.

22 /

Lemma 83 (“Axiom 10”, Ax10). Aρ
~ρ(r, s)→ Aρ

~ρ?~σ(r, s)

Proof: Induction on A.

5. Normalization by Evaluation

From the normalization proof of the previous section, the corresponding program can
be extracted. As we implemented the proof in the proof system Minlog, this task can be
undertaken automatically. We call the extracted program “cNTheorem” in accordance to
Minlog’s notation.

According to the soundness theorem on program extraction (cf. [4], section 4) cN-
Theorem realizes the Normalization Theorem, that is cNTheoremr NTheorem, hence

cNTheoremr ∀~ρ, r. Cor~ρ(r)→ ∃sN
Typ~ρ(r)

~ρ (r, s)

which by the definition of realizability leads to

∀~ρ, r. Cor~ρ(r)→ N
Typ~ρ(r)

~ρ (r, cNTheorem(~ρ)(r))

That is, for every termr, which is correctly typed in the context~ρ, cNTheorem(~ρ)(r) is
indeed the long normal form ofr.

It will turn out, that cNTheorem is the well-known algorithm calledNormalization
by Evaluation. This relation was first shown by Berger in [1]. We now introduce the
Normalization by Evaluation and then show its accordance to the extracted algorithm
cNTheorem.

5.1. Definition of the Normalization by Evaluation

For termsr, which are correctly typed in a context~ρ, we define the function NbE, which
represents the Normalization by Evaluation:

NbE~ρ(r) := �Typ~ρ(r) ([[r]]~ρ�~ρ
)(L(~ρ))

The role of the upper~ρ in the evaluation[[r]]~ρ�~ρ
under the assignment�~ρ will be explained

below. In order for the Normalization by Evaluation to be correct, we need in case of
Cor~ρ(r) that

NbE~ρ(r) = lnf~ρ(r)

where lnf~ρ(r) denotes the long normal form ofr within the context~ρ.
As model we choose the universal information systemΩ. We then can define the

arrows� and�, which are calledreflectandreify respectively. In case of� we need the
possibility to choose a fresh variable in order to perform theη-expansion. That’s why in
accordance to our model with itsCι := N→ Λ the arrows do not operate directly onΛ,
but on functionsf : N→ Λ.

/ 23

Remark 84. Due to the “de Bruijn” notation we don’t need term families, which are
used in the usual notation to ensure that variables, which are supposed to be fresh, don’t
already appear as bound variables.

Definition 85. We define simultaneously�: Ω→ N→ Λ and�: (N→ Λ)→ Ω by

�ι (a)(k) := a(k)
�ρ⇒σ (a)(k) := λρ

k �σ (a �ρ (k))(k + 1)

�ι (f) := f
�ρ⇒σ (f(k))(b) := �σ (f(k) �ρ (b)(k))

Remark 86. .

1. k denotes the constant functionk. Provided thatk is great enough,k plays the
role of a fresh variable. InNbE~ρ(r) the arrow � is initialized with such ak,
namelyk = L(~ρ).

2. For better readability the administrative functions are not given explicitly here.
The notationa(k) is in fact a shortform ofModIota(a)(k) and a �ρ (k) of
Mod(a)(�ρ (k)). Likewise the valuef is a shortform ofHatIota(f) and �σ

(f(k) �ρ (b)(k)) of Hatρ,σ(�σ (f(k) �ρ (b)(k))).

Via �ρ we are able to define the assignment�~ρ. We introduce it in accordance to the “de
Bruijn” notation as lists of typeLΩ.

Definition 87. We define�: LT → LΩ as

�~ρ := �ρ0 (0) ? �ρ1 (1) ? . . . ? �ρL(~ρ)−1 (L(~ρ)− 1)

For the empty list we define�ø:= ø. The typeρi denotes theith element within~ρ. The
notationn means as before the constant functionn. Next we give the evaluation function
[[r]]~ρ~a, where~a plays the role of an assignment:

Definition 88. We define[[]] : Λ→ LT → LΩ → Ω as

[[k]]~ρ~a := k m ~a

[[rs]]~ρ~a := [[r]]~ρ~a[[s]]~ρ~a
[[λρr]]~ρ~a(b) := [[r]]ρ?~ρ

b?~a

Remark 89. Again the administrative functions are left out for better readability. The
application case is to be understood asMod([[r]]~ρ~a)([[s]]~ρ~a). The abstraction case reads in

detail asHatρ,Typρ?~ρ(r)([[r]]
ρ?~ρ
b?~a). From this it gets clear, why the definition of[[]] needs to

have a context~ρ.

