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abstract. The programs synthesized from proofs are guaranteed to
be correct, however at the cost of sometimes introducing irrelevant com-
putations, as a consequence of the fact that the extracted code faithfully
reflects the proof. In this paper we extend the work of Ulrich Berger
[2], which introduces the concept of “non-computational universal quan-
tifiers”, and propose an algorithm by which we identify at the proof level
the components - quantified variables, as well as premises of implications
- that are computationally irrelevant and mark them as such. We il-
lustrate the benefits of this (optimal) decorating algorithm in some case
studies and present the results obtained with the proof assistant Minlog.

We consider proofs in minimal logic, written in natural deduction style. The
only rules are introduction and elimination for implication and the universal
quantifier. The logical connectives ∃,∧ are seen as special cases of inductively
defined predicates, and hence are defined by the introduction and elimination
schemes

∀x(A→ ∃xA),
∃xA→ ∀x(A→ B)→ B (x not free in B),

A→ B → A ∧B,
A ∧B → (A→ B → C)→ C.

Disjunction can be defined by A ∨ B := ∃p((p → A) ∧ (¬p → B)) with p a
boolean variable. When the computational content of a proof is of interest,
it is appropriate to distinguish between computational and non-computational
variants of→,∀, written→c,∀c and→nc,∀nc, respectively; for ∀nc this was first
done by Berger [2]. The introduction rules for→nc,∀nc then need an additional
restriction: the abstracted (assumption or object) variable is not allowed to be
“computational”, which can be defined to mean “not free in the extracted term
of the premise proof”. The insertion of such marks is called a “decoration” of
the proof.

In the present paper we are interested in “fine-tuning” the computational
content of proofs, by inserting decorations. After adapting in section 1 the
standard theory of proof interpretation by (modified) realizability, in section 2
we define what a computational strengthening of a decorated formula is, and
construct a derivation of A1 →c A2 for A1 a computational strengthening of
A2. Here is an example (due to Robert Constable) of why this is of interest.
Suppose that in a proof M of a formula C we have made use of a case distinction
based on an auxiliary lemma stating a disjunction, say L : A ∨ B. Then the
extract [[M ]] will contain the extract [[L]] of the proof of the auxiliary lemma,

1Dedicated to Grigori Mints on occasion of his 70th birthday
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which may be large. Now suppose further that in the proof M of C, the only
computationally relevant use of the lemma was which one of the two alternatives
holds true, A or B. We can express this fact by using a weakened form of the
lemma instead: L′ : A ∨u B. Since the extract [[L′]] is a boolean, the extract
of the modified proof has been “purified” in the sense that the (possibly large)
extract [[L]] has disappeared.

In section 3 we consider the question of “optimal” decorations of proofs:
suppose we are given an undecorated proof, and a decoration of its end formula.
The task then is to find a decoration of the whole proof (including a further
decoration of its end formula) in such a way that any other decoration “extends”
this one. Here “extends” just means that some connectives have been changed
into their more informative versions, disregarding polarities. We show that
such an optimal decoration exists, and give an algorithm to construct it.

The final section 4 first takes up the example of list reversal used by Berger
[3] to demonstrate that usage of ∀nc rather than ∀c can significantly reduce
the complexity of extracted programs, in this case from quadratic to linear.
Our implementation (cf. http://www.minlog-system.de) of the decoration
algorithm from section 3 automatically finds the optimal decoration. A similar
application of decoration occurs when one derives double induction (recurring
to two predecessors) in continuation passing style, i.e., not directly, but using
as an intermediate assertion (proved by induction)

∀cn,m((Qn→c Q(Sn)→c Q(n+m))→c Q0→c Q1→c Q(n+m)).

After decoration, the formula becomes

∀cn∀nc
m ((Qn→c Q(Sn)→c Q(n+m))→c Q0→c Q1→c Q(n+m)).

This is applied (as in [5]) to obtain a continuation based tail recursive definition
of the Fibonacci function, from a proof of its totality. We finally give two
more applications of a slightly extended version of the decoration algorithm
involving a data base of proven theorems and proof transformations. The first
one concerns Constable’s example above, and the second one the maximal
segment problem studied in [1].

1 Computational content of proofs

Computational content in proofs arises when the formula proved contains a
strictly positive occurrence of an existential quantifier, as in ∀x∃yA(x, y). If
A(x, y) is quantifier-free, the computational content of the proof consists of a
function assigning to every number n a number m such that A(n,m) holds.
One can view ∃yA(x, y) as a (somewhat degenerated) inductively defined pred-
icate, whose single clause is ∀x,y(A(x, y) → ∃yA(x, y)). More generally, the
computational content of a proof of I~r for an inductively defined predicate
I is a “generation tree”, witnessing how the arguments ~r were put into I.
For example, consider the clauses Even(0) and ∀n(Even(n) → Even(S(Sn))).
A generation tree for Even(6) should consist of a single branch with nodes
Even(0), Even(2), Even(4) and Even(6).

It is a tempting idea that one should be able in such cases to switch on or
off the computational influence of a universally quantified variable (as in [2])
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Figure 1. Derivation terms for → and ∀

or of the premise of an implication. For instance, in the clause ∀n(Even(n)→
Even(S(Sn))) only the premise Even(n) should be computationally relevant,
not the quantifier ∀n. We therefore “decorate” → and write →c, but leave
the quantifier ∀n undecorated, i.e., consider it as “non-computational” and
write ∀nc. In the clause ∀x(A → ∃xA) for an existential quantifier ∃xA one
may decorate the quantifier ∀x and the implication → independently, which
gives four (only) computationally different variants ∃d,∃l,∃r,∃u (with d, l, r,
u for “double”, “left”, “right”, “uniform”) of the existential quantifier, defined
below.

