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Abstract. We restrict recursion in finite types so as to characterize the polynomial time
computable functions. The restrictions are obtained by enriching the type structure with
the formation of types ρ → σ and terms λx̄ρr as well as ρ ( σ and λxρr. Here we use
two sorts of typed variables: complete ones x̄ρ and incomplete ones xρ.

1. Introduction

Recursion in all finite types was introduced by Hilbert (1925), the sys-
tem later becoming known as Gödel’s system T (Gödel, 1958). The value
computed by a higher type recursion can be any functional, which is to
say a mapping that takes other mappings as arguments and produces a
new mapping. Correspondingly one defines a type system of functions and
functionals over some ground types.

Recursion in higher types, as in Gödel’s system T, has long been viewed
as a powerful scheme unsuitable for describing small complexity classes
such as polynomial time. It is well known that ramification can be used to
restrict higher type recursion. However, to characterize the very small class
of polynomial-time computable functions while still admitting higher type
recursion, it seems that an additional principle is required. By introducing
linearity constraints in conjunction with ramified recursion, we characterize
polynomial-time computability while admitting recursion in higher types.
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We shall work with “recursion on notation”, which seems appropriate
in the context of poly-time computation. So we consider numbers as repre-
sented in binary notation. Recall that every positive integer can then be
written uniquely as 1i1 . . . ik with iν ∈ {0, 1}, representing 2k+

∑k
ν=1 iν2

k−ν .
Using the functions s0(x) := 2x and s1(x) := 2x+1, we may write 1i1 . . . ik
as sik(. . . (si11) . . . ). In our term language to be introduced below we shall
denote si by Si, and the number 1 by 1.

We define a restriction LT of Gödel’s system T (Gödel, 1958) such that
definable functions are exactly the polynomial time computable ones. To
this end we combine

− a liberalized form of linearity for object and assumption variables
(allowing multiple use of ground type results) with

− an extension of ramification concepts to all finite types, by allowing

{

ρ → σ

λx̄ρr
as well as

{

ρ ( σ

λxρr

and a corresponding syntactic distinction between incomplete and com-
plete (typed) variables.

This paper grew out of joint work with Karl-Heinz Niggl done in 1998 and
reported in (Bellantoni et al., 2000). Its aim is to simplify and clarify some
of the concepts involved, with a planned extension (via the Curry-Howard
correspondence) to an arithmetical system in mind. In particular, we have
changed the constants, simplified the type system and the computation
model, and have streamlined the treatment of ramification.

Related work has been done by Martin Hofmann (1998), who obtained
similar results with a very different proof technique. Hofmann’s recursive
system was lifted to a polytime classical modal arithmetic by Bellantoni
and Hofmann (to appear). The earlier “intrinsic theories” of Leivant (1995)
followed the tradition of quantifier restrictions in induction. Ramification
concepts have been considered e.g. by Simmons (1988), Bellantoni/Cook
(1992) and Leivant/Marion (1993; to appear); they are extended here to
all finite types. Notice also that the “tiered” typed λ-calculi of Leivant
and Marion (1993) depend heavily on different representations of data (as
words and as Church-like abstraction terms), which is not necessary in the
approach developed here. One should also mention bounded linear logic
of Girard, Scedrov and Scott (1990), and the so-called light linear logic
of Girard (1998). The former differs from what we do here by requiring
explicit bounds. A precise relation to the latter still needs to be clarified.
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2. Motivation: examples for exponential growth

To set the stage, we discuss some examples of recursively defined functions
and functionals exhibiting exponential growth. Our task will be to find
appropriate restrictions on types and terms to exclude these definitions.

2.1. TWO RECURSIONS

d(1) := S0(1) e(1) := 1

d(Si(x)) := S0(S0(d(x))) e(Si(x)) := d(e(x))

Then |d(x)| = 2|x|, e(x) = d|x|−1(1), i.e. we have exponential growth.
The problem is that the previous value e(x) of the second recursion is
plugged into the recursion argument of d. Our cure will be to mark recur-
sion arguments (cf. the notions of safe vs. normal arguments (Simmons,
Bellantoni/Cook), and of tiering (Leivant)).