We are now able to define the Normalization by Evaluation:

Definition 90. We defineNbE : LT → Λ→ Λ as

NbE~ρ(r) := �Typ~ρ(r) ([[r]]~ρ�~ρ
)(L(~ρ))

24 /

It remains to show that Normalization by Evaluation is sound, that is we need to prove

NbE~ρ(r) = lnf~ρ(r) for Cor~ρ(r). This could be done by induction on the syntactical

structure ofr (cf. [16]). However we can skip this step here, as in the next section we

will show that NbE~ρ(r) matches exactly the extracted program from the normalization

proof, which computes the long normal form as we already know.

5.2. The Extracted Program of the Normalization Proof

The entire extracted program can be divided into the extracted parts correspond-

ing to lemma 1, lemma 2, lemma 3, the auxiliary SCrsSeq and finally the NTheo-

rem. In accordance to Minlog’s notation we call them “cLemmaOne”, “cLemmaTwo”,

“cLemmaThree”, “cSCrsSeq” and “cNTheorem” respectively.

The following table gives the symbols of Minlog’s output and the corresponding

notation used in the text. As already mentioned all about the program extraction, which

is used here, can be found in detail in [4] in section 4. In order to distinguish more easily

between the simply typedλ-calculus from the normalization proof and theλ-calculus

from the Curry-Howard-Correspondance theλ of the latter is underlined.

Explanation Symbol Minlog’s Output
λ-abstraction: λx.M ([x]M)
pair: 〈M |N〉 (M@N)
left element of a pair: (M 0) left M
right element of a pair: (M 1) right M
arrow for types: ⇒ =>
product for types: × @@
recursion operator: R Rec

Besides we use p, q and d respectively for functions of typ

(omega=>nat=>term)@@((nat=>term)=>omega) , list type=>list

omega=>omega andlist type=>list omega respectively.

5.2.1. The Realizers of theSC-Lemmas

If we had defined the predicate SC in its original version by means of axioms, labels for

it would have appeared in the extracted program for which we had no realizers. Hence

we could not get a complete extracted program. However by the redefinition through the

predicate SCr we do get such realizers. They turn out to be exactly the administrative

functions ModIota, HatIota, Mod and Hat from section 3.

/ 25

5.2.2. The Extracted Program for Lemma 1

“Lemma 1” reads as follows:

∀ρ∀nc~ρ, r. (~ρ ` r : ρ)→ (SCρ
~ρ(r)→ FNρ

~ρ(r)) ∧ (FAρ
~ρ(r)→ SCρ

~ρ(r))

The corresponding extracted program “cLemmaOne” is:

(Rec type=>(omega=>nat=>term)@@((nat=>term)=>omega))
(ModIota@OmegaInIota)
([rho3,rho4,p5,p6]

([a7,n8] Abs rho3
(Sub(left p6(Mod a7(right p5([n9]Var n8)))(Succ n8))

(Wrap(Succ(Succ n8))((Var map Seq 1 n8):+:(Var 0):))))@
([g7]Hat rho3 rho4([a8]right p6([n9]g7 n9(left p5 a8 n9)))))

We translate this into the notation used previously in the text. For better readability we
keep the denotations forleft and right . For the administrative functions we use
again shortforms. Variables are renamed in an obvious way. Furthermore the abbreviation
λρ

kr = λρr[↗k
1 ? 0 ? ↑k+2] introduced earlier is used. The constant functionλm.k can

be written ask. Thus we get for cLemmaOne:

R : T→ (Ω→ N→ Λ)× (N→ Λ)→ Ω
〈λa, k. a(k) | λf. f〉
(λρ, σ, p1, p2.