Incorporating these two computationally different variants of implication and
universal quantification into Gentzen’s calculus of natural deduction is rather
easy. Recall the introduction and elimination rules for→ and ∀, written in the
standard tree notation as well as in a (more condensed) linear term notation,
in figure 1. For the universal quantifier ∀ there is an introduction rule ∀+x and
an elimination rule ∀−, whose right premise is the term r to be substituted.
The rule ∀+x is subject to an (Eigen-) variable condition: The derivation term
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M of the premise A should not contain any open assumption with x as a free
variable.

For →c and ∀c no changes are necessary, and for →nc and ∀nc only the
introduction rules need to be adapted: in “computational relevant” parts of
the derivation the abstracted (assumption or object) variable needs to be “non-
computational”. This will be defined later, simultaneously with the notion of
an “extracted term” of a derivation.

For ∃,∧ we have a whole zoo of (only) computationally different variants:
∃d,∃l,∃r,∃u,∧d,∧l,∧r,∧u (∃r already appeared in [3]). They are defined by
their introduction and elimination axioms, which involve both →c, ∀c and
→nc, ∀nc. For the first four these are

∀cx(A→c ∃dxA),

∀cx(A→nc ∃lxA),
∀nc
x (A→c ∃rxA),
∀nc
x (A→nc ∃uxA),

∃dxA→c ∀cx(A→c B)→c B,

∃lxA→c ∀cx(A→nc B)→c B,

∃rxA→c ∀nc
x (A→c B)→c B,

∃uxA→c ∀nc
x (A→nc B)→c B

where x is not free in B, and similar for ∧:

A→c B →c A ∧d B,

A→c B →nc A ∧l B,

A→nc B →c A ∧r B,

A→nc B →nc A ∧u B,

A ∧d B →c (A→c B →c C)→c C,

A ∧l B →c (A→c B →nc C)→c C,

A ∧r B →c (A→nc B →c C)→c C,

A ∧u B →c (A→nc B →nc C)→c C.

Types ρ, σ, τ are generated from ground types like the types N of natural
numbers and B of booleans by forming list types L(ρ), product types ρ × σ
and function types ρ → σ. The types N, B, L(ρ) and ρ× σ can be viewed as
special cases of the formation of free algebras (with parameters); however, for
simplicity we only consider these cases here.

Terms r, s, t of a given type are built from (typed) variables and (typed)
constants by (type-correct) abstraction and application. The projections of a
term r of product type ρ× σ are written as r0 and r1.

Kolmogorov [9] proposed to view a formula A as a “computational prob-
lem”, of type τ(A), the type of a potential solution or “realizer” of A. More
precisely, τ(A) should be the type of the term (or “program”) to be extracted
from a proof of A. Formally, we assign to every formula A an object τ(A)
(a type or the “nulltype” symbol ◦). In case τ(A) = ◦ proofs of A have no
computational content; such formulas A are called computationally irrelevant
(c.i.) (or Harrop formulas); the other ones are called computationally relevant
(c.r.). The definition can be conveniently written if we extend the use of ρ→ σ
and ρ× σ to the nulltype symbol ◦:

(ρ→ ◦) := ◦, (◦ → σ) := σ, (◦ → ◦) := ◦,
(ρ× ◦) := ρ, (◦ × σ) := σ, (◦ × ◦) := ◦.

With this understanding of ρ→ σ and ρ× σ we can simply write

τ(P ) := ◦ for P a decidable prime formula (given by a boolean term),
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τ(A→c B) := τ(A)→ τ(B), τ(A→nc B) := τ(B),
τ(∀cxρA) := ρ→ τ(A), τ(∀nc

xρA) := τ(A),

τ(∃dxρA) := ρ× τ(A), τ(∃lxρA) := ρ, τ(∃rxρA) := τ(A), τ(∃uxρA) := ◦,
τ(A ∧d B) := τ(A)× τ(B), τ(A ∧l B) := τ(A), τ(A ∧r B) := τ(B),
τ(A ∧u B) := ◦.

We now define realizability . It will be convenient to introduce a special “null-
term” symbol ε to be used as a “realizer” for c.i. formulas. We extend term
application to the nullterm symbol by

εt := ε, tε := t, εε := ε.

DEFINITION 1 (t realizes A). Let A be a formula and t either a term of type
τ(A) if the latter is a type, or the nullterm symbol ε if for c.i. A. We use P for
decidable prime formulas (given by a boolean term).

ε r P := P

t r (A→c B) := ∀nc
x (x r A →nc tx r B),

t r (A→nc B) := ∀nc
x (x r A →nc t r B),

t r (∀cxA) := ∀nc
x (tx r A),

t r (∀nc
x A) := ∀nc

x (t r A).

