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1. Introduction

We formalize a version of Tait’s normalization proof for the simply typedalculus and
machine-extract a program which turns out to implement the well-known normalization-
by evaluation algorithm. The fact that this algorithm is the computational content of
Tait’s proof has first been observed by Berger in [1]. However — as is to be expected —
the formalization turned out to be not at all a trivial matter. This is partially due to the
fact that the proof relied on some “Axioms”, which were not proven. In fact even though
the “Axioms” were chosen to be rather simple looking, the formalization revealed that
also the proofs of the “Axioms” were not at all trivial. This was particularly the case for
“Axiom 1". For this reason we will give the complete core of the proof of “Axiom 1” in
this paper. Moreover, we intend to describe some of the choices which have simplified
the task considerably. Clearly, a full formalization of the prisafecessary for machine
extraction of a program.

[2] describes such formalizations carried out for the proof assistdimtog, Coq
andlsabelle/HOLwhich all have suitable program extraction machineries built in. This
provided a useful occasion to test these machineries in a non-trivial setting and to com-
pare the three proof assistants. The crucial questions, on which the formalizations di-
verge, are how to (1) model the simply typeatalculus, (2) represent in the given logical
system the notions introduced in the proof (i.p. Tait’s strong computability predicates),
(3) optimize program extraction in order to get as close as possible to normalization-by
evaluation.



Here we restrict ourselves to a formalization in Minlog., which has been done essen-
tially in full detail.! The proof can be run interactively in the Minlog system, which is
available ahttp://www.minlog-system.défhe proof code itself can be found within the
Minlog system in the directory “minlog/examples/tait/diplomarbeit_schlenker/". In this
paper names in parenthesis next to definitions, lemmas and theorems usually correspond
to the names in the implementation in Minlog. Further details about the formalization
can be found in [3].

The paper consists of five sections. Section 2 introduces the simply kypaldulus
in the “de Bruijn” notation, for which normalization is proven. Moreover it shows a way
in this notation how to handle substitution formally. This section acts also as a brief
introduction to Minlog by showing some examples of the proof code. Section 3 is about
the universal information systefhiand the so-calleddministrative functiondJniversal
information systems come into play as we redefine the predicate SC over a new predicate
SO in form of ch(r) = Ja Sag(a,r). The universal information systefa then is
an appropriate domain for the new variable typ&ection 4 presents the normalization
proof. It is divided into a general part, the main part and the part with the proof of the
“Axioms”. Section 5 finally gives the extracted program and shows that it represents the
well-known algorithm called Normalization by Evaluation.

All about the program extraction, which is used in this paper and on which the proof
system Minlog is based upon, can be found in detail in [4] in chapter 4.

Related work

Related normalization algorithms have been machine-extracted from formal proofs in
the type-theoretic proof checker ALF (the precursor of AGDA) [5,6]. However, there
the main ingredients of normalization-by-evaluation, the evaluation function and its in-
verse|, show up explicitely in the proofs already, while in our proof these components
of the algorithm are implicit in the logical argument and are made explicit by the ex-
traction only. There exist also formalized normalization proofs for systems such as the
Calculus of Constructions [7], System F [8], the typedalculus with co-products [9]
and\-calculi with various weak reduction strategies [10] for which however no program
extraction by machine has been carried out.

2. The Simply TypedA-Calculus

In this section we define the simply typeédcalculus, for which we will prove weak
normalization later on. We introduce thecalculus in the “de Bruijn” notation, which
allows us to handle substitution formally. This will be needed particularly in the proof of
“Axiom 6”". The “de Bruijn” notation goes without names for bound variables, hence no
alpha conversion is needed here.

To convey a first idea how the formalization is implemented in the proof system
Minlog, we give some simple examples of the proof code in this section. More details
about Minlog can be found at its webpage [11], particularly its reference manual [12]
and the work on the theoretical background of the proof system [4].

1The main part is implemented except for some trivial statements. The part of the “Axioms” is implemented
except for some non-critical auxiliaries.



2.1. Definition of the Simply TypedCalculus

For the simply typed\-calculus (with a single ground type) the set of types is defined
inductively as follows:

Definiton1. T == {¢} | T=T

In Minlog such an inductive data structure is defined via a so-cé#edalgebrawith the
corresponding commaratd-alg

(add-alg "type"

'("lota" "type")
("Arrow" "type=>type=>type"))

An algebra, which is here callégpe , is built fromconstructorsin this case frontota
andArrow . While lota is a nullary constructoisrrow takes two elements from the
algebratype and constructs another elementygbe . Hence for exampléota is an
element of the algebra as well Asrow lota lota andArrow (Arrow lota
lota) lota

Elements offl" are denoted by, o andr. In Minlog this corresponds to adding new
variables with the commaratd-var-name

(add-var-name "rho" "sig" "tau" (py "type"))

(py "type") determines the algebra which the variables refepyoindicates to the
parser that the name that follows is an algebra.
For the set of\-terms we use the “de Bruijn” notation:

Definition 2. A ::= N | AA | AT(A)
Again this data structure is implemented in Minlog as an algebra:

(add-alg "term"
‘("Var" "nat=>term")
‘"App" "term=>term=>term")
'("Abs" "type=>term=>term"))

This time the algebra is calladrm . and the constructors a¥&r , App andAbs. Here
nat is the predefined algebra in Minlog representing the natural numbers.

Elements ofA are denoted by, s andt. As before this corresponds to adding vari-
ables in Minlog:

(add-var-name "r" "s" "t* (py "term"))

This time the variables denote elements of the algtbra .

We use the usual abbreviation for applicatios:= rs; ... s, wheres'is the list
with the elementsy, .. ., s,,. As we use th€hurch type systeffior our calculus we need
contexts for the free variables. In the “de Bruijn” notation contexts can be defined as lists
with types as elements:

Definition 3. Ly ::= g | T x Lp
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Elements ofLy are denoted by, & and7. We will use x in general for lists, both as a
list constructor and also for appending lists.

In Minlog, lists with elements from an arbitrary algebra form a predefined algebra,
which can be generated by the keywdist . Hence in order to add contexts to the
system it suffices to write:

(add-var-name "rhos" "sigs" “"taus" (py "list type"))
Next we define the recursive functidiyp, which determines the type ofaterm:

Definition 4. Typ: Lt - A — T

Typg(n) =1

Typ(p*ﬁ)(o) =p

TYP(psp ((n+1)) :=Typ;(n)
Typs((rs)) := Valtyp(Typ;(r))
Typs((Ar)) =p = (TYP(pu (7))

where Valtygp = o) := ¢ and Valtygt) := «. The irregular cases Valtyp := ¢ and
Typg(n) := « make the function total. They are absorbed by the check of correctness
expressed by the functidDor later on.