〈λa, k. λρ
k left p2(a right p1(k))(k + 1) |

λf, b. right p2(λk. f(k)(left p1(b)(k)))〉)

Lemma 91. cLemmaOne(ρ) = 〈�ρ | �ρ〉

Proof: Induction onρ.

5.2.3. The Extracted Program for Lemma 2

“Lemma 2” reads as follows:

∀ncρ, ~ρ, r, s.(~ρ ` r : ρ)→ SCρ
~ρ(s)→ Head(r, s)→ SCρ

~ρ(r)

The corresponding extracted program “cLemmaTwo” is:

[a0]a0

This result could be achieved by the specific definition of SC through SCr . Also the nc-
quantifiers, supported by the proof system Minlog, play a vital role here. They could be
used because SCrρ

~ρ unlike SCρ
~ρ hasnocomputational content.

26 /

5.2.4. The Extracted Program for Lemma 3

“Lemma 3” reads as follows:

∀r, ~ρ∀nc~σ, ρ,~s. (~ρ ` r : ρ)→ SC
~ρ

~σ(~s)→ SCρ
~σ(r[~s ? ↑0])

The corresponding extracted program “cLemmaThree” is:

(Rec term=>list type=>list omega=>omega)
([n3,rhos4](ListRef omega)n3)
([r3,r4,q5,q6,rhos7,as8]Mod(q5 rhos7 as8)(q6 rhos7 as8))
([rho3,r4,q5,rhos6,as7] Hat rho3(Typ(rho3::rhos6)r4)

([a8]cLemmaTwo(q5(rho3::rhos6)(a8::as7))))

For the translation we proceed as before. Note that we can resolve cLemmaTwo as the
identity. The functionListRef is the function “m” which picks the corresponding ele-
ment from a list. Thus we get for cLemmaThree:

R : Λ→ LT → LΩ → Ω
(λk, ~ρ. km)
(λr, s, q1, q2, ~ρ,~a. (q1 ~ρ ~a)(q2 ~ρ ~a))
(λρ, r, q, ~ρ,~a. λb(q (ρ ? ~ρ) (b ? ~a)))

Lemma 92. cLemmaThree(r)(~ρ)(~a) = [[r]]~ρ~a

Proof: Induction on r.

5.2.5. The Extracted Program for Lemma “SCrsSeq”

The auxiliary “SCrsSeq” (lemma 39) reads as follows:

∀~ρ, ~σ. SC
~ρ

~σ?~ρ(↗
L(~ρ)
L(~σ))

The corresponding extracted program “cSCrsSeq” is:

(Rec list type=>list type=>list omega)
([rhos2](Nil omega))
([rho2,rhos3,d4,rhos5]

right(cLemmaOne rho2)([n6]Var Lh rhos5)::d4(rhos5:+:rho2:))

For the translation we can resolve the right element of cLemmaOne in accordance with
the above lemma as�. Furthermore([n6]Var Lh rhos5) can be written as a con-
stant sequence. Thus we get:

R : LT → LT → LΩ

(λ~σ. ø)
(λρ, ~ρ, d, ~σ. (�ρ (L(~σ))) ? d(~σ ? ρ))

To show that(cSCrsSeq~ρ ø) is the assignment�~ρ we need a more general lemma. For
this we define the generalization�~σ

~ρ of the assignment�~ρ :

/ 27

Definition 93. We define�: LT → LT → LΩ as.

�~σ
~ρ := �ρ0 (L(~σ)) ? �ρ1 (L(~σ) + 1) ? . . . ? �ρL(~ρ)−1 (L(~σ) + (L(~ρ)− 1))

�~σ
ø is again defined as ø.

Lemma 94. cSCrsSeq(~ρ)(~σ) =�~σ
~ρ

Proof: Induction on~ρ.

Lemma 95. cSCrsSeq(~ρ)(ø) =�~ρ

Proof: With the above lemma 94 and�ø~ρ=�~ρ .