In case A is c.i., ∀nc
x (x r A →nc B(x)) means ε r A →nc B(ε). For the other

connectives realizability is defined by

t r ∃dxA(x) :=

{
t1 r A(t0) if A is c.r.
ε r A(t) otherwise,

t r ∃lxA(x) := ∃uy(y r A(t)),

t r ∃rxA(x) := ∃ux(t r A(x)), ε r ∃uxA(x) := ∃ux,y(y r A(x)),

t r (A ∧d B) := t0 r A ∧ t1 r B, t r (A ∧l B) := t r A ∧ ∃uy(y r B),

t r (A ∧r B) := ∃uy(y r A) ∧ t r B,
ε r (A ∧u B) := ∃uy(y r A) ∧ ∃uz(z r B).

Call two formulas A and A′ computationally equivalent if each of them com-
putationally implies the other, and in addition the identity realizes each of the
two derivations of A′ →c A and of A→c A′. It is an easy exercise to verify that
for c.i. A, the formulas A→c B and A→nc B are computationally equivalent,
and hence can be identified. In the sequel we shall simply write A → B for
either of them. Similarly, for c.i. A the two formulas ∀cxA and ∀nc

x A are c.i.,
and both ε r ∀cxA and ε r ∀nc

x A are defined to be ∀nc
x (ε r A). Hence they can

be identified as well, and we shall simply write ∀xA for either of them. Since
the formula t r A is c.i., under this convention the →,∀-cases in the definition
of realizability can be written

t r (A→c B) := ∀x(x r A → tx r B),
t r (A→nc B) := ∀x(x r A → t r B),
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t r (∀cxA) := ∀x(tx r A),
t r (∀nc

x A) := ∀x(t r A).

Notice that the formula t r A is “invariant” in the sense that ε r (t r A) and
t r A are identical formulas.

We simultaneously define (1) derivations M , and (2) the extracted term [[M ]]
of type τ(A) of a derivation M with endformula A. As already mentioned, this
simultaneous definition is needed because the introduction rules for →nc and
∀nc must be restricted: in “computational relevant” parts of the derivation the
abstracted (assumption or object) variable needs to be “non-computational”.

For derivations MA with A c.i. let [[MA]] := ε; there is no condition on the
usage of introduction rules for →nc and ∀nc in such derivations. Now assume
that M derives a c.r. formula. Then

[[uA]] := xτ(A)
u (xτ(A)

u uniquely associated with uA),

[[(λuAM
B)A→

cB ]] := λ
x
τ(A)
u

[[M ]],

[[(MA→cBNA)B ]] := [[M ]][[N ]],

[[(λxρMA)∀
c
xA]] := λxρ [[M ]],

[[(M∀
c
xA(x)r)A(r)]] := [[M ]]r,

[[(λuAM
B)A→

ncB ]] := [[(MA→ncBNA)B ]] := [[(λxρMA)∀
nc
x A]]

:= [[(M∀
nc
x A(x)r)A(r)]] := [[M ]].

Here λ
x
τ(A)
u

[[M ]] means just [[M ]] if A is c.i.
In all these cases the correctness of the derivation is preserved, except pos-

sibly in those involving λ: (λuAMB)A→
ncB is correct if M is and in case A is

c.r., xu /∈ FV([[M ]]). (λxρMA)∀
nc
x A is correct if M is and – in addition to the

usual variable condition – x /∈ FV([[M ]]).
It remains to define extracted terms for the axioms. Consider for example

the induction schema for the type L(ρ) of lists of type ρ objects. It is written
here in the form

∀cv(A(nil)→c ∀cx,v(A(v)→c A(xv))→c A(v)),

with x, v variables of type ρ,L(ρ) and xv denoting cons(x, v); clearly the dec-
oration is appropriate given the computational meaning of induction. The
extracted term is the corresponding recursion operator RτL(ρ) (in the sense of
Gödel [8]), of type

L(ρ)→ τ → (ρ→ L(ρ)→ τ → τ)→ τ.

Notice that a different decoration of induction is possible:

∀cv(A(nil)→c ∀nc
x,v(A(v)→nc A(xv))→c A(v)).

The computational meaning then is case distinction (whether a list is empty
or not) rather than recursion. This arises naturally if induction is introduced
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as elimination scheme for an inductive definition of totality, from a different
decoration of the clauses.

For the introduction and elimination axioms for ∃d, ∃l, ∃r,∃u, ∧d, ∧l, ∧r, ∧u

the extracted terms are rather obvious and not spelled out here.

THEOREM 2 (Soundness). Let M be a derivation of A from assumptions
ui : Ci (i < n). Then we can derive [[M ]] r A from assumptions xui r Ci
(with xui := ε in case Ci is c.i.).

2 Computational strengthening

Formulas can be decorated in many different ways, and it is a natural question
to ask when one such decoration A′ is “stronger” than another one A, in the
sense that the former computationally implies the latter, i.e., ` A′ →c A. We
give a partial answer to this question in the proposition below.

We define a relation A′ w A (A′ is a computational strengthening of A)
between c.r. formulas A′, A inductively. It is reflexive, transitive and satisfies

(A→nc B) w (A→c B),
(A→c B) w (A→nc B) if A is c.i.,
(A→ B′) w (A→ B) if B′ w B, with →∈ {→c,→nc},
(A→ B) w (A′ → B) if A′ w A, with →∈ {→c,→nc},
∀nc
x A w ∀cxA,
∀xA′ w ∀xA if A′ w A, with ∀ ∈ {∀c,∀nc}.