2.2. RECURSION WITH PARAMETER SUBSTITUTION

Consider the definition

e(1, y) := S0(y)

e(Si(x), y) := e(x, e(x, y))
or

e(1) := S0

e(Si(x)) := e(x) ◦ e(x)

Then e(x) = S2|x|−1

0 . The problem now clearly is that the previous higher
type value of the recursion has been used twice. Our cure will be a linearity
restriction.

A related phenomenon also involving recursion with parameter substi-
tution occurs if we define

e(1, y) := y

e(Si(x), y) := e(x, d(y))
or

e(1) := id

e(Si(x)) := e(x) ◦ d

Then e(x) = d(|x|−1). Now the problem might be localized in the fact that
we have a higher result type with argument types “marked” as recursion
arguments: the type of the single (recursion) argument of d needs to be the
argument type of e(x). Our cure will be to exclude this.
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2.3. HIGHER ARGUMENT TYPES: ITERATION

Consider the definition

I(1, f, y) := y

I(Si(x), f, y) := f(I(x, f, y))
or

I(1, f) := id

I(Si(x), f) := f ◦ I(x, f)

Then I(x, f) = f |x|−1, hence I(x, d) = d|x|−1. Now the problem lies in the
substitution of the recursively defined d into a function parameter. This
again will be excluded by requiring the result types to be without markers.

A related phenomenon occurs in

e(1) := S0

e(Si(x)) := I(S0(S0(1)), e(x))

Then: e(x) = S2|x|−1

0 . Here the problem is the use of the “incomplete” higher
type previous value e(x), occurring as the step argument of I. This will be
excluded by requiring that there are no such higher type parameters in the
step terms.

3. Types, terms, and denotations

As already mentioned in the introduction, we shall work with two forms of
arrow types and abstraction terms:

{

ρ → σ

λx̄ρr
as well as

{

ρ ( σ

λxρr

and a corresponding syntactic distinction between incomplete and complete
(typed) variables. The intuition is that a function of type ρ → σ may use
its argument many times, whereas a function of the “linear” type ρ ( σ is
only allowed to use it once. As is well known, we then need a corresponding
distinction for product types: the ordinary form × for →, and the tensor
product ⊗ for the linear arrow (. Formally we proceed as follows.

3.1. TYPES

The types are:

ρ, σ ::= U | B | L(ρ) | ρ ( σ | ρ → σ | ρ ⊗ σ | ρ × σ.
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The level of a type is defined by

l(U) := l(B) := 0

l(L(ρ)) := l(ρ)

l(ρ ( σ) := l(ρ → σ) := max{l(σ), 1 + l(ρ)}

l(ρ ⊗ σ) := max{l(ρ), l(σ)}

l(ρ × σ) := max{l(ρ), l(σ), 1}

Ground types are the types of level 0, and a higher type is any type of level
at least 1. A function type is a type of level at most 1. The →-free types
are also called linear types. In particular, each ground type is linear.

3.2. SET MODEL

There is an obvious set model of our type system, where we interpret every
type ρ in the left column by the set S

ρ given in the right column:

U a special singleton set

B a special two-element set

L(ρ) the set of lists of elements of S
ρ

ρ ( σ and ρ → σ the set of total functions from S
ρ to S

σ

ρ ⊗ σ and ρ × σ the cartesian product of S
ρ and S

σ

We abbreviate N := L(U) and call it the type of unary numerals; similarly
W := L(B) is called the type of binary numerals.

