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1 Minlog

Formalization by Helmut Schwichtenberg <schwicht@mathematik.uni-muenchen.de>.
Questions answered by Helmut Schwichtenberg and Ulrich Berger <U.Berger@swansea.ac.uk>.

1.1 Statement

all x,p,q.2===x*x -> x===p#q -> F

1.2 Definition

(add-ids
(list (list "RealEq" (make-arity (py "real") (py "real"))))
’("all x,y.all k abs(x seq(x mod(k+1))-y seq(y mod(k+1)))<=(1#exp 2 k) ->

RealEq x y"))

add-token
"==="
’pred-infix
(lambda (x y)

(make-predicate-formula (make-idpredconst "RealEq" ’() ’()) x y)))

(add-idpredconst-display "RealEq" ’pred-infix "===")

1.3 Proof

(load "~/minlog/init.scm")
(mload "../lib/numbers.scm")

(set-goal (pf "all p,q.SZero(q*q)=p*p -> F"))
(ind)
(auto)
(assume "p" "IHp")
(cases)
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(auto)
(save "LemmaOne")

(set-goal (pf "all p,q.2==(p#q)*(p#q) -> F"))
(use "LemmaOne")
(save "LemmaOneRat")

(aga ;for add-global-assumption
"RealRatTimesComp"
(pf "all x1,x2,a1,a2.x1===a1 -> x2===a2 -> x1*x2===a1*a2"))

(aga "RatRealEq" (pf "all a,b.a===b -> a==b"))
(aga "RealEqTrans" (pf "all x,y,z.x===y -> y===z -> x===z"))

(set-goal (pf "all x,p,q.2===x*x -> x===p#q -> F"))
(strip)
(use "LemmaOneRat" (pt "p") (pt "q"))
(use "RatRealEq")
(use "RealEqTrans" (pt "x*x"))
(prop)
(use "RealRatTimesComp")
(auto)
(save "Corollary")

1.3.1 Proof Terms

Lemma 1:

(((|Ind| (lambda (q) (lambda (u55) u55)))
(lambda (p)
(lambda (|IHp58|)

((((|Cases| p) (lambda (u62) u62))
(lambda (n290) (lambda (u63) ((|IHp58| n290) u63))))
(lambda (n291) (lambda (u64) u64))))))

(lambda (n286)
(lambda (u65) (lambda (q) (lambda (u66) u66)))))

Corollary:

(lambda (x)
(lambda (p)
(lambda (q)

(lambda (u69)
(lambda (u70)
(((|LemmaOneRat| p) q)
(((|RatRealEq| 2)
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(* ((|RatConstr| p) q) ((|RatConstr| p) q)))
(((((|RealEqTrans|

((|RealConstr| (lambda (n300) 2))
(lambda (n300) 1)))

((|RealTimes| x) x))
((|RealConstr|

(lambda (n299)
(* ((|RatConstr| p) q)

((|RatConstr| p) q))))
(lambda (n299) 1)))

u69)
((((((|RealRatTimesComp| x) x)

((|RatConstr| p) q))
((|RatConstr| p) q))
u70)

u70)))))))))

1.4 Proof of Lemma 1, using unary numbers

(load "~/minlog/init.scm")
(mload "../lib/nat.scm")

; "Even" and "Odd"
(add-program-constant "Even" (py "nat=>boole") 1)
(add-program-constant "Odd" (py "nat=>boole") 1)

(add-computation-rule (pt "Even 0") (pt "True"))
(add-computation-rule (pt "Odd 0") (pt "False"))
(add-computation-rule (pt "Even(Succ n)") (pt "Odd n"))
(add-computation-rule (pt "Odd(Succ n)") (pt "Even n"))

; "Double"
(add-program-constant "D" (py "nat=>nat") 1)

(add-computation-rule (pt "D 0") (pt "0"))
(add-computation-rule
(pt "D(Succ n)") (pt "Succ(Succ(D n))"))

; "Half"
(add-program-constant "H" (py "nat=>nat") 1)

(add-computation-rule (pt "H 0") (pt "0"))
(add-computation-rule (pt "H 1") (pt "0"))
(add-computation-rule

3



(pt "H(Succ(Succ n))") (pt "Succ(H n)"))

; "CvInd"
(set-goal

(pf "(all n.(all m.m<n -> Q m) -> Q n) -> all n Q n"))
(assume "Prog")
(cut (pf "all n,m.m<n -> Q m"))
(assume "QHyp")
(assume "n")
(use "QHyp" (pt "Succ n"))
(use "Truth-Axiom")
(ind)
(assume "m" "Absurd")
(use "Efq")
(use "Absurd")