Moreover, for the defined ∃d,∃l,∃r,∧d,∧l,∧r it satisfies

∃dxA w ∃lxA,∃rxA,
∃xA′ w ∃xA if A′ w A, with ∃ ∈ {∃d,∃l,∃r},
(A ∧d B) w (A ∧l B), (A ∧r B),

(A′ ∧B) w (A ∧B) if A′ w A, with ∧ ∈ {∧d,∧l,∧r},
(A ∧B′) w (A ∧B) if B′ w B, with ∧ ∈ {∧d,∧l,∧r}.

PROPOSITION 3. If A′ w A, then ` A′ →c A.

Proof. We show that the relation “` A′ →c A” has the same closure properties
as “A′ w A”. For reflexivity and transitivity this is clear. For the rest we give
some sample derivations.

A→nc B u : A
B (→c)+, u

A→c B

| assumed
B′ →c B

A→nc B′ u : A
B′

B (→nc)+, u
A→nc B

where in the last derivation the final (→nc)+-application is correct since u is
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not a computational assumption variable in the premise derivation of B.

A→nc B

| assumed
A′ →c A u : A′

A
B (→nc)+, u

A′ →nc B

where for the same reason the final (→nc)+-application is correct. �

3 Optimal decorations

We denote the sequent of a proof M by Seq(M); it consists of its context and
end formula.

The proof pattern P(M) of a proof M is the result of marking in c.r. formulas
of M (i.e., those not above a c.i. formula) all occurrences of implications and
universal quantifiers as non-computational, except the “uninstantiated” formu-
las of axioms and theorems. For instance, the induction axiom for N consists
of the uninstantiated formula ∀cn(P0 →c ∀cn(Pn →c P (Sn)) →c PnN) with
a unary predicate variable P and a predicate substitution P 7→ {x | A(x) }.
Notice that a proof pattern in most cases is not a correct proof, because at
axioms formulas may not fit.

We say that a formula D extends C if D is obtained from C by changing
some (possibly zero) of its occurrences of non-computational implications and
universal quantifiers into their computational variants →c and ∀c.

A proof N extends M if (i) N and M are the same up to variants of impli-
cations and universal quantifiers in their formulas, and (ii) every c.r. formula
of M is extended by the corresponding one in N . Every proof M whose proof
pattern P(M) is U is called a decoration of U .

REMARK 4. Notice that if a proof N extends another one M , then FV([[N ]])
is essentially (that is, up to extensions of assumption formulas) a superset of
FV([[M ]]). This can be proven by induction on N .

In the sequel we assume that every axiom has the property that for every
extension of its formula we can find a further extension which is an instance of
an axiom, and which is the least one under all further extensions that are in-
stances of axioms. This property clearly holds for axioms whose uninstantiated
formula only has the decorated →c and ∀c, for instance induction. However,
in ∀cn(A(0)→c ∀cn(A(n)→c A(Sn))→c A(nN)) the given extension of the four
A’s might be different. One needs to pick their “least upper bound” as further
extension. To make this assumption true for the other axioms listed above (in-
troduction and elimination axioms for ∃d,∃l,∃r,∃u,∧d,∧l,∧r,∧u) we also add
all their extensions as axioms.

We will define a decoration algorithm, assigning to every proof pattern U
and every extension of its sequent an “optimal” decoration M∞ of U , which
further extends the given extension of its sequent.

THEOREM 5. Under the assumption above, for every proof pattern U and
every extension of its sequent Seq(U) we can find a decoration M∞ of U such
that
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(a) Seq(M∞) extends the given extension of Seq(U), and

(b) M∞ is optimal in the sense that any other decoration M of U whose sequent
Seq(M) extends the given extension of Seq(U) has the property that M also
extends M∞.

Proof. By induction on derivations. It suffices to consider derivations with
a c.r. endformula. For axioms the validity of the claim was assumed, and for
assumption variables it is clear.

Case (→nc)+. Consider the proof pattern

Γ, u : A
| U
B (→nc)+, u

A→nc B

with a given extension ∆ ⇒ C →nc D or ∆ ⇒ C →c D of its sequent Γ ⇒
A →nc B. Applying the induction hypothesis for U with sequent ∆, C ⇒
D, one obtains a decoration M∞ of U whose sequent ∆1, C1 ⇒ D1 extends
∆, C ⇒ D. Now apply (→nc)+ in case the given extension is ∆ ⇒ C →nc D
and xu /∈ FV([[M∞]]), and (→c)+ otherwise.

For (b) consider a decoration λuM of λuU whose sequent extends the given
extended sequent ∆ ⇒ C →nc D or ∆ ⇒ C →c D. Clearly the sequent
Seq(M) of its premise extends ∆, C ⇒ D. Then M extends M∞ by induction
hypothesis for U . If λuM derives a non-computational implication then the
given extended sequent must be of the form ∆⇒ C →nc D and xu /∈ FV([[M ]]),
hence xu /∈ FV([[M∞]]). But then by construction we have applied (→nc)+ to
obtain λuM∞. Hence λuM extends λuM∞. If λuM does not derive a non-
computational implication, the claim follows immediately.

Case (→nc)−. Consider a proof pattern

Φ,Γ
| U

A→nc B

Γ,Ψ
| V
A (→nc)−

B

We are given an extension Π,∆,Σ ⇒ D of Φ,Γ,Ψ ⇒ B. Then we proceed in
alternating steps, applying the induction hypothesis to U and V .