In Minlog such a recursive function is implemented by a so-cgilegram constant
for which computation rulegan be defined:

(add-program-constant "Typ" (py "list type=>term=>type") 1)

(add-computation-rule (pt "Typ(Nil type)(Var n)") (pt "lota"))
(add-computation-rule (pt "Typ(rho::rhos)(Var 0)") (pt "rho"))
(add-computation-rule (pt "Typ(rho::rhos)(Var(Succ n))")

(pt "Typ rhos(Var n)")
(add-computation-rule (pt "Typ rhos(r s)")

(pt "Valtyp(Typ rhos n)")
(add-computation-rule (pt "Typ rhos(Abs rho r)")

(pt "rho to Typ(rho::rhos)r"))

The program constariftyp takes as argument an element of the algdistatype
and one of the algebtarm and returns an element of the algetype . The numbed
in the first line indicates that the program constant is supposed to bepbtaidicates
to the parser, similarly gsy before, that a genertédrmfollows, that is an element of an
algebra.

The next recursive functioBor checks, whether a term is well-typed:

Definition 5. Cor: Lt — A — B

Corz(n) :=n < L(p)
Corz(rs) :=Corz(r) and Cop(s) and

Typ;(r) = (Typs(s) = Valtyp(Typ;(r)))
Corz(APr) := COX(,u (1)

whereB is the boolean algebra antlthe length of a list. Finally we define the type
judgement:
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Definition 6. -: Ly — A =T — B, (fkr:p):=Corz(r)and Typ(r) = p
In Minlog both, Cor and, are defined as program constants analogously to Typ.

2.2. Substitution in “de Bruijn” Style

2.2.1. Definition of Substitution

We will define substitution formally, based on the work of Joachimski [13]. Therefore
we firstintroduce a “lift”, which is used to adapt variables ik-germ during substitution
in accordance to the “de Bruijn” notation.

Definition7. : A —-N—->N—> A

n+k :n>m

nik, = .
n : otherwise

(rs) T = (r Th)(s 15)

(A1) 1 = AP (1 1)

We use the following abbreviatian(”*:= r T&. As this lift is used in the example below,
we give also its implemented form here:

(add-program-constant "Lift" (py "term=>nat=>nat=>term") 1)
(add-computation-rule (pt "Lift (Var n) m k")

(pt "[if (n<m) (Var n) (Var(n+k))]"))
(add-computation-rule (pt "Lift (App r s) m k")

(pt "App (Lift r m K)(Lift s m k)"))
(add-computation-rule (pt "Lift(Abs rho r)m k")

(pt "Abs rho (Lift r(m+1)k)"))
Next we define substitution lists, which are lists)eferms ending with a lift:
Definition 8. © == N | Ax©

An element of© is denoted by. Besides a lift for\-terms we also need a lift for
substitution lists:

Definition9. 1:© = N — ©

Tm,ﬂm = Tm+7z,
(rx0) ™ :=r 1" % (01"

Analogously we also usg to lift common lists ofA-terms. We use the following abbre-
viationd {} := 6 1. With the above definitions we are now able to define substitution
recursively as follows:

Definition 10 (Substitution). .[]: A - © — A



Ofrx0] :==r

nr 0] :=(n—1)[6]

n[t*] =n+k
rs)[6] = (r[0])(s[0])

(
(APr)[0] ==X (r[0x 6 9])

2.2.2. Properties of Substitution

The substitution introduced above has some nice properties. Particularly it allows to for-
mally handle composition of substitutions. This will be needed for “Axiom 6” in the
Normalization Proof. Detailled proofs can be found in [3].

First we define inductively the composition of two substitution lists:

Definition 11. 0 : ©® - © — O

19 o6 =0

Tn-{-l ° Tm = Tn+1+m

1t o(r % 0) := 1" of
(r«0)of :=r[0] *(0c0)

Remark 12. 19 is a neutral element on both sides with respect to composition, i.e.
1000 =6 = 0o 1°.

We define /%:=n x ... x (n + k) and the abbreviatiop’*:= k.

Lemma 13. The following properties hold:

T Tl =7 T
=T T

0 ﬂmﬂn: 0 ﬂern
rim=rlm x ]

fo 1= 0 "

10 ™ 1= 1[0 4] withl € N
r/™ x0T Tn=rLT X 04T
o (0 ") =(008) (™

T LT ok (T O)] =[x 0]
O o(F % 0) =000

COPNDUAWN B

=

Proof: Properties 1, 2, 4, 7 and 9 hold by inductionarProperties 3, 5, 6, 8 and 10
hold by induction orf. [

As an example for the way a proof is written in Minlog, we sketch the implementation
of property 1 from above. First thgooal has to be given by the commaasdt-goal

(set-goal (pf "all r,m,n,nl.
Lift (Lift r m n) (m+n) n1 = Lift r m (n+nl)"))

pf indicates to the parser thatfarmula follows, analogously as befonygy andpt .
The expressioall represents the quantifigt The variablenl corresponds ta’. The
program constaritift was defined above.

Next comes the actual proof in form of a list of commands:



(ind)

(ng)

(assume "k" "m" "n" "nl1")
(cases (pt "k<m"))

The commandind) causes Minlog to perform an induction on the first variable of the
current goal, in this case on the variableThe induction is followed by several other
commands, where for examgeases (pt "k<m")) initiates a corresponding case
distinction. Note that Minlog is based dwackward chainingthat is the order of reason-
ing is reverse to the order in a usual proof tree.

When the prove is finished, it can be saved for example under the name "LiftTwice":

(save "LiftTwice")

Through the comman@ise "LiftTwice") one can then use this lemma later on in
another proof.
With the above properties one can finally show the main property:

Theorem 14. (SubSub)r(0] [¢'] = r[0 0 ¢']

Proof: Induction onr, case distinction on the form éfand induction o®’. [

3. Semantics

In order to extract a complete program we will redefine the original definition for Strong
Computability “SC” in the Normalization Proof and replace it by S€3a. SOr. For the
variablea we need an appropriate domain. In this subsection we introduaenitersal
information systepwhich will be such a domain. It is based on the notiomédrmation
systemsleveloped by Dana Scott.

Besides the universal information system we introduce the so-cadlethistrative
functionsMod and Hat and for the ground typéhe functions Modlota and Hatlota. The
administrative functions will appear as realizers of the SC-Lemmas.

Information systems [14,15] can be seen as an intuitive approach to deal construc-
tively with ideal, infinite objects in function spaces, by means of their finite approxima-
tions. One works with atomic units of information, calletens and a notion otonsis-
tencyfor finite sets of tokens. Finally there is antailmentrelation, between consistent
finite sets of tokens and single tokens. Titheals (or object3 of an information system
are defined to be the consistent and deductively closed sets of tokens; weAyrite
the set of ideals oA.

Let N and A be information systems representing the natural numBeaiad the
termsA, andC,-,, := C, — C,. The definition ofC, asN — A, instead of justA
is due to the specific requirements of the normalization proof. This will be explained in
more detail later on.

We definef2 to be the disjoint union of alC,. Since the token sets of (&, are all
disjoint, we take as set of tokens @f simply the union of the sets of tokens of &ll,.

A finite set of tokens of2 is called consistent if it is a consistent in sofdg. Similarly,
the entailment relation is inherited from th,.