3.3. TERMS

The constant symbols are listed below, with their types.

xx : U

tt : B

ff : B

ερ : L(ρ)

∗ρ : ρ ( L(ρ) ( L(ρ)

ifτ : B ( τ × τ ( τ (τ linear)

c
ρ
τ : L(ρ) ( τ × (ρ ( L(ρ) ( τ) ( τ (τ linear)

Rρ
τ : L(ρ) → (ρ → L(ρ) → τ ( τ) → τ ( τ (ρ ground, τ linear)
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and for linear ρ, σ, τ

⊗+
ρσ : ρ ( σ ( ρ ⊗ σ

⊗−
ρστ : ρ ⊗ σ ( (ρ ( σ ( τ) ( τ

×+
ρστ : (τ ( ρ) ( (τ ( σ) ( τ ( ρ × σ

fstρσ : ρ × σ ( ρ

sndρσ : ρ × σ ( σ

Terms are built from these constants and typed variables xσ (incomplete
variables) and x̄σ (complete variables) by introduction and elimination rules
for the two type forms ρ ( σ and ρ → σ, i.e.

cρ (constant) |

xρ (incomplete variable) |

x̄ρ (complete variable) |

(λxρrσ)ρ(σ |

(rρ(σsρ)σ with higher type incomplete variables in r, s distinct |

(λx̄ρrσ)ρ→σ |

(rρ→σsρ)σ with s complete

We say that a term is linear or ground according as its type is. A term s is
complete if all of its free variables are complete; otherwise it is incomplete.
By the restriction on incomplete variables in the formation of (rs), a given
higher type incomplete variable can occur at most once in a given term.
We use infix notation for ∗, writing l ∗ r instead of ∗rl.

4. Conversions

The conversion rules are as expected.

(λxr)s 7→ r[x := s] β-conversion; similar for x̄

ifτ tts 7→ fstττs

ifτ ffs 7→ sndττs

c
ρ
τερs 7→ fstτ,σs for σ := ρ ( L(ρ) ( τ

c
ρ
τ (l ∗ρ r)s 7→ sndτ,σsrl for σ := ρ ( L(ρ) ( τ

Rρ
τερst 7→ t

Rρ
τ (l ∗ρ r)st 7→ srl(Rρ

τ lst)

⊗−
ρστ (⊗

+
ρσrs)t 7→ trs
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fstρσ(×+
ρστrst) 7→ rt

sndρσ(×+
ρστrst) 7→ st

Notice that we shall work with a representation of terms via parse dags, to
be explained in Section 6. This will ensure that β-conversion of (λxr)s or
(λx̄r)s leads to a term within our system (cf. the proof of Lemma 6.2).

Redexes are subterms shown on the left side of conversion rules above.
We assume that no two bound variables have the same name, and no bound
variable has the same name as a free variable. A term is in normal form if
it does not contain a redex. Write r → s for the one-step reduction based
on the conversion rules, and r →∗ s for its reflexive transitive closure. For
every term t there is a unique normal-form term nf(t) such that t →∗ nf(t).
Two terms are called equivalent if they have the same normal form.

5. Examples for exponential growth, again

We now come back to the examples form Section 2, and explain how our
restrictions on the formation of types and terms make it impossible to
build the corresponding terms. However, for definiteness we first have to
say precisely what we mean by a numeral.

5.1. NUMERALS

Terms of the form (. . . (ερ ∗ρ rρ
n) . . .∗ρ r

ρ
2)∗ρ r

ρ
1 are called lists. We will make

use of the following abbreviations for N := L(U) and W := L(B).

0 := εU

S := λlNl ∗ xx

1 := εB

S0 := λlWl ∗ ff

S1 := λlWl ∗ tt

id := λx.x

Particular lists are S(. . . (S0) . . . ) and Si1(. . . (Sin1) . . . ). The former are
called unary numerals, and the latter binary numerals (or numerals of type

W). We denote binary numerals by ν.
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5.2. TWO RECURSIONS

Recall that we considered the definition of

d(1) := S0(1) e(1) := 1

d(Si(x)) := S0(S0(d(x))) e(Si(x)) := d(e(x))

The corresponding terms are

d := λx̄.RWx̄(λz̄λl̄λpW.S0(S0p))(S01),

e := λx̄.RWx̄(λz̄λl̄λpW.dp)1.