(1) The induction hypothesis for U for the extension Π,∆⇒ A→nc D of its
sequent gives a decoration M1 of U whose sequent Π1,∆1 ⇒ C1 → D1 extends
Π,∆ ⇒ A →nc D, where → means →nc or →c. This already suffices if A is
c.i., since then the extension ∆1,Σ ⇒ C1 of V is a correct proof (recall that
in c.i. parts of a proof decorations of implications and universal quantifiers can
be ignored). If A is c.r.:

(2) The induction hypothesis for V for the extension ∆1,Σ ⇒ C1 of its
sequent gives a decoration N2 of V whose sequent ∆2,Σ2 ⇒ C2 extends
∆1,Σ⇒ C1.



180 Diana Ratiu and Helmut Schwichtenberg

(3) The induction hypothesis for U for the extension Π1,∆2 ⇒ C2 → D1

of its sequent gives a decoration M3 of U whose sequent Π3,∆3 ⇒ C3 → D3

extends Π1,∆2 ⇒ C2 → D1.
(4) The induction hypothesis for V for the extension ∆3,Σ2 ⇒ C3 of its

sequent gives a decoration N4 of V whose sequent ∆4,Σ4 ⇒ C4 extends
∆3,Σ2 ⇒ C3. This process is repeated until in V no further proper exten-
sion of ∆3 and C3 is returned. Such a situation will always be reached since
there is a maximal extension, where all connectives are maximally decorated.
But then we easily obtain (a): Assume that in (4) we have ∆4 = ∆3 and
C4 = C3. Then the decoration

Π3,∆3

|M3

C3 → D3

∆4,Σ4

| N4

C4 →−
D3

of UV derives a sequent Π3,∆3,Σ4 ⇒ D3 extending Π,∆,Σ⇒ D.
For (b) we need to consider a decorationMN of UV whose sequent Seq(MN)

extends the given extension Π,∆,Σ⇒ D of Φ,Γ,Ψ⇒ B. We must show that
MN extends M3N4. To this end we go through the alternating steps again.

(1) Since the sequent Seq(M) extends Π,∆ ⇒ A →nc D, the induction
hypothesis for U for the extension ∆ ⇒ A →nc D of its sequent ensures that
M extends M1.

(2) Since then the sequent Seq(N) extends ∆1,Σ ⇒ C1, the induction hy-
pothesis for V for the extension ∆1,Σ ⇒ C1 of its sequent ensures that N
extends N2.

(3) Therefore Seq(M) extends the sequent Π1,∆2 ⇒ C2 → D1, and the
induction hypothesis for U for the extension Π1,∆2 ⇒ C2 → D1 of U ’s sequent
ensures that M extends M3.

(4) Therefore Seq(N) extends ∆3,Σ2 ⇒ C3, and induction hypothesis for V
for the extension ∆3,Σ2 ⇒ C3 of V ’s sequent ensures that N also extends N4.

But since ∆4 = ∆3 and C4 = C3 by assumption, MN extends the decoration
M3N4 of UV constructed above.

Case (∀nc)+. Consider a proof pattern

Γ
| U
A (∀nc)+
∀nc
x A

with a given extension ∆ ⇒ ∀nc
x C or ∆ ⇒ ∀cxC of its sequent. Applying the

induction hypothesis for U with sequent ∆⇒ C, one obtains a decoration M∞
of U whose sequent ∆1 ⇒ C1 extends ∆ ⇒ C. Now apply (∀nc)+ in case the
given extension is ∆⇒ ∀nc

x C and x /∈ FV([[M∞]]), and (∀c)+ otherwise.
For (b) consider a decoration λxM of λxU whose sequent extends the given

extended sequent ∆ ⇒ ∀nc
x C or ∆ ⇒ ∀cxC. Clearly the sequent Seq(M) of

its premise extends ∆ ⇒ C. Then M extends M∞ by induction hypothesis
for U . If λxM derives a non-computational generalization, then the given
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extended sequent must be of the form ∆ ⇒ ∀nc
x C and x /∈ FV([[M ]]), hence

x /∈ FV([[M∞]]) (by the remark above). But then by construction we have
applied (∀nc)+ to obtain λxM∞. Hence λxM extends λxM∞. If λxM does not
derive a non-computational generalization, the claim follows immediately.

Case (∀nc)−. Consider a proof pattern

Γ
| U

∀nc
x A(x) r

(∀nc)−
A(r)

and let ∆ ⇒ C(r) be any extension of its sequent Γ ⇒ A(r). The induction
hypothesis for U for the extension ∆⇒ ∀nc

x C(x) produces a decoration M∞ of
U whose sequent extends ∆⇒ ∀nc

x C(x). Then apply (∀nc)− or (∀c)−, whichever
is appropriate, to obtain the required M∞r.

For (b) consider a decoration Mr of Ur whose sequent Seq(Mr) extends the
given extension ∆ ⇒ C(r) of Γ ⇒ A(r). Then M extends M∞ by induction
hypothesis for U , and hence Mr extends M∞r. �

4 Applications

4.1 Decoration of implication and conjunction
We illustrate the effects of decoration on a simple example involving impli-
cations. Consider A → B → A with the trivial proof M := λAu1

λBu2
u1.

Clearly, one does not need the decoration of the second implication, so we apply
the decoration algorithm and specify as extension of Seq(P(M)) the formula
A→nc B →nc A. The algorithm detects that the first implication needs to be
decorated, since the abstracted assumption variable is computational. Since
the second implication can be left undecorated, a proof of A →c B →nc A is
constructed from M .