In ©, consider the sef’ of pairs (U, b), where for some, o, bothU andb have
typep = o, andU + b. By definition, F' can be viewed as an approximable map from
Q — Qto Q, and also as an approximable map fréito Q — €. By the bijective
correspondence between the continuous mfagé\ | — |B| and the approximable maps
from A to B we can viewF' as a map Hat(|Q?] — |2|]) — |€2| and also as a map
Mod: |©2] — || — |€2|. By construction, Hat and Mod are inverse to each other.

Clearly we have canonical injections and projections, that is, continuous maps
in,: |C,| — || and oug: |Q2| — |C,|. Both are determined by the same approximable
map, consisting of alll, b) with U F b where bothlJ andb are of typep. In the special
case of the type, recall thatC, := N — A. The injection in: |C,| — |Q?| is denoted
by Hatlota. Similarly, the projection out|Q2| — |C,| is called Modlota.

We can easily define a continuous map Pafrom || to the information system
for types, which assigns to an ideak |Q2| the “part” of the disjoint union it belongs to.

It is easy to verify that

Mod(in,=,(u)) = in, o u o out,,

Hat(h) = Jin,=o(out, o hoin,).
P,

Let Hat, , := out,—., o Hat.

4. The Normalization Theorem
4.1. Introduction

4.1.1. “Strong Computability”

The normalization proof due to Tait relies essentially on the notion of “Strong Com-
putability”. The corresponding predicate is 3C.omputability implies normalizability
of a A\-term, as is to be shown in “Lemma 1". Hence the proof’s intrinsic ambition is to
show computability of all well-typed-terms.

Strong computability is originally defined along the type (cf. [1]):

SC(r) := FN'(r)
SC77(r) :=Vs.SC’(s) — SC(rs)

FN(r) means, that is normalizable. In the formalization which this paper is based on

we work in terms ofveaknormalization, that is Fit-) means there existslong normal

form of r. With respect to program extraction (cf. [4], section 4) it is essential, that

FN(r) und therefore SGr) and also S€(r) of arbitrary typep do have computational

content. What is special about the definition however is, that the @ype= 7(SC,)

of the predicate depends enwhere theC, in correspondance to can get arbitrarily

complex. That would make a programming language with dependent types necessary
Hence the notion of Strong Computability is strictly speaking not a single predicate,

but a family of countably many different predicates. In first order logic, which the proof

2As we restrict ourselves in this formalizationt@aknormalization, we use a kind of “weak” computability.
Nevertheless we keep the established symbol SC.



system Minlog is also based on, such a family of predicates cannot be defined. If one
defined SC through axioms, corresponding labels would appear in the extracted program,
for which one could not determine the computational contents.

For this reason we run a different path here, which has in addition the essential
advantage, that the realizer of “Lemma 2" turns out to be simply the identity. We define
the predicate SC through a new predicate S@e use SC then only as an abbreviation.

In accordance to oux-calculus we add contexts:

SC;.(T’) :=Ja SO’g(a, 7)

We will define SC in such a way, that it haso computational content, which is then
“sourced out” intoa. Accordinglya has to be of a universal type, which covers all the
typesC, of the original predicate SC. The appropriate structure for such a type is the
universal information systef from the previous section. Simultanouslyepresents an
appropriate model for the simply typedcalculus. That is the variabtecan be looked at
as a\-term interpreted in the model. This perspective will play a role in the next section,
when it comes to Normalization by Evaluation.

With respect to the constructiveexpansion we define Fi¢-) not just asﬂsNg(r, s),
butasvk. Fri(r, k) — HsNg(r, s). AccordinglyC, isN — A, which fits to the definition
of the universal information system in the previous section. Furthermore we need to
handle the variables as partial variables and writé™ as before.

The new predicate SAs defined in such a way, that the original definition of SC
still holds, but now in form of lemmas. We call these lemr8&sLemmad~or example
case reads a little simplified as:

V5, . 3aSQ G(a, ) < V. Fry(r, k) — FsN5(r, s)

It will turn out that the realizers of the SC-Lemmas are exactly the administrative func-
tions Modlota, Hatlota, Mod and Hat. In the above example it holds for the direction
from left to right:

Modlotar V"°g, . 3aSQ 5(a,r) — Vk. Fry(r, k) — 3sN(r, s)
and therefore also
Vg, 7. Va. SQr(a,r) — Modlota(a) 1 Vk. Fri(r, k) — JsN5(r, s)

where the partk. Fri(r, k) — JsNi(r, s) at the end matches the original definition of
SC;(r). Therefore by masking the administrative functions one could say suggestively
that SC (a, r) is defined such thait realizes the original definition of S&):

“SCr(a,r) — ar SC(r)”

4.1.2. The structure of the proof
We devide the normalization proof into three parts:

|I. The General Part
Il. The Main Part
IIl. The Part of the Axioms
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The first part introduces the general notions and global auxiliaries used in the other two
parts. The second part represents the main part of the normalization proof. The third part
proves the “Axioms”, which are used in the main part.

The “Axioms” from the main part have no computational content and therefore have
no effect on the extracted program. In the main part the predicates “N”, “A” and “Head”
are not defined concretely, but are just delimited by the “Axioms”. That is the proof solely
uses the properties of the predicates, which are given through the “Axioms”.

Even though the main part does give the complete extracted program, it does not
provide a proof, that such predicates can be defined at all. Moreover it remains open, that
there are such definitions, which grasp the intuitive meaning of the predicates and hence,
that the extracted program does in fact what it is supposed to do: to compute the long
normal form of a well-typed\-term.

In the third part we finally give appropriate definitions for the predicates “N”, “A”
and “Head”. That is we define them in such a way that they carry the intended meaning
and prove that they satisfy the “Axioms” from the main part. All three parts together
make up the complete normalization proof.

4.2. Part I: The General Part of the Normalization Proof

4.2.1. Particular Definitions for the Normalization Proof

The PredicatedN, A, Headand Fr. As explained above we declare the predicates N,
A and Head without giving concrete definitions. Those will be given in the part of the
“Axioms”. Moreover we define the predicate Fr. All four predicates are supposed to have
no computational content. The intuitive meaning of the predicates is as follows:

Ng(r, s): r ands are of typep in the contexjp, ands is a long normal form of
r, i.e. there is &-normal form ofr, whosen-expanded form is.

Ag(r,s): r and s are of typep in the contextp; r is of the formr =
krirs...r, ands of the forms = ks;s, ... s, and l\g(m, s;) holds
foralli e {1,...,n}.

Headry,r2): 7y is of the formr; = (\°t)s5 andr, of the formry, = (t[s x 1°])3

Fr;i(r, k): r is of type p in the contextp, andk is greater than all the fre
variables inr.

11°

For simplicity we define the predicate Fr already here in the general part of the proof.

Definition 15 (Fr). We defind-r: (Ly, T, A,N) as

Fri(r k) = (12 p) A (k= L(D))

Even though the definition slightly differs from the intuitive meaning above, it suffices
for our purpose to get freshvariablek.

FN andFA. We introduce FN and FA just as abbreviations.



Definition 16. | FN(r) = Vk. Fr(r, k) — 3sN%(r, s)

Definition 17. | FA%(r) = Vk. Fri(r, k) — 3sAL(r, s)

The use of Pg:(r, k) is justified from a computational point of view, since we will need a
fresh variablé: to construct the long normal form.