Here d is legal, but e is not: the application dp is not allowed.

5.3. RECURSION WITH PARAMETER SUBSTITUTION

Recall the proposed definition of

e(1, y) := S0(y)

e(Si(x), y) := e(x, e(x, y))
or

e(1) := S0

e(Si(x)) := e(x) ◦ e(x)

The corresponding term

λx̄.RW(Wx̄(λz̄λl̄λpW(Wλy.p(py))S0

does not satisfy the linearity condition: the variable p occurs twice, and p

needs to be incomplete because the type of R uses · · · → (ρ → L(ρ) →
τ ( τ) rather than . . . ( (ρ → L(ρ) → τ ( τ). Under the term formation
rules, composition using such a type can only be with a complete term.

In our second example involving recursion with parameter substitution
we had

e(1, y) := y

e(Si(x), y) := e(x, d(y))
or

e(1) := id

e(Si(x)) := e(x) ◦ d

The corresponding term would be

λx̄.RW→Wx̄(λz̄λl̄λpW→Wλx̄.p(dx̄))(λyy)

but it is not legal, since the result type is not linear.
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5.4. HIGHER ARGUMENT TYPES: ITERATION

We considered

I(1, f, y) := y

I(Si(x), f, y) := f(I(x, f, y))
or

I(1, f) := id

I(Si(x), f) := f ◦ I(x, f)

with the corresponding term

If := λx̄.RW(Wx̄(λz̄λl̄λpW(Wλy.f(py))(λyy)

e := λx.Idx1

Here If is legal, but e is not: the type of d prohibits iteration. – Note that
in PV

ω (Cook and Kapron (1990), Cook (1992)) I is not definable, for
otherwise we could define λz.Idz.

A related phenomenon occurs in

e(1) := S0

e(Si(x)) := I(S0(S0(1)), e(x))

Now the terms are

If := λx.RW(Wx̄(λz̄λl̄λpW(Wλy.f(py))(λyy)

e := λx̄.RW(Wx̄(λz̄λl̄qW(W.Iq(S0(S01)))S0

Again e is not legal, this time because the free parameter f in the step term
of If is substituted with the incomplete variable q. This variable needs to
be complete because of the typing of the recursion operator.

5.5. POLYNOMIALS

It is high time that we give some examples of what can de done in our term
system. It is easy to define ⊕ : W → W ( W such that x⊕y concatenates
|x| bits onto y.

1 ⊕ y = S0y

(Six) ⊕ y = S0(x ⊕ y)

The representing term is x̄ ⊕ y := RW(Wx̄(λz̄λl̄λpW(Wλy.S0(py))S0.
Similarly we define ¯ : W → W → W such that x¯y has output length

|x| · |y|.

x ¯ 1 = x

x ¯ (Siy) = x ⊕ (x ¯ y)
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The representing term is x̄ ¯ ȳ := RWȳ(λz̄λl̄λpWx̄ ⊕ p)x̄.
Notice that the typing ⊕ : W → W ( W is crucial: it allows using

the incomplete variable p in the definition of ¯. If we try to go on and
define exponentiation from multiplication ¯ just as ¯ was defined from
⊕, we find out that we cannot go ahead, because of the different typing
¯ : W → W → W.

6. Normalization

A dag is a directed acyclic graph. A parse dag is a structure like a parse
tree but admitting in-degree greater than one. For example, a parse dag
for λxr has a node containing λx and a pointer to a parse dag for r. A
parse dag for (rs) has a node containing a pair of pointers, one to a parse
dag for r and the other to a parse dag for s. Terminal nodes are labeled by
constants and variables.