A similar phenomenon occurs for A ∧d B → B. Let M be its proof and
U := P(M) its proof pattern. When given the extension A ∧u B →nc B for
Seq(U), the decoration algorithm constructs a correct proof of A ∧r B →c B.

4.2 List reversal
We work in Heyting Arithmetic HAω for a language based on Gödel’s T [8],
which is finitely typed (cf. Troelstra [10] for general background). We call the
formulas built from terms r of type B by means of a special operator atom(rB)
decidable prime formulas. They include for instance equations between terms
of type N, since the boolean-valued binary equality function =N : N→ N→ B
can be defined by

(0 =N 0) := tt, (Sn =N 0) := ff,

(0 =N Sm) := ff, (Sn =N Sm) := (n =N m).

For falsity we can take the atomic formula F := atom(ff) – called arithmetical
falsity – built from the boolean constant ff. Since in the A-translation below we
need to substitute a formula for falsity, we alternatively use a special predicate
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variable ⊥ to mark such occurrences of falsity. The formulas of HAω are built
from prime formulas by the connectives → and ∀. We define negation ¬A by
A → F or A → ⊥ (depending on the context), and the weak (or “classical”)
existential quantifier by

∃̃xA := ¬∀x¬A.
We first give an informal weak existence proof for list reversal. Write vw for

the result v ∗ w of appending the list w to the list v, vx for the result v ∗ x:
of appending the one element list x: to the list v, and xv for the result x :: v
of constructing a list by writing an element x in front of a list v, and omit the
parentheses in R(v, w) for (typographically) simple arguments. Assuming

InitRev : R(nil,nil), (1)
GenRev : ∀v,w,x(Rvw → R(vx, xw)) (2)

we prove

(3) ∀v∃̃wRvw ( := ∀v(∀w(Rvw → ⊥)→ ⊥)).

Fix v and assume u : ∀w¬Rvw; we need to derive a contradiction. To this end
we prove that all initial segments of v are non-revertible, which contradicts (1).
More precisely, from u and (2) we prove

∀v2A(v2) with A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)

by induction on v2. For v2 = nil this follows from our initial assumption u.
For the step case, assume v1(xv2) = v, fix w and assume further Rv1w. We
must derive a contradiction. By (2) we conclude that R(v1x, xw). On the
other hand, properties of the append function imply that (v1x)v2 = v. The
induction for v1x gives ∀w¬R(v1x,w). Taking xw for w leads to the desired
contradiction.

We formalize this proof, to prepare it for decoration. The following lemmata
will be used.

Compat: ∀P∀v1,v2(v1 = v2 → Pv1 → Pv2),
Symm: ∀v1,v2(v1 = v2 → v2 = v1),
Trans: ∀v1,v2,v3(v1 = v2 → v2 = v3 → v1 = v3),
L1 : ∀v(v = v nil),
L2 : ∀v1,x,v2((v1x)v2 = v1(xv2)),

The proof term is

M := λvλ
∀w¬Rvw
u (Indv2,A(v2)vvMBaseMStep nil Tnil v=v nil InitRev)

with

MBase := λv1λ
v1nil=v
u1

(Compat { v | ∀w¬Rvw } vv1
(Symm v1v(Trans v1(v1 nil)v(L1v1)u1))u),

MStep := λx,v2λ
A(v2)
u0

λv1λ
v1(xv2)=v
u1

λwλ
Rv1w
u2

(
u0(v1x)(Trans ((v1x)v2)(v1(xv2))v(L2v1xv2)u1)
(xw)(GenRev v1wxu2)).
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We now have a proof M of ∀v∃̃wRvw from the clauses InitRev : D1 and
GenRev : D2, with D1 := R(nil,nil) and D2 := ∀v,w,x(Rvw → R(vx, xw)).
Using the Dragalin/Friedman [6, 7] A-translation (in its refined form of [4])
we can replace ⊥ throughout by ∃wRvw. The end formula ∀v∃̃wRvw :=
∀v¬∀w¬Rvw := ∀v(∀w(Rvw → ⊥)→ ⊥) is turned into ∀v(∀w(Rvw → ∃wRvw)→
∃wRvw). Since its premise is an instance of existence introduction we obtain
a derivation M∃ of ∀v∃wRvw. Moreover, in this case neither the Di nor any
of the axioms used involves ⊥ in its uninstantiated formulas, and hence the
correctness of the proof is not affected by the substitution. The term neterm
extracted in Minlog from a formalization of the proof above is (after “animat-
ing” Compat)

[v0]
(Rec list nat=>list nat=>list nat=>list nat)v0([v1,v2]v2)
([x1,v2,g3,v4,v5]g3(v4:+:x1:)(x1::v5))
(Nil nat)
(Nil nat)

with g a variable for binary functions on lists. In fact, the underlying algorithm
defines an auxiliary function h by

h(nil, v2, v3) := v3, h(xv1, v2, v3) := h(v1, v2x, xv3)

and gives the result by applying h to the original list and twice nil.
Notice that the second argument of h is not needed. However, its presence

makes the algorithm quadratic rather than linear, because in each recursion
step v2x is computed, and the list append function is defined by recursion on
its first argument. We will be able to get rid of this superfluous second argument
by decorating the proof. It will turn out that in the proof (by induction on v2)
of the auxiliary formula A(v2) := ∀v1(v1v2 = v → ∀w¬Rv1w)), the variable v1
is not used computationally. Hence, in the decorated version of the proof, we
can use ∀nc

v1 .
Let us now apply the general method of decorating proofs to the example

of list reversal. To this end, we present our proof in more detail, particularly
by writing proof trees with formulas. The decoration algorithm then is applied
to its proof pattern with the sequent consisting of the context R(nil,nil) and
∀nc
v,w,x(Rvw →nc R(vx, xw)) and the end formula ∀nc

v ∃lwRvw.
Rather than describing the algorithm step by step we only display the end

result. Among the axioms used, the only ones in c.r. parts are Compat and list
induction. They appear in the decorated proof in the form