SCandSQ. As explained above we introduce SC by means of the new predicate SC
which is defined as a predicate constant by the following axioms:

Definition 18 (SCr). We define&SQ : (Lt, T,Q, A) as

SQi(a,r) « (pFr:e) A (Par(a) =1) A
(V. Fr 5(r, k) — N3(r, Modlota(a)(k)))
SO:;:”(d,T) (PEr:p=o0)A (Par(a) =p=0) A
(

V&, b,s. SO’ (b, s) — SQ%, ~(Mod(a)(b),rs))

p*xG

pxc

The original predicate SC is then only used as the following abbreviation:

_— o
Definition 19. SC;(T) = JaSQ%(a,r)

4.2.2. The SC-Lemmas

The original definition of SC still holds after its redefinition, now in form of lemmas,
which we callSC-Lemmas

Lemma 20 (LemmasSClota). | Vg, r. SC;(r) « ((p'F 7 : 1) A FN5(r))

Proof: Case “-" is obvious. Case " is provable with the Axiom of Choice. O

Lemma 21 (LemmaSC).

VNCa, p, o, . SOO:W(T) = ((fFr:p=0) ANV, s SC,
VNCs, rVp, o. SCp:M(r) — S

Proof: Case “>” is obvious. Case£-" is provable with the Axiom of Choice, Indepen-
dence of Premises and a Uniformity Principled]

SCandSQ. We introduce pluralform§C andSQOr respectively with lists as arguments,
meaning that SC and $@pply on each single element of the list. In order to allow case
distinction on lists with partial elements we introduce the notiostafcturally totaland

its corresponding predicate ST({tﬁ).
Definition 22 (SCrs). We defineSQr : (L, Lt, Lo, Ly) as

“SCrsDefNil” : SO 2(2, )
“SCrsDef”  : STotald) — SQ%(a,s) — SO %(d@,5) — SO% " (a % d@,s % 5)
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Then it follows by induction or5Qr:
Lemma 23 (SCrsSTotaI).ST)g(é, 5) — STotala)

4.2.3. Specific Definitions

The abbreviation\} s represents the binding of ttteth variable in the terma by a leading
AP,

Definition 24 (ABS). We define\” : N —-T — A — A as
s = N(s[7F %0 1H42])

Furthermore we need the extensidf{p) of a contextg, such thatk lies in 5’ x €7 (p),
which we also abbreviate @5« </

Definition 25 (ExtCtx). We defineg : Lt - N — T — Ly by

£0(9) =
loxp) =2
S® =px (L)

ehp1(o*p) :=en(p)
Definition 26 (thof). We defing: > ['as thek-th element of an arbitrary list.

We introduce the plural forit- of the type judgemerit:
Definition 27 (TypJs). We defind-: Ly — Ly — Lt — B as

cl-g:2 =T
gliFa: (p*p) =F
dlE(rx7): @ =F

FlFE(rx7):(p*xp):=(@Fr:p and(FlF7:p)
4.2.4. The “Axioms”

The following “Axioms” are assumed in the main part and proven in the third part. As
the predicates are supposed to have no computational content, the “Axioms” have none
either.

“Ax1” Frg:“’(r, k) — N o (rk,s) — Ngﬁg(r7 Aps)

AX2" L A(r, s) — Ni(r, s)

‘AX3": (7 k: p) — ALk, k)

“Ax4” :Agﬁg(rl,sl) — (pkry:p) — Ng(rg,SQ) — A% (ri72, 5152)
"‘AXS” :Headry,r2) — Ni(r2,3) — (P'F 71 p) — Ni(r1, )

“Ax6” :Head(\°r)[d]s,r[s * 0])

“Ax7" :Headr,s) — Headrt, st)

“AX8" : Headr, s) — Fré(r, k) — Fr’(s, k)

‘A9 NO(r,8) — N7 (1, 3)

“AX10" : AL(r,s) — AL, _(r,s)




4.2.5. Global Auxiliaries

The following global auxiliaries are used in Part Il and in Part lll of the proof:
Lemma 28 (TypJAppIntro). (FF-r:p=0) = (fxdts:p) — (Pxdtrs:o)
Lemma 29 (SubVar). k < L(5) = k[§* T"] =k>§

Lemma 30 (SCrsLh). SO2(@, 5) — L£(d@) = L(5) A L(7) = L(5)

Lemma 31 (TypJSub). (57 :p) — (GlIF5:p) — (G Fr[5* 1° : p)

Lemma 32 (TypJEXtCtx). (pkr:p) — (FxdF7r:p)

Proof: Lemma 28 clearly holds. Lemma 29 holds by inductiontoand 5. Lemma 30
holds by induction or8Qr. Lemma 31 holds by induction anhandp. Lemma 32 holds
by induction onr andp. O

4.3. Part Il: The Main Part of the Normalization Proof

Traditionally the proof of the main part consists of three main lemmas and the final
Normalization Theorem. The detailed proofs can be found in [3].

4.3.1. “Lemma 1", “Lemma 2" and “Lemma 3"

Lemma 33 (“Lemma 1", LemmaOne).

YOG, (5 12 p) — (SCYr) — FNE(r) A (FAS(r) — SC4(r))

Proof: Induction onp and by means of the “Axioms 1", “Axioms 2", “Axioms 3", “Ax-
ioms 4” and “Axioms 10”. [

Lemma 34 (“Lemma 2", LemmaTwo).

W%, 5,1 5.(71 75 p) — SCh(s) — Headr, 5) — SCHr)

Proof: By the generalization
V%, g, s,a.(pF 1 p) — SO’g(d7 s) — Headr, s) — SO’%(d,r)
which holds by induction op and by “Axioms 57, “Axioms 7" and “Axioms 8”. [

Lemma 35 (“Lemma 3", LemmaThree).

Wr, V"%, p. 5. (5 12 p) — SCh(F) — SCL(r[F * 1°])

Proof: Induction onr and by means of “Axioms 6” and “Axioms 9”. [J
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4.3.2. The Normalization Theorem

The following auxiliaries are used in the Normalization Theorem:
Lemma 36 (TypJVar). (¢ x px gk L(&) : p)

Lemma 37 (Sublds). Cory(r) — r[/£?) % 19 =7

Lemma 38 (Frintrol). (p'Fr: p) — Fri(r, £(p))

Lemma 39 (SCrsSeq).?Cg*ﬁ(/ﬁg?))

Proof: Lemma 36 holds by simple induction 6h Lemma 37 holds by induction an
Lemma 38 holds by definition of Fr. Lemma 39 holds by inductionsand by means
of “Axiom 3” and lemma 36. [

Remark 40. The above lemma 39 (“SCrsSeq”), which also uses “Axiom 3", has com-
putational content and does appear in the extracted program.

Theorem 41 (“Normalization Theorem”, NTheorem).