The size |d| of a parse dag d is the number of nodes in it, but counting
3 for cτ nodes. Starting at any given node in the parse dag, one obtains a
term by a depth-first traversal; it is the term represented by that node. We
may refer to a node as if it were the term it represents.

A parse dag is conformal if (i) every node having in-degree greater than
1 is of ground type, and (ii) every maximal path to a bound variable x

passes through the same binding λx node.
A parse dag is h-affine if each higher-type variable occurs at most once

in the dag.
We adopt a model of computation over parse dags in which operations

such as the following can be performed in unit time: creation of a node
given its label and pointers to the sub-dags; deletion of a node; obtaining a
pointer to one of the subsidiary nodes given a pointer to an interior node;
conditional test on the type of node or on the constant or variable in the
node. Concerning computation over terms (including numerals), we use the
same model and identify each term with its parse tree. Although not all
parse dags are conformal, every term is conformal (assuming a relabeling
of bound variables).

A term is called simple if all its higher-type variables are incomplete.
Obviously simple terms are closed under reductions, taking of subterms,
and applications. Every simple term is h-affine, due to the linearity of
incomplete higher-type variables.

Lemma 6.1 (Simplicity). Let t be a ground type term whose free variables

are of ground type. Then nf(t) contains no higher type complete variables.

Proof. Let t be a ground type term whose free variables are of ground
type, and consider nf(t). We must show that nf(t) contains no higher type
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complete variables. So suppose a variable x̄σ with l(σ) > 0 occurs in nf(t).
It must be bound in a subterm (λx̄σr)σ→τ of nf(t). By the well known
subtype property of normal terms, the type σ → τ either occurs positively
in the type of nf(t), or else negatively in the type of one of the constants or
free variables of nf(t). The former is impossible since t is of ground type,
and the latter by inspection of the types of the constants.

A term is R-free if it does not contain an occurrence of R.

Lemma 6.2 (Sharing Normalization). Let t be an R-free simple term.

Then a parse dag for nf(t), of size at most |t|, can be computed from t in

time O(|t|2).

Proof. Under our model of computation, the input t is a parse tree. Since t is
simple, it is an h-affine conformal parse dag of size at most |t|. If there are no
nodes which represent a redex, then we are done. Otherwise, locate a node
representing a redex; this takes time at most O(|t|). We show how to update
the dag in time O(|t|) so that the size of the dag has strictly decreased and
the redex has been eliminated, while preserving conformality. Thus, after at
most |t| iterations the resulting dag represents the normal-form term nf(t).
The total time therefore is O(|t|2).

Assume first that the redex in t is (λxr)s with x of ground type; the
argument is similar for a complete variable x̄. Replace pointers to x in r by
pointers to s. Since s does not contain x, no cycles are created. Delete the
λx node and the root node for (λxr)s which points to it. By conformality (i)
no other node points to the λx node. Update any node which pointed to the
deleted node for (λxr)s, so that it now points to the revised r subdag. This
completes the β reduction on the dag (one may also delete the x nodes).
Conformality (ii) gives that the updated dag represents a term t′ such that
t → t′.

One can verify that the resulting parse dag is conformal and h-affine,
with conformality (i) following from the fact that s has ground type.

•
x

•
¢

¢
¢
¢

A
A
A
A

r

◦

?
λx

•
¡¡ª @@R• s

•
¢

¢
¢
¢

A
A
A
A

r

• s

 ª

®-

 ª

®-

If the redex in t is (λxr)s with x of higher type, then x occurs at
most once in r because the parse dag is h-affine. By conformality (i) there
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is at most one pointer to that occurrence of x. Update it to point to s

instead, deleting the x node. As in the preceeding case, delete the λx and
the (λxr)s node pointing to it, and update other nodes to point to the
revised r. Again by conformality (ii) the updated dag represents t′ such
that t → t′. Conformality and acyclicity are preserved, observing this time
that conformality (i) follows because there is at most one pointer to s.