Compat: ∀P∀nc
v1,v2(v1 = v2 → Pv1 →c Pv2),

Ind: ∀cv2(A(nil)→c ∀cx,v2(A(v2)→c A(xv2))→c A(v2))

with A(v2) := ∀nc
v1(v1v2=v → ∀cw¬∃Rv1w) and ¬∃Rv1w := Rv1w → ∃lwRvw.

M∃Base is the derivation in Figure 2, where N is a derivation involving L1 with
a free assumption u1 : v1 nil=v. M∃Step is the derivation in Figure 3, where N1

is a derivation involving L2 with free assumption u1 : v1(xv2)=v, and N2 is one
involving GenRev with the free assumption u2 : Rv1w.

The extracted term neterm then is
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Compat { v | ∀cw¬∃Rvw } v v1

v=v1 → ∀cw¬∃Rvw →c ∀cw¬∃Rv1w

[u1 : v1 nil=v]
| N

v=v1
∀cw¬∃Rvw →c ∀cw¬∃Rv1w ∃+ : ∀cw¬∃Rvw

∀cw¬∃Rv1w (→nc)+u1

v1 nil = v → ∀cw¬∃Rv1w
∀nc
v1(v1 nil = v → ∀cw¬∃Rv1w) (= A(nil))

Figure 2. The decorated base derivation

[u0 : A(v2)] v1x

(v1x)v2=v → ∀cw¬∃R(v1x,w)

[u1 : v1(xv2)=v]
| N1

(v1x)v2=v

∀cw¬∃R(v1x,w) xw

¬∃R(v1x, xw)

[u2 : Rv1w]
| N2

R(v1x, xw)

∃lwRvw (→nc)+u2

¬∃Rv1w
∀cw¬∃Rv1w (→nc)+u1

v1(xv2)=v → ∀cw¬∃Rv1w
∀nc
v1(v1(xv2)=v → ∀cw¬∃Rv1w) (=A(xv2))

(→c)+u0
A(v2)→c A(xv2)

∀cx,v2(A(v2)→c A(xv2))

Figure 3. The decorated step derivation
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[v0]
(Rec list nat=>list nat=>list nat)v0([v1]v1)
([x1,v2,f3,v4]f3(x1::v4))
(Nil nat)

with f a variable for unary functions on lists. To run this algorithm one has to
normalize the term obtained by applying neterm to a list:

(pp (nt (mk-term-in-app-form neterm (pt "1::2::3::4:"))))
; 4::3::2::1:

This time, the underlying algorithm defines an auxiliary function g by

g(nil, w) := w, g(x :: v, w) := g(v, x :: w)

and gives the result by applying g to the original list and nil. In conclusion,
we have obtained (by machine extraction from an automated decoration of a
weak existence proof) the standard linear algorithm for list reversal, with its
use of an accumulator.

4.3 Passing continuations
A similar application of decoration occurs when one derives double induction

∀cn(Qn→c Q(Sn)→c Q(S(Sn)))→c ∀cn(Q0→c Q1→c Qn)

in continuation passing style, i.e., not directly, but using as an intermediate
assertion (proved by induction)

∀cn,m((Qn→c Q(Sn)→c Q(n+m))→c Q0→c Q1→c Q(n+m)).

After decoration, the formula becomes

∀cn∀nc
m ((Qn→c Q(Sn)→c Q(n+m))→c Q0→c Q1→c Q(n+m)).

This can be applied to obtain a continuation based tail recursive definition
of the Fibonacci function, from a proof of its totality. Let G be the graph of
the Fibonacci function, defined by the clauses

G(0, 0), G(1, 1),
∀nc
n,v,w(G(n, v)→nc G(Sn,w)→nc G(S(Sn), v + w)).

¿From these assumptions one can easily derive

∀cn∃vG(n, v),

using double induction (proved in continuation passing style). The term ex-
tracted from this proof is

[n0]
(Rec nat=>nat=>(nat=>nat=>nat)=>nat=>nat=>nat)
n0([n1,k2]k2)
([n1,p2,n3,k4]p2(Succ n3)([n7,n8]k4 n8(n7+n8)))
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applied to 0, ([n1,n2]n1), 0 and 1. An unclean aspect of this term is that the
recursion operator has value type

nat=>(nat=>nat=>nat)=>nat=>nat=>nat

rather than (nat=>nat=>nat)=>nat=>nat=>nat, which would correspond to
an iteration. However, we can repair this by decoration. After (automatic)
decoration of the proof, the extracted term becomes

[n0]
(Rec nat=>(nat=>nat=>nat)=>nat=>nat=>nat)
n0([k1]k1)
([n1,p2,k3]p2([n6,n7]k3 n7(n6+n7)))

applied to ([n1,n2]n1), 0 and 1. This indeed is iteration in continuation
passing style.