Vp,r. Corz(r) — HSN;ﬂypﬁ(T‘) (r, )

Proof: Cor(r) is given. By setting := Typ,(r) we havegy'+ 7 : p. From lemma 39 it
follows thatSC(,*“(”)). From this and by “Lemma 3" we get $G[,"“(?) x 1°]),

which can be simplified by lemma 37 to §(@). By “Lemma 1" FN;;(r) follows. Due to
lemma 38 we have Er, £(p)). Thus by the definition of FN we g&sN%(r,s). [

4.4. Part lll: The Part of the Axioms

We will give concrete definitions of the predicates “N”, “A” and “Head” and then prove
the “Axioms” from the main part (see section 4.2.4). “Axiom 1" is by far the most com-
plex. We will therefore focus on this “Axiom” and give the core of its proof in full detail.

4.4.1. The Definition of the Predicates

The Definition of ‘N”. Ng(r, s) is supposed to express, thaands are of typep in the
contextp and thats is a long normal form ofr. For that purpose we define two more
predicates “BN” (forg-normal form) and “Exp” (fom-expansion), and simultaneously
their plural forms BN” and “Exp”.

Definition 42 (BN, BNs). BN : (A, A), BN : (L, L,)

“BNVar” :BN(7, 5) — BN(n7,ns)
“BNAbs” :BN(r,s) — BN(\°r, \s)
“BNBeta” :BN(r[s x 1°]7,t) — BN(\r(s x 7),t)

“BNsNil” : BN(2. 2)
“BNsCons”: BN(r, s) — BN(7,5) — BN(r x 7, s x 5)
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Remark 43. The definition is motivated by the alternative representation of the
A-calculusA = n7 | Ar | (Ar)(s x 7), where the set of-normal forms can be
generated by the first two casesNBg ::= ni’ | APr.

For the predicate Exp we need a context dug-&xpansion. One could try to define Exp
recursively unlike in the case of BN, where the proof of totality would in fact correspond
to a proof of (strong) normalization. But the inductive approach for Exp turns out to be
advantageous in the proof.

The part of Exp however, which is called tbatside expansioand denoted by,
we define recursively. Here the recursive approach is more straightforward and clearer.

Definition 44 (Eta). We defing): T — A — A as

n(r) =r
7o (r) = M7 (r 11 97(0))

Definition 45. We define+: Ly — T — T as

g—p =p
(cxp) > p:=0=(0—p)

Definition 46 (Exp, Exps). Exp: (Lt, T, A, A), Exp: (L, Ly, La, Ly)

“ExpVar’ (5 k& — p) — EXPy(7,8) — (t = 1P (k3)) — EXph(kT, 1)
“EXpAbs” :(py xpa kG k:p) — EX[Z):;)';]U*ﬁ2 (r,s) —
(Pr = Nor:p=0) — Ex ﬁl*;()\gr, Ay s)
“ExpsNil” : %g(ﬂ, 2)
“ExpsCons”: Exp(r, s) — EXp,(F, §) — EXg)"” (r x 7, s  5)

Remark 47. The definition oExp is motivated by the alternative representation of the
A-calculus as in case &N before. Since we nedtkp only as part ofN, we can restrict
the predicate to\-terms which are alreadg-reduced (cf. remark 43) thus making proofs
shorter.

The definition of Exp particularly takes into account the requirements of “Axiom 1” and
“Axiom 9”. “Axiom 1" requires that the context can be reduced, while “Axiom 9” on the
contrary requires an extension of the context. It suffices to take this into consideration in
the second case “ExpAbs” only, however one has to be all the more careful here.

If there the contexts in the subformulas were kept fixed, the definition would clearly
not suffice. Induction on Exp would fail for the extension as well as for the reduction
of the context. If on the other hand an arbitrary context would be in the last part of the
formula, cases would occur, where %((n s) holds and even ands are of typep in the
contextp, but nevertheless not being the long normal form of

The type judgements; = Ar : p = o) and the extended contextin the last
part of the formula however do lead to thisecisedefinition of the predicate. Whil&
obviously allows to extend the context, the type judgement allows to reduce the original
context(p; x p2) appropriately tg; avoiding irregular cases. In fact the type judgement
even suffices to get the following desirable result:
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Lemma 48 (ExpTypJ). Expli(r,s) — (57 :p) A (FF s p)

Proof: (5'F r: p) can be proven by induction on Ex@z F s : p) holds due to the fact,
that in the definition of Exp(r, s) the free variables of ands are kept identical at each
stage. O

We can now define the predicate N as follows:

Definition 49 (N). We defineN : (Ly, T, A, A)

“NiIntro” : (o'F 7 : p) — BN(r,t) — Expg(t, s) — Ng(r,s)

Remark 50. In the definitiontotal variables are used (as in all definitions of the predi-
cates). This guarantees that frdﬁ’g(f, s) it follows thatr and s are total

As required in the informal description of N from subsection 4.2.1, it remains to show,
that alsos is of correct type. For that we need the so-calBject Reductiqrwhich
also appears in the proofs of “Axiom 1” and “Axiom 8.

Lemma 51 (“Subject Reduction”, SR). (7F (A°7)s: p) — (FF r[s x 1°] : p)
Proof: Provable on the basis of lemma 31

Remark 52.

1. The suggesting attempt to prove the Subject Reduction by inductiofieds in
the abstraction case.

2. The converse of the Subject Reductigi- r[s x 1°] : p) — (g (A\°7)s : p) is
clearly notderivable.

With the Subject Reduction we also get preservation of type for BN:
Lemma 53 (BNTypJ). BN(r,s) — Vp,p. (b 7r:p) — (pF s:p)
Proof: Provable on the basis of tt&ubject Reductiolemma 51). O

Remark 54. The convers&r, s. BN(r, s) — Vp,p. (0t s:p) — (gF r: p) doesnot
hold in general (cf. remark 52). That's why the type judgentght r : p) is in the defi-
nition of N. Otherwise one could derive the type foalready fromExpg(t, s).

We finally get preservation of type for N:

Lemma 55 (NTypJ). N%(r,s) — (p'Fr:p) A (PFs:p)

Proof: By means of lemma 53 and lemma 482

Hence the predicate N corresponds with its informal description from section 4.2.1.

Definition 56 (Head). We defindHead: (A, A) as

“HeadCon”: Head (\*r)s7, r[s x 1°]7)
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Definition 57 (A). We definéA : (L, T, A, A) as

“AlndVar : (7 k : p) — Ab(k, k)
“AlndApp” :Ag:”(r, s) = (P11t p) = NE(r1,81) — Aj(rri, ss1)

Lemma 58 (ATypJ). Vp, p, 1, s. Ag(r, s)— (fkr:p)
Proof: Inductionon A. [

This finishes the definition of the predicates. We now give the proofs of the “Axioms”.
Some of the basic proof ideas of “Axiom 1” and “Axiom 2" are due to Pierre Letouzey.

4.4.2. The Proof of Axiom 1

For “Axiom 1" we need the auxiliaries listed below. Moreover “Axiom 1" requires the
possibility toreducethe context in the predicate E§<(o~, s). This is allowed by the spe-
cific definition of Exp (see definition 46).

Lemma 59 (BNsTypJ). BN(7, 5) — (plIF7: &) — (g lIF 5: &)
Lemma 60 (ExpsRedCtx). EXpy, , 5, (7, 5) — (71 I 7'+ &) — EXpy, (7, 5)

- =

Lemma 61 (ExpsTypJs). Expy (7, 5) — (7l 7: &) A (FIIF 5: 5)

Lemma 62 (SubThroughEta). n”(r)[68] = n*(r[d])

Lemma 63 (ABSLIft). Fri(r,k) — [,/ » 0% 1¥2] =+ 1!