◦
x

•
¢

¢
¢
¢

A
A
A
A

r

◦

?
λx

•
¡¡ª @@R◦ s

•
¢

¢
¢
¢

A
A
A
A

r

◦ s

 ª

®-

The remaining reductions are for the constant symbols.
Case ifτ tts 7→ fstττs. Easy; similar for ff.
Case cτερs 7→ fst s. Easy.
Case cτ (l ∗ρ r)s 7→ snd srl with ρ a ground type.

◦
∗ρ

•
r

◦
¡¡ª @@R

•
¡¡ª @@R•

l

◦
cτ

◦
¡¡ª @@R

•
¡¡ª @@R◦

s

◦
∗ρ

•
r

◦
¡¡ª @@R

•
¡¡ª @@R•

l

◦
snd

◦
¡¡ª @@R◦

s

◦
¡¡ª ¥

¥
¥
¥
¥
¥
¥
¥¥¤¤²

•
¡¡ª ¥

¥
¥
¥
¥
¥
¥
¥¥¤¤²

Notice that the new dag has one node more than the original one, but one
cτ -node less. Since we count the cτ -nodes 3-fold, the total number of nodes
decreases.

mod01.tex; 21/01/2002; 11:42; p.12



Case cτ (l ∗ρ r)s 7→ snd srl with ρ not a ground type.

◦
∗ρ

◦
r

◦
¡¡ª @@R

◦
¡¡ª @@R◦

l

◦
cτ

◦
¡¡ª @@R

•
¡¡ª @@R◦

s

◦
r

◦
l

◦
snd

◦
¡¡ª @@R◦

s

◦
¡¡ª ¥

¥
¥
¥
¥
¥
¥
¥¥¤¤²

•
¡¡ª ¥

¥
¥
¥
¥
¥
¥
¥¥¤¤²

Case ⊗−
ρστ (⊗

+
ρσrs)t 7→ trs with ρ ⊗ σ a ground type.

◦
⊗+

•
r

◦
¡¡ª @@R

•
¡¡ª @@R•

s

◦
⊗−

◦
¡¡ª @@R

•
¡¡ª @@R◦

t

◦
⊗+

•
r

◦
¡¡ª @@R

•
¡¡ª @@R•

s

◦
t

◦
¡¡ª B

B
B
B
BN

•
¡¡ª B

B
B
B
BN

Case ⊗−
ρστ (⊗

+
ρσrs)t 7→ trs with ρ ⊗ σ not a ground type.

◦
⊗+

◦
r

◦
¡¡ª @@R

◦
¡¡ª @@R◦

s

◦
⊗−

◦
¡¡ª @@R

•
¡¡ª @@R◦

t

◦
t

◦
r

◦
¡¡ª @@R

•
¡¡ª @@R◦

s

Case fstρσ(×+
ρστrst) 7→ rt. Here we need that ρ× σ is never considered

as a ground type. The case of sndρσ(×+
ρστrst) 7→ st is of course similar.

◦
×+

ρστ

◦
r

◦
¡¡ª @@R

◦
¡¡ª @@R◦

s

◦
fstρσ

•
¡¡ª @@R◦

¡¡ª @@R•
t

◦
r

•

?

@
@

@@R•
t
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Corollary 6.3 (Base Normalization). Let t be a closed R-free simple

term of type W. Then the binary numeral nf(t) can be computed from t in

time O(|t|2), and |nf(t)| ≤ |t|.

Proof. By Sharing Normalization (Lemma 6.2) we obtain a parse dag for
nf(t) of size at most |t|, in time O(|t|2). Since nf(t) is a binary numeral, there
is only one possible parse dag for it – namely, the parse tree of the numeral.
This is identified with the numeral itself in our model of computation.

Lemma 6.4 (R Elimination). Let t be a simple term of linear type.