4.4 Proof transformations
In the next two examples we allow the decoration algorithm to substitute an
auxiliary lemma used in the proof by a lemma that we specify explicitly. The
algorithm will verify if the lemma passed to it as an argument is fitting and
if this is the case, it will replace the lemma used in the original proof by the
specified one. If not, the initial lemma is kept. This will allow for a certain
control over the computational content, as shown by the following examples.

Our first example is an elaboration of Constable’s idea described in the
introduction. Let Pn mean “n is prime”. Consider

∀cn(Pn ∨r ∃dm,k>1(n = mk)) factorization,

∀cn(Pn ∨u ∃dm,k>1(n = mk)) prime number test.

Euler’s ϕ-function has the properties{
ϕ(n) = n− 1 if Pn,
ϕ(n) < n− 1 if n is composed.

Suppose that somewhat foolishly we have used factorization and these proper-
ties to obtain a proof of

∀cn(ϕ(n) = n− 1 ∨u ϕ(n) < n− 1).

Our goal is to get rid of the expensive factorization algorithm in the computa-
tional content, via decoration.

The decoration algorithm arrives at the factorization theorem

∀cn(Pn ∨r ∃dm,k>1(n = mk))

with the decorated formula

∀cn(Pn ∨u ∃dm,k>1(n = mk)).
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Since the prime number test can be considered instead of the factorization
lemma, we can specify that the decoration algorithm should try to replace the
former by the latter. In case this is possible, a new proof is constructed, using
the the prime number test lemma. Should this fail, the factorization lemma is
kept. As it turns out in this case, the replacement is possible.

In the Minlog implementation the difference is clearly visible. cL denotes
the computational content of the factorization lemma L (i.e., the factorization
algorithm), and cLU the computational content of the lemma LU expressing the
prime number test. The extract from the original proof involves computing (cL
n0), i.e., factorizing the argument, whereas after decoration the prime number
test cLU suffices.

(pp (nt (proof-to-extracted-term proof)))
; [n0][if (cL n0) cInlOrU ([algC1]cInrOrU)]

(pp (nt (proof-to-extracted-term (decorate proof))))
; cLU

The second example is due to Bates and Constable [1], and deals with the
“maximal segment problem”. Let X be a set with a linear ordering ≤, and con-
sider an infinite sequence f : N → X of elements of X. Assume further that
we have a function M : (N → X) → N → N → X such that M(f, i, k) “mea-
sures” the segment f(i), . . . , f(k). The task is to find a segment determined by
i ≤ k ≤ n such that its measure is maximal. To simplify the formalization let
us consider M and f fixed and define seg(i, k) := M(f, i, k).

Of course we can simply solve this problem by trying all possibilities; these
are O(n2) many. The first proof to be given below corresponds to this general
claim. Then we will show that for a more concrete problem with the sum
xi + · · · + xk as measure the proof can be simplified, using monotonicity of
the sum at an appropriate place. From this simplified proof one can extract a
better algorithm, which is linear rather than quadratic. Our goal is to achieve
this effect by decoration.

Let us be more concrete. The original specification is to find a maximal
segment xi, . . . , xk, i.e.,

∀cn∃di≤k≤n∀i′≤k′≤n(seg(i′, k′) ≤ seg(i, k)).

A special case is to find the maximal end segment

∀cn∃lj≤n∀j′≤n(seg(j′, n) ≤ seg(j, n)).

We first provide two proofs of the existence of a maximal end segment for
n+ 1

∀cn∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)).

The first proof introduces an auxiliary variable m and proceeds by induction
on m, with n a parameter:

∀nc
n ∀cm≤n+1∃lj≤n+1∀j′≤m(seg(j′, n+ 1) ≤ seg(j, n+ 1)).
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The second proof uses as assumptions an “induction hypothesis”

IHn : ∃lj≤n∀j′≤n(seg(j′, n) ≤ seg(j, n))

and the additional assumption of monotonicity of seg

Mon : seg(i, k) ≤ seg(j, k)→ seg(i, k + 1) ≤ seg(j, k + 1).

It proceeds by cases on seg(j, n+ 1) ≤ seg(n+ 1, n+ 1). If ≤ holds, take n+ 1,
else the previous j.

We now prove the existence of a maximal segment by induction on n, simul-
taneously with the existence of a maximal end segment.

∀cn(∃di≤k≤n∀i′≤k′≤n(seg(i′, k′) ≤ seg(i, k)) ∧d

∃lj≤n∀j′≤n(seg(j′, n) ≤ seg(j, n)))

In the step, we compare the maximal segment i, k for n with the maximal end
segment j, n+1 provided separately. If ≤ holds, take the new i, k to be j, n+1.
Else take the old i, k.

Depending on how the existence of a maximal end segment was proved, we
obtain a quadratic or a linear algorithm. For this reason, we can use the option
of specifying which lemma the decoration algorithm should use. We have

L1 : ∀cn∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1)),

L2 : ∀nc
n (IHn →c Mon→ ∃lj≤n+1∀j′≤n+1(seg(j′, n+ 1) ≤ seg(j, n+ 1))),

so we can try to replace L1 by L2. Since this is possible, the decoration algo-
rithm constructs the correct proof from L2 and produces the proof resulting in
the linear algorithm.
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