Remark 64. From lemma 63 it immediately follows tha(r, k) — A\7r = A(r T1)
Lemma 65 (Ax1Aux21). BN(ri[k  1°],) — Jt;. t = t1][k « 1°] A BN(ry,¢1)
Lemma 66 (Ax1Aux22). Fr=7 (\r, k) — Fro s(r, (k +1))

Lemma 67 (Ax1Aux23). Fry(r, (k + 1)) — A7 = X (r[k * 1°])

Lemma 68 (Ax1Aux24). BN(r, t) — Fri(r, k) — Fri(t, k)

Proof: Lemma 59 holds by means of lemma 53. Lemma 60 holds by inductieiaod
by the definition of Exp. Lemma 61 holds by means of lemma 48. Lemma 62 holds by
induction onp. Lemma 63 follows from the more general lemma

Frio(r, k) — 1/ % /eq xmox 10O — e gl
which holds by induction om. Lemma 65 holds by induction on BN. Lemma 66 holds

by the definition of Fr. Lemma 67 holds by induction bnLemma 68 holds by means
of lemma 53. O

Lemma 69 (“Axiom 17, Ax1). |Fr2=7(r, k) — N

o p*gz (Tk'7 S) - Nf—;bg(r, )\25)
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Proof: Given F£™7 (r, k) and NG, (1%, 5), we need to show K77 (r, \ys). Through

17

inversion on N[ _, (rk,s) we get(p x e = rk : o), BN(rk,t) and EXg. o (t,s). In
order to obtain a strong enough induction hypothesis, we* set rk and show the
generalization

Vra. 7 =rok — EXPG, o(t,5) — FIo7 7 (ra, k) — NO77(ra, As)

We prove this by induction on B(¥, ¢):

1. Case“BNVar” :

BN(n#,nt) is given throughBN(7 7). Moreover we haveni = 7.k,
EXPE, .o (nt,s) and FE7(r,, k). We need to show &7 (r,, As). From the
assumptions it follows that, is of the formr, = n# and of the form
7 = (71 » k). Hence we hav8N((7, = k), ) and thereforg = (f; * k). We
obtain
Al: Exp:%*sz (n(ty % k), s)
. p=0 —
A2: E (717‘1, k)
A3: BN(Fl,tl)
We need to show ;@?"(nﬁy A7 s). By the definition of N it suffices to show:
I (o ni:p=o)
II: BN(TLFl,TLtl)
III: Exp}f?"(ntl, AL s)
I follows from A2 by the definition of FrII follows from A3 by the definition
of BN. ITI we prove by inversion od\1: We obtain
N (frefbn:d— o)
A5 s =n%(ns)
A6: %;*EZ((a * k)a 5')
A6 implies thats'is of the forms = &, x s; andd of the forma = &1 % 01.
Moreover it follows that
AT EXBy.0(f1,51)
A8: Engigg(k» 51)
Together withA2 it follows thato; = p. Now in order to shovlII it suffices by
the definition of Exp to show:
II1.1: pkn:dy — (p=0)
II1.2: Exp (f1,51)
IIL.3: A)s =177 (ns)
I11.1 follows from A4, the form of5 and by means of\2. This implies as well
plIF 7 : &. By lemma 59 and\3 we get/ Il ¢, : &;. By lemma 60 using\7
this implies
A9: EiXPZ:l (t1,51)
that isITI.2. It remains to shoWII.3. Lemma 61,2 andA9 lead to
A10:: Fri77 (nd), k)
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From A8 we get by inversiors; = n” (k). Together withA5 and the form ofs
this impliess = n?((n&1)n”(k)). Hence we have to show
IL3" A (17 ((ns1)n”(k))) = "~ (ns1)
For the right side it holds that
1777 (n81) = M (0 ((ns1) ' 1°(0)))
For the left side it holds that
A”( “((ns1)n°(K))
17 ((ns1)n’ (k ))[/’f * 0% 1542
07 (3P (k)% % 0% 1547]))  Lem. 62
(n51)[. . Jn”(k )[ 1))
(n&) 1! n”(k)[/ k% 0% 1%2])) Lem. 63 u.A10
(n51) 1 0P (k[ * 0% 1%%2]))) Lem. 62
—N’( 7((n81) 1" 7°(0)))
This showdII.3’, hence alsdII.3.
. Case"BNAbs” : We havelr; = r,k. This leads to falsum and therefore
yields the claim.
. Case"BNBeta”: We have BNA"r;(s; * 71),t) through
A1: BN(Tl[Sl * T ]’1"1, )
By instantiatingr, we get
A2 NTrq(s1 *xT1) = Tok
A3: EXPE, o (t, 5)
N4 FrZ:U(v"m k)
Moreover by the induction hypothesis we additionally have
A5 Vrg. (ri[s1 * %7 =rgk) — EXpJ*Ep( s) —
Frg:}”(rg,k) NZ:m(rg,)\Zs)

We have to show l@?”(ra, Ars). From A2 it follows for somer, that

(
(
(
— )\p 770(
(
(

s1 x 71 =79 x kandr, = ()\Trl)FQ

We do a case distinction of:

(a) Casery, = g: ltfollowsthati, = @,s; = kandr, = A7r;. Thisimplies
A1": BN(r[k * 19],1)
A4 Frﬁ?"()ﬁrl, k)
From A4’ we getr = p. By lemma 65 and\1’ it follows for somet; that
N6 t=ti[k* 17
AT: BN(ry,t1)
We need to show gf“’(/\f’rl, A7 s). By the definition of N it suffices to show
L pFXNriip=o0o
IL: BN(\°ri, \7ty)
L EXp7 (\t1, A7s)
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I follows from A4’. 11 follows from A7 and the definition of BN. It remains
to showIII: From A4’ it follows by lemma 66 that
A8 Fry s(ry, (k+1))
From this,A7 and lemma 68 it follows that B ;(¢1, (k + 1)). By lemma 67
we get
A9 Nty = No(t1[k = 1°])
Hence we need to show EXp” (A, (t1[k x 1°],A7s). By the definition of
Exp it suffices to show
IIL1: pgrefbk:p
IIL.2: Expf, o (ta[k * 19, s)
IIL3: g XN (tilk* 1°):p=>0
II1.1 follows from A4’. II1.2 follows from A3 and A6. IT1.3 we show as
follows: A8 entails(p x o' 71 : o). By lemma 53 and\7 we get(p x g F
t; : o). Thisimplies(g'+ At : p = o). Using A9 finally showsIII.3.