5.2.6. The Extracted Program of the Normalization Theorem

The Normalization Theorem reads as follows:

∀~ρ, r. Cor~ρ(r)→ ∃sN
Typ~ρ(r)

~ρ (r, s)

The corresponding extracted program “cNTheorem” is:

[rhos0,r1]
left(cLemmaOne(Typ rhos0 r1))
(cLemmaThree r1 rhos0(cSCrsSeq rhos0(Nil type))) Lh rhos0

With the preceding results we get� for the left element ofcLemmaOne, the evaluation
function [[]] for cLemmaThree , and�~ρ for cSCrsSeq with parameters~ρ and ø. Thus
we finally get for cNTheorem:

λ~ρ, r. �Typ~ρ(r) ([[r]]~ρ�~ρ
)(L(~ρ))

From this it immediately follows that.

cNTheorem(~ρ)(r) = NbE~ρ(r)

Hence we have finally shown that the Normalization by Evaluation is sound and that the
extracted program of our normalization proof is exactly this Normalization by Evalua-
tion.

References

[1] Ulrich Berger. Program extraction from normalization proofs. In M. Bezem and J.F.
Groote, editors,Typed Lambda Calculi and Applications, volume 664 ofLNCS, pages 91–
106. Springer Verlag, Berlin, Heidelberg, New York, 1993.

[2] U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program extraction from nor-
malization proofs.Studia Logica, 2005. Special issue, to appear.

[3] Dominik Schlenker. Programmextraktion aus einem Normalisierungsbeweis
für den einfach getyptenλ-Kalkül. Master’s thesis, LMU München, 2005.
http://www.math.lmu.de/∼schlenke/.

28 /

[4] Helmut Schwichtenberg. Minimal logic for computable functionals, 2005. Mathematisches
Institut der Universität München.

[5] Thierry Coquand and Peter Dybjer. Intuitionistic model constructions and normalization
proofs.Mathematical Structures in Computer Science, 7:73–94, 1997.

[6] Catarina Coquand. From semantics to rules: A machine assisted analysis. In E. Börger,
Y. Gurevich, and K. Meinke, editors,Computer Science Logic, 7th Workshop, Swansea 1993,
volume 832 ofLNCS, pages 91–105. Springer Verlag, Berlin, Heidelberg, New York, 1994.

[7] Thorsten Altenkirch. Proving strong normalization of CC by modifying realizability seman-
tics. In H. Barendregt and T. Nipkow, editors,Types for Proofs and Programs. International
Workshop TYPES ’93. Nijmegen, The Netherlands, May 1993., volume 806 ofLNCS, pages
3–18. Springer Verlag, Berlin, Heidelberg, New York, 1994.

[8] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Reduction-free normalization
for a polymorphic system. InLICS’96, 1996.

[9] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Phil Scott. Normalization by eval-
uation for typed lambda calculus with coproducts. InLICS ’01: Proceedings of the 16th
Annual IEEE Symposium on Logic in Computer Science, pages 203–210, Washington, DC,
USA, 2001. IEEE Computer Society.

[10] Malgorzata Biernacka, Olivier Danvy, and Kristian Stovring. Program extraction from weak
head normalization proofs. Preliminary proceedings of MFPS XXI, Birmingham, UK, 2005.

[11] The Minlog System - http://www.minlog-system.de/.
[12] Helmut Schwichtenberg. Minlog reference manual, 2004. Mathematisches Institut der Uni-

versität München.
[13] Felix Joachimski.Reduction Properties ofΠIE-Systems. PhD thesis, LMU München, 2001.
[14] Dana Scott. Domains for denotational semantics. In E. Nielsen and E.M. Schmidt, editors,

Automata, Languages and Programming, volume 140 ofLNCS, pages 577–613. Springer
Verlag, Berlin, Heidelberg, New York, 1982. A corrected and expanded version of a paper
prepared for ICALP’82, Aarhus, Denmark.

[15] Helmut Schwichtenberg. Recursion on the partial continuous functionals. In C. Dimi-
tracopoulos, L. Newelski, D. Normann, and J. Steel, editors,Logic Colloquium ’05, vol-
ume 28 ofLecture Notes in Logic, pages 173–201. Association for Symbolic Logic, 2006.
http://www.math.lmu.de/∼schwicht/papers/athen05/total06.pdf.

[16] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Term rewriting for normalization
by evaluation.Information and Computation, 183:19–42, 2003.