There is a polynomial pt such that: if ~m are linear type R-free closed simple

terms and the free variables of t[~x := ~m] are linear and incomplete, then in

time pt(|~m|) one can compute an R-free simple term rf(t; ~x; ~m) such that

t[~x := ~m] →∗ rf(t; ~x; ~m).

Proof. By induction on |t|.
If t has the form λzu1, then z is incomplete and z, u1 have linear type

because t has linear type. If t is of the form D~u with D a variable or one of
the symbols xx, tt, ff, ερ, ∗ρ, ifτ , cτ , ⊗

+
ρσ, ⊗−

ρστ , ×
+
ρστ , fstρσ or sndρσ, then

each ui is a linear type term. Here (in case D is a variable xi) we need that
xi is linear.

In all of the preceeding cases, each ui[~x := ~m] has only linear and
incomplete free variables. Apply the induction hypothesis as required to
simple terms ui to obtain u∗

i := rf(ui; ~x; ~m); so each u∗
i is R-free. Let t∗ be

obtained from t by replacing each ui by u∗
i . Then t∗ is an R-free simple

term; here we need that ~m are closed, to avoid duplication of variables. The
result is obtained in linear time from ~u∗. This finishes the lemma in all of
these cases.

If t is (λyr)s~u with an incomplete variable y of ground type, apply the
induction hypothesis to yield (r~u)∗ := rf(r~u; ~x; ~m) and s∗ := rf(s; ~x; ~m).
Redirect the pointers to y in (r~u)∗ to point to s∗ instead. If t is (λȳr)s~u
with a complete variable ȳ of ground type, apply the IH to yield s∗ :=
rf(s; ~x; ~m). Notice that s∗ is closed, since it is complete and the free variables
of s[~x := ~m] are incomplete. Then apply the induction hypothesis again to
obtain rf(r~u; ~x, ȳ; ~m, s∗). The total time is at most q(|t|)+ps(|~m|)+pr(|~m|+
ps(|~m|)), as it takes at most linear time to construct r~u from (λyr)s~u.

If t is (λyr)s~u with y of higher type, then y can occur at most once in
r, because t is simple. Thus |r[y := s]~u| < |(λyr)s~u|. Apply the induction
hypothesis to obtain rf(r[y := s]~u; ~x; ~m). Note that the time is bounded by
q(|t|) + pr[y:=s]~u(|~m|) for a degree one polynomial q, since it takes at most
linear time to make the at-most-one substitution in the parse tree.
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The only remaining case is if the term is an R clause. Then it is of the
form Rls~t, because the term has linear type.

Since l is complete, all free variables of l are complete – they must be in
~x since free variables of (Rls~t)[~x := ~m] are incomplete. Then l[~x := ~m] is
closed, implying nf(l[~x := ~m]) is a list. One obtains rf(l; ~x; ~m) in time pl(|~m|)
by the induction hypothesis. Then by Base Normalization (Corollary 6.3)

one obtains the list l̂ := nf(rf(l; ~x; ~m)) in a further polynomial time. Let

l̂ = (. . . (ερ ∗ρ rN ) . . . ∗ρ r1) ∗ρ r0 and let li, 0 ≤ i ≤ N be obtained from

l̂ by omitting the initial elements r0, . . . , ri. Thus all { ri, li | i ≤ N } are
obtained in a total time bounded by p′l(|~m|) for a polynomial p′l.

Now consider sȳz̄ with new variables ȳρ and z̄L(ρ). Applying the induc-
tion hypothesis to sȳz̄ one obtains a monotone bounding polynomial psȳz̄.
One computes all si := rf(sȳz̄; ~x, ȳ, z̄; ~m, ri, li) in a total time of at most

N
∑

i=1

psȳz̄(|ri| + |li| + |~m|) ≤ p′l(|~m|) · psȳz̄(2p′l(|~m|) + |~m|).

Each si is R-free by the induction hypothesis. Furthermore, no si has a free
incomplete variable: any such variable would also be free in s contradicting
that s is complete.