(b) Casery = (r3 x73) : We haves; = r3, 71 = (73 * k) and therefore

ro = (A7r1)(s1 * 73). Thus we have

A1 BN(rq[s1 * 19 (73 % k), 1)

A2 NTr(s1 % T3 % k) = 1ok

N4 Fr;i:‘f()ﬁrl(sl *73), k)
We need to show

I NQ:U(ATrl(sl * 73), Aps)

Firstly we show rgi"’(rl [s1 x 1°]73,A7s) by means of the induction hy-
pothesisA5, that is we instantiates with r1[s; x 19]73. For this it re-
mains to show Fgr:”(rl [s1 = 19]73, k) and for this again it remains to show

(P 7ri[s1 * 1°]75 : p = o). By A4” it holds that
AN10: pENri(s1%xT3):p=>o0
By means of théSubject Reductiolemma 51) we getj - r1[s; » 1°] 75 :
p = o). Hence it holds that
A11: Ngzm(rl [s1 % 1975, ALs)
By inversion onA11 we get
A12: BN(ri[sy x 19]735,t)
A13: ExpT7 (', AYs)
From A12 it follows by the definition of BN that
A14: BN(A"r1(s1 * 73),1)
I follows from A10, A13, A14 and the definition of N. This completes the
proof.

O

4.4.3. The proofs of “Axiom 2" to “Axiom 10”

For the proof of “Axiom 2" we introduce an auxiliary predicate A, which is implied by A.
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Definition 70 (Atwo). We definél : (Ly, T, A, A) as
“Atwolntro” : BN(7, ) — EXpy(f, 3) — (5 n: & — p) — AYn7, n3)
Lemma 71 (AAtwo). A5(r,s) — A%(r, s)

Proof: Induction on A. O

Lemma 72 (“Axiom 2", Ax2). | A5(r,s) — Nx(r,s)

Proof: By means of lemma 71 and inversionJ

Remark 73. Axiom 3 and Axiom 4 follow immediately from the definitiorof

Lemma 74 (“Axiom 5", Ax5). | Headr1,72) — Ni(ra,8) — (511 : p) — N&(r1, 5)

Proof: Induction on Head and N. [
Lemma 75 (AX6AUX). (8 1) o (s x 1°) =0

Proof: Induction ond. [

Lemma 76 (“Axiom 6", Ax6). ’ Head (\r)[0] s, r[s % 0]) ‘

Proof: By means of lemma 75 and theorem 147

Remark 77. Note that the proof of “Axiom 6” uses theorem 14 about composition of
substitutions, which was the main result of section 2.

Lemma 78 (“Axiom 7", AX7). ’ Headr, s) — Headrt, st) ‘

Proof: Induction on Head. O
Lemma 79 (HeadTypJ). Headr,s) — (pkr:p) — (pF s:p)

Proof: By means of th&ubject Reductiolemma 51). O

Lemma 80 (“Axiom 8", Ax8). |Headr, s) — Fr(r, k) — Fri(s, k)

Proof: By lemma 79 and the definition of Fr. O

The following auxiliary represents the core in the proof of “Axiom 9”. Its proof partic-
ularly requires the possibility textendthe context in the predicate E§<cr, s). This is
allowed by the specific definition of Exp (see definition 46).

Lemma 81 (EXpEXICtx). EXpi(r, s) — Expf ~(r,s)

Proof: Simultaneous induction on Exp aigp. O

Lemma 82 (“Axiom 9", Ax9). |NZ(r,s) — N7 (1, 3)

P

Proof: Inductionon N. [
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Lemma 83 (“Axiom 10", Ax10). |A%(r,s) — A% .(r,s)

Proof: Inductionon A. [J

5. Normalization by Evaluation

From the normalization proof of the previous section, the corresponding program can
be extracted. As we implemented the proof in the proof system Minlog, this task can be
undertaken automatically. We call the extracted program “cNTheorem” in accordance to
Minlog’s notation.

According to the soundness theorem on program extraction (cf. [4], section 4) cN-
Theorem realizes the Normalization Theorem, that is cNTheorBifheorem, hence

cNTheoreny Vg, . Corg(r) — Hsng”(T) (r, s)

which by the definition of realizability leads to
Vg, 7. Cory(r) — N}ypﬁ(r)(r, cNTheorenip)(r))

That is, for every termr, which is correctly typed in the contegt cNTheoren(p)(r) is
indeed the long normal form of

It will turn out, that cNTheorem is the well-known algorithm callddrmalization
by Evaluation This relation was first shown by Berger in [1]. We now introduce the
Normalization by Evaluation and then show its accordance to the extracted algorithm
cNTheorem.

5.1. Definition of the Normalization by Evaluation

For termsr, which are correctly typed in a contextwe define the function NbE, which
represents the Normalization by Evaluation:

NbEs(r) := ™) ([r]] )(£(7))

The role of the uppep’in the evaluatior[r]]fﬁ under the assignme will be explained
below. In order for the Normalization by Evaluation to be correct, we need in case of
Cory(r) that

NbEﬁ(T’) = |nfﬁ(’/’)

where Inf;(r) denotes the long normal form efwithin the contexip.

As model we choose the universal information systemMe then can define the
arrows| and1, which are calledeflectandreify respectively. In case dfwe need the
possibility to choose a fresh variable in order to performitfexpansion. That's why in
accordance to our model with i3 := N — A the arrows do not operate directly dn
but on functionsf : N — A.
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Remark 84. Due to the “de Bruijn” notation we don’t need term families, which are
used in the usual notation to ensure that variables, which are supposed to be fresh, don't
already appear as bound variables.

Definition 85. We define simultaneously? — N — A and|: (N— A) — Q by

1" (a)(k) := a(k) B
1P=7 (a) (k) = A; 17 (a 17 (k) (k + 1)
1" (f)=7
1777 (f(R))(b) := 17 (f (k) 1”7 (b)(K))

Remark 86.

1. k denotes the constant functién Provided thatk is great enoughk plays the
role of a fresh variable. I'NbE;(r) the arrow | is initialized with such ak,
namelyk = L(p).

2. For better readability the administrative functions are not given explicitly here.

The notationa(k) is in fact a shortform oModlota(a)(k) anda 17 (k) of

Mod(a)(1? (k)). Likewise the valuef is a shortform ofHatlota(f) and 17
(F(k) 17 (b)(k)) of Hat, , (17 (f (k) 17 (b)(K)))-

Via 1” we are able to define the assignmgntWe introduce it in accordance to the “de
Bruijn” notation as lists of typé.q,.

Definition 87. We defing: Lt — L as

15:=170 @) % 17 (1) % ... % 1Peo1 (£(7) — 1)

For the empty list we defingg:= @. The typep; denotes théth element withing. The
notationz means as before the constant functioNext we give the evaluation function
[]%, whered plays the role of an assignment:

Definition 88. We defind [: A - Ly — Lo — Qas

K5 :=k>a

[rs15 = 112502

[er]5o) = [rl5:f

bxa

Remark 89. Again the administrative functions are left out for better readability. The
application case is to be understoodMsd([r[%)([s]%). The abstraction case reads in

detail asHat, r,, | () (ﬂr]]gjg). From this it gets clear, why the definition pf] needs to
have a contex.

We are now able to define the Normalization by Evaluation:

Definition 90. We defindNbE: Lt — A — A as

NbE;(r) := ™) ([r]7 )(£(7))
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It remains to show that Normalization by Evaluation is sound, that is we need to prove
NbEz(r) = Infz(r) for Corz(r). This could be done by induction on the syntactical
structure ofr (cf. [16]). However we can skip this step here, as in the next section we
will show that NbE;(r) matches exactly the extracted program from the normalization
proof, which computes the long normal form as we already know.