(assume "n" "IHn")
(assume "m" "m<Succ n")
(use "LtSuccCases" (pt "n") (pt "m"))
(use "m<Succ n")
(use "IHn")
(assume "m=n")
(simp "m=n")
(use "Prog")
(use "IHn")
(save "CVInd")

; "LemmaOneAux"
(set-goal (pf "all n,m.n*n=D(m*m) -> m*m=D(H n*H n)"))
(assume "n" "m" "n*n=D(m*m)")
(simp "TimesDouble1")
(use "DoubleInj")
(simp "<-" "n*n=D(m*m)")
(simp "TimesDouble2")
(simp (pf "D(H n)=n"))
(use "Truth-Axiom")
(use "EvenOddDoubleHalf")
(use "EvenOddSquareRev")
(simp "n*n=D(m*m)")
(use "EvenDouble")
(save "LemmaOneAux")

; "LemmaOne"
(set-goal (pf "all n,m.n*n=D(m*m) -> n=0"))
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(use-with
"CVInd"
(make-cterm (pv "m") (pf "all n.m*m=D(n*n) -> m=0")) "?")

(assume "n" "IHn" "m" "n*n=D(m*m)")
(cases (pt "0<n"))
(assume "0<n")
(use "ZeroSquare")
(simp "n*n=D(m*m)")
(cut (pf "m=0"))
(assume "m=0")
(simp "m=0")
(use "Truth-Axiom")
(use "IHn" (pt "H n"))
(use "LtSquareRev")
(simp "n*n=D(m*m)")
(use "LtDouble")
(use "DoublePos")
(simp "<-" "n*n=D(m*m)")
(use "SquarePos")
(use "0<n")
(use "LemmaOneAux")
(use "n*n=D(m*m)")
(use "NotPosImpZero")
(save "LemmaOne")

1.5 System

What is the home page of the system?

<http://www.minlog-system.de>

What are the books about the system? There is no book on Minlog at
present. However, the paper “Minimal Logic for Computable Functions”

<http://www.mathematik.uni-muenchen.de/̃ minlog/minlog/mlcf.ps>

describes the logical basis of the system. There is a reference manual

<http://www.mathematik.uni-muenchen.de/̃ minlog/minlog/ref.ps>

and a tutorial (by Laura Crosilla)

<http://www.mathematik.uni-muenchen.de/̃ minlog/minlog/tutor.ps>

What is the logic of the system? Minimal logic, hence (via ex-falso-
quodlibet and stability axioms) also intuitionistic and classical logic are
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included. Quantification over higher order functionals (of any finite type) is
possible. There are also (parametric) type variables and predicate variables,
but they are seen as place-holders for concrete types and comprehension
terms, i.e., they are (implicitly) universally quantified (this is sometimes
called ML-polymorphism). To keep the system predicative and moreover
proof-theoretically weak (i.e., conservative over Heyting arithmetic), quan-
tification over type and predicate variables is not allowed. Inductive data
types and inductive definitions with their usual introduction and elimina-
tion rules are present. Of course, the latter in general increases the proof-
theoretic strength.

What is the implementation architecture of the system? The system is
written in Scheme (a Lisp dialect). Types, terms, formulas and proofs are
separate entities. Terms and (following the Curry-Howard correspondence)
also proofs are seen as λ-terms. There is a simple proof checking algorithm,
which guarantees the correctness of a generated proof object.

What does working with the system look like? The standard LCF tactic
style is used. David Aspinall’s “Proof General” interface has also been
adapted (by Stefan Schimanski).

What is special about the system compared to other systems? The in-
tended model consists of the partial continuous functionals (in the Scott-
Ersov sense), so partiality is built in from the outset. Program extraction
can be done from constructive as well as from classical proofs; the latter
uses a refined form of Harvey Friedman’s A-translation. A proof that an
extracted program realizes its specification can be machine generated.

Function (or better: program) constants (again of any finite type) have
user-defined computation and rewrite rules associated with them. Using
Scheme’s evaluation, terms are normalized (“normalization by evaluation”)
w.r.t. all standard conversion rules (β, η, recursion, user-defined computa-
tion and rewrite rules), and terms with the same normal form are identified.
This feature can shorten proofs drastically, as seen in the example above.
Rewrite rules are to be viewed as part of the proof object, but, in the current
version of Minlog, are not kept as part of the proof term. The system sup-
ports working in proof-theoretically weak theories, in order to have control
over the complexity of extracted programs (this is work in progress).