Consider ~t. The induction hypothesis gives all t̂i := rf(ti; ~x; ~m) in time
∑

i pti(|~m|). These terms are also R-free by induction hypothesis. Clearly
the ti do not have any free (or bound) higher type incomplete variables in
common. The same is true of all t̂i.

Using additional time bounded by a polynomial p in the lengths of these
computed values, one constructs the R-free term

(

λz.s0(s1 . . . (sNz) . . . )
)~̂t.

Defining pt(n) := p(
∑

i pti(n)+ p′l(n) · psyz(2p′l(n)+n)), the total time used
in this case is at most pt(|~m|). The result is a term because the t̂i are terms
which do not have any free higher-type incomplete variable in common
and because si does not have any free higher-type incomplete variables at
all.

7. Characterizations

Lemma 7.1 (Normalization). Let t be a closed term of type ~ρ ( σ,

where σ and each ρi is a ground type. Then t denotes a polytime function.

Proof. One must find a polynomial qt such that for all R-free simple closed
terms ~n of types ~ρ one can compute nf(t~n) in time qt(|~n|). Let ~x be new
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variables of types ~ρ. The normal form of t~x is computed in an amount of
time that may be large, but it is still only a constant with respect to ~n.

nf(t~x) is simple by Lemma 6.1. By R elimination (Lemma 6.4) one
reduces to an R-free simple term rf(nf(t~x); ~x;~n) in time pt(|~n|). Since the
running time bounds the size of the produced term, |rf(nf(t~x); ~x;~n)| ≤
pt(|~n|).

By Sharing Normalization (Lemma 6.2) one can compute nf(t~n) =
nf(rf(nf(t~x); ~x;~n)) in time O(pt(|~n|)

2). Let qt be the polynomial referred
to by the big-O notation.

Lemma 7.2 (Sufficiency). Let f be a polynomial-time computable func-

tion of type ~W ( W. Then f is denoted by a closed term t.

Proof. In Bellantoni and Cook (1992) the polynomial time computable
functions are characterized by a function algebra B based on safe recursion

and safe composition. There every function is written in the form f(~x; ~y)
where ~x; ~y denotes a bookkeeping of those variables ~x that are used in
a recursion defining f , and those variables ~y that are not recursed on.
We proceed by induction on the definition of f(x1, . . . , xk; y1, . . . , yl) in B,
associating to f a closed term tf of type W(k) → W(l)

( W, such that t

denotes f .
The functions in B were defined over the non-negative integers rather

than the positive ones, but this clearly is a minor point. We use the bijection
x ∈ N ⇔ (2|x| + x) ∈ Z

+.
If f in B is an initial function 0, S0, S1, P , conditional C or projection

π
m,n
i , then tf is easily defined.

If f is defined by safe composition in system B, then

f(~x; ~y) := g(r1(~x; ), . . . , rm(~x; ); s1(~x; ~y), . . . , sn(~x; ~y)).

Using the induction hypothesis to obtain tg, t~r and t~s, define

tf := λ~̄xλ~y.tg(tr1
~̄x) . . . (trm

~̄x) (ts1
~̄x~y) . . . (trm

~̄x~y).

Finally consider f defined by safe recursion in system B.

f(0, ~x; ~y) := g(~x; ~y)

f(Sin, ~x; ~y) := hi(n, ~x; ~y, f(n, ~x; ~y)) for Sin 6= 0.

One has tg, th0
and th1

by the induction hypothesis. Let p be a variable

of type τ := W(#(~y))
( W; this is the linear type used in the recursion.

Then define a step term by

s := λx̄λl̄λpλ~y.ifWx̄
(

×+(λz.th0
l̄~̄x~yz)(λz.th1

l̄~̄x~yz)(p~y)
)

.

Note p is used only once. Let tf := λn̄λ~̄x.Rτ n̄s(tg~̄x).
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