5.2. The Extracted Program of the Normalization Proof

The entire extracted program can be divided into the extracted parts correspond-
ing to lemma 1, lemma 2, lemma 3, the auxiliary SCrsSeq and finally the NTheo-
rem. In accordance to Minlog’s notation we call them “cLemmaOne”, “cLemmaTwo”,
“cLemmaThree”, “cSCrsSeq” and “cNTheorem” respectively.

The following table gives the symbols of Minlog’s output and the corresponding
notation used in the text. As already mentioned all about the program extraction, which
is used here, can be found in detail in [4] in section 4. In order to distinguish more easily
between the simply typed-calculus from the normalization proof and thecalculus
from the Curry-Howard-Correspondance thef the latter is underlined.

Explanation Symbol | Minlog's Output
A-abstraction: Ar.M ([xX]M)

pair: (M| N) (M@N)
left element of a pair: | (M 0) left M

right element of a pairj; (M 1) right M
arrow for types: = =>
product for types: X @@
recursion operator: R Rec

Besides we usep, g and d respectively for functions of typ
(omega=>nat=>term)@ @((nat=>term)=>omega) , list type=>list
omega=>omegaandlist type=>list omega respectively.

5.2.1. The Realizers of tf®C-Lemmas

If we had defined the predicate SC in its original version by means of axioms, labels for
it would have appeared in the extracted program for which we had no realizers. Hence
we could not get a complete extracted program. However by the redefinition through the
predicate S€ we do get such realizers. They turn out to be exactly the administrative
functions Modlota, Hatlota, Mod and Hat from section 3.
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5.2.2. The Extracted Program for Lemma 1

“Lemma 1” reads as follows:
WG (5 1 p) — (SCY(r) — FNG(r)) A (FAY(r) — SCy(r))

The corresponding extracted program “cLemmaOne” is:

(Rec type=>(omega=>nat=>term)@ @ ((nat=>term)=>omega))
(Modlota@Omegalnlota)
([rho3,rho4,p5,p6]
([a7,n8] Abs rho3
(Sub(left p6(Mod a7(right p5([n9]vVar n8)))(Succ n8))
(Wrap(Succ(Succ n8))((Var map Seq 1 n8):+:(Var 0))))@
([g7]Hat rho3 rho4([a8]right p6([n9]g7 n9(left p5 a8 n9)))))

We translate this into the notation used previously in the text. For better readability we
keep the denotations fdeft andright . For the administrative functions we use
again shortforms. Variables are renamed in an obvious way. Furthermore the abbreviation
Aer = NPr[ /% 0% T%+2] introduced earlier is used. The constant funcfiem & can

be written ag:. Thus we get for cLemmaOne:

R:T-(Q2—->N=-A)xN-=A)—-Q
(Aa, k. a(k) [ Af. f)
(Apagvplvp} .
(Aa, k. X left pa(a right py(k))(k+1)]
Af,b.right pa(Ak. f(k)(left p1(b)(K)))))
Lemma 91. cLemmaOnép) = (]” | 17)

Proof: Inductiononp. O

5.2.3. The Extracted Program for Lemma 2
“Lemma 2" reads as follows:

W%, 5,1 5.(7 75 p) — SCh(s) — Headr, s) — SCr)

The corresponding extracted program “cLemmaTwo” is:

[a0]a0

This result could be achieved by the specific definition of SC through 8ISo the nc-
guantifiers, supported by the proof system Minlog, play a vital role here. They could be
used because $§unlike Scpi hasno computational content.
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5.2.4. The Extracted Program for Lemma 3
“Lemma 3" reads as follows:
Vr, %5, p, 3. (7 - p) — SCa(3) — SC(r[5 x 1°])

The corresponding extracted program “cLemmaThree” is:

(Rec term=>list type=>list omega=>omega)
([n3,rhos4](ListRef omega)n3)
([r3,r4,95,06,rhos7,as8]Mod(g5 rhos7 as8)(q6 rhos7 as8))
([rho3,r4,g5,rhos6,as7] Hat rho3(Typ(rho3::rhos6)r4)
([a8]cLemmaTwo(g5(rho3::rhos6)(a8::as7))))

For the translation we proceed as before. Note that we can resolve cLemmaTwo as the
identity. The functiorListRef is the function >" which picks the corresponding ele-
ment from a list. Thus we get for cLemmaThree:

R:A—-Lpy—Lo—Q

(Ak, p. k>)

(Ara S, 41, qQ)ﬁ) a. (Q1 ﬁ d)(‘]? ﬁ H))

(Ap,r,q,p,d. Ab(q (p* p) (bxad)))
Lemma 92. cLemmaThreg")(5)(a@) = [r]7

a

Proof: Inductiononr. [

5.2.5. The Extracted Program for Lemma “SCrsSeq”

The auxiliary “SCrsSeq” (lemma 39) reads as follows:
V5,5.5C;, 5/ 2(5)

The corresponding extracted program “cSCrsSeq” is:

(Rec list type=>list type=>list omega)
([rhos2](Nil omega))
([rho2,rhos3,d4,rhos5]
right(cL,emmaOne rho2)([n6]Var Lh rhos5)::d4(rhos5:+:rho2:))

For the translation we can resolve the right element of cLemmaOne in accordance with
the above lemma ds Furthermorg[n6]Var Lh rhosb) can be written as a con-
stant sequence. Thus we get:

R:Ly — Lt — Lg
(15 0) o
(Ap, p,d, 6. (17 (£(5))) * d(G * p))

To show thaicSCrsSeqp ) is the assignmerit; we need a more general lemma. For
this we define the generalizatid);@ of the assignmerit; :



Definition 93. We defing: Lt — Lt — Lq as
1Z:=170 (L(3)) * 17 (L(G) + 1) % ... % 1Peo=1 (L£(3) + (£(p) — 1))

1% is again defined as @.

Lemma 94. cSCrsSe(p)(7) =15

Proof: Induction ong. [

Lemma 95. ’ cSCrsSe(p)(9) =15

Proof: With the above lemma 94 an§:1ﬁ . O

5.2.6. The Extracted Program of the Normalization Theorem

The Normalization Theorem reads as follows:
Vp,r. Corz(r) — HsN;ypﬁ(r) (r,5)

The corresponding extracted program “cNTheorem” is:

[rhos0,r1]
left(cLemmaOne(Typ rhos0 rl))
(cLemmaThree rl rhosO(cSCrsSeq rhosO(Nil type))) Lh rhosO

With the preceding results we ggfor the left element oELemmaOne the evaluation
function[ | for cLemmaThree, and]; for cSCrsSeq with parameterg’and @. Thus
we finally get for cNTheorem:

Ag,r. [0 ([r]] )(L(7)

From this it immediately follows that

cNTheorenip)(r) = NbE;(r)

Hence we have finally shown that the Normalization by Evaluation is sound and that the
extracted program of our normalization proof is exactly this Normalization by Evalua-
tion.
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