What are other versions of the system? There is only one supported
version. The current one is 4.0.

Who are the people behind the system? The Munich (LMU) logic group,
and the Swansea logic group.

What are the main user communities of the system? The main user
communities are in Munich and in Swansea.

What large mathematical formalizations have been done in the system?
The intermediate value theorem in constructive analysis; the usage of con-
crete representations of the reals (as above) allowed extraction of a usable
program to compute

√
2 (20 binary digits in 10 ms). Higman’s lemma
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(Monika Seisenberger). Correctness of Dijkstra’s and Warshall’s algorithms.
Program extraction from a classical proof of Dickson’s lemma (Ulrich Berger).

What representation of the formalization has been put in this paper? In
the proof of Lemma 1 and the statement about R using binary numbers,
what is presented is the complete tactic file producing the proofs terms
shown. In the proof of Lemma 1 using unary numbers, for brevity the (easy)
proofs of the auxiliary lemmas have been left out. They should be part of the
standard library, and can be found in the file examples/arith/sqrttwo.scm
of the minlog directory.

What needs to be explained about this specific proof? The short proof of
Lemma 1 (only five commands) is due to the fact that arguing with even
and odd numbers in the context of a binary numbers is particularly simple
(see below for more details). On the other hand, binary numbers are a must
(for efficiency reasons) when working with rationals.

To provide a clearer picture of how working with the system is like in less
fortunate circumstances, a proof of Lemma 1 for unary numbers is included
as well.

The file numbers.scm contains definitions of the (binary) positive num-
bers n, m, p, q . . . with constructors One, SZero and SOne, the integers i, j
. . . with constructors IntPos, IntZero and IntNeg, the rationals a, b . . .
seen as pairs i#n of an integer i and a positive natural number n, and the
reals x, y . . . seen as pairs of a Cauchy sequence of rationals and a modulus.
Equality deserves special attention:

• = is the structurally defined equality for positives and integers,

• == is the decidable (equivalence) relation on the rationals, and

• === is the (undecidable) equivalence relation on (the chosen represen-
tation of) the reals.

Here are some more details on the proofs.
Lemma 1 (binary): ∀p, q.S0(q ∗ q) = p ∗ p → F. Since the proof is by

induction on binary numbers the following sub-goals are created (writing
1,S0,S1 for One, SZero, SOne respectively):

?2 ∀q.S0(q ∗ q) = 1 ∗ 1→ F

?3 ∀p.IH(p)→ ∀q.S0(q ∗ q) = S0(p) ∗ S0(p)→ F

?4 ∀p.IH(p)→ ∀q.S0(q ∗ q) = S1(p) ∗ S1(p)→ F

where IH(p) ≡ ∀q.S0(q ∗ q) = p ∗ p→ F.
Goal ?2 is solved by normalizing 1 ∗ 1 to 1 and hence S0(q ∗ q) = 1 ∗ 1

to F. Similarly, in goal ?4 the premise S0(q ∗ q) = S1(p) ∗ S1(p) normalizes
to F since S1(p) ∗ S1(p) normalizes to a term of the form S1( ). The premise
S0(q ∗ q) = S0(p) ∗ S0(p) of goal ?3 normalizes to q ∗ q = S0(p ∗ p). Consider
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the possible forms of q: 1, S0(r), or S1(r). In the first and last case q ∗ q
normalizes to a term of the form S1( ) hence the equation normalizes to F.
In the second case the equation normalizes to S0(q ∗ q) = p ∗ p which implies
F by the induction hypothesis. The system does all this fully automatically,
except for the case analysis on q.

Lemma 1 Rat : ∀p, q.2 == p
q ∗

p
q → F. Up to normalization this is identical

to Lemma 1, since 2 == p
q ∗

p
q normalizes to S0(q ∗ q) = p ∗ p.

Global assumption on equalities on the rationals and the reals. Here the
fact is used that the rationals are coerced into the reals.

Lemma 1 (unary). The 12th command, (use "IHn" (pt "H n")), re-
duces the goal m = 0 with the help of the induction hypothesis ∀m.m <
n → ∀k.m ∗ m = D(k ∗ k) → m = 0. The argument (pt "H n") is not
–as one might think– used to instantiate the first universal quantifier, ∀m,
but the second one, ∀k, which is the only quantifier left uninstantiated after
matching the goal with the head of the induction hypothesis.
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