
An inverse of the evaluation functional for typed

λ–calculus

U. Berger H. Schwichtenberg

Mathematisches Institut Mathematisches Institut
der LMU München der LMU München
8000 München 2 8000 München 2

Abstract

In any model of typed λ–calculus contaning
some basic arithmetic, a functional p→e (pro-
cedure → expression) will be defined which in-
verts the evaluation functional for typed λ–
terms. Combined with the evaluation func-
tional, p→e yields an efficient normalization
algorithm. The method is extended to λ–
calculi with constants and is used to normalize
(the λ–representations of) natural deduction
proofs of (higher order) arithmetic. A conse-
quence of theoretical interest is a strong com-
pleteness theorem for βη–reduction, generaliz-
ing results of Friedman [?] and Statman [?]:
If two λ–terms have the same value in some
model containing representations of the prim-
itive recursive functions (of level 1) then they
are provably equal in the βη–calculus.

0 Introduction

Normalization is a fundamental but expensive
process in proof theory and proof implementa-
tion. In view of the Curry–Howard correspon-
dence it is natural to try to use evaluation of
typed λ–terms, which corresponds to normal-
ization of proofs and is available in functional
programming languages, to get rid of the bur-
den of implementing a normalization proce-

dure ‘by hand’. However in trying so, one is
faced with two problems: 1. Terms contain-
ing free variables are not accepted by the com-
piler. 2. If the term is of functional type, the
normalized procedure is not shown but only a
message that the result is some procedural ob-
ject.

Although both problems seem to be imple-
mentation dependent, they may be formulated
purely mathematically, using denotational se-
mantics. The denotational value of a term of
functional type is a functional (or procedure)
which is an abstract object and therefore can-
not be shown on the screen. But to solve the
second problem we do not need the procedure
itself but a term in normal form evaluating
to it. So, it is our our task to define a func-
tional p→e inverting the evaluation functional
and returning normal forms only. The first
problem asks for an environment binding ev-
ery free variable x of the term to be normalized
to some functional which we will call mse(x)
(make self evaluating) for reasons (perhaps)
becoming appearent when looking at the def-
inition below.

Let us briefly discuss a first guess how p→e and
mse might be defined: Because p→e should
return terms, it is clear that a model M in

1

which p→e exists must contain (representa-
tions of) λ-terms. Therefore let, for simplic-
ity, M o be the set of all typed λ-terms and
Mρ→σ = (Mσ)M

ρ
. Define p→eρ ∈ Mρ→o and

mseρ ∈M o→ρ simultaneously by

p→eo(r) = mseo(r) = r

p→eρ→σ(a) = λzρ.p→eσ(a(mseρ(z
ρ)))

mseρ→σ(r)(b) = mseσ(r(p→eρ(b)))

In the definition of p→eρ→σ(a) the bound vari-
able zρ must be ‘fresh’, i.e. whenever a is the
value of a term r then zρ must not occur free
in r, where the evaluation of r takes place in
an environment binding every free variable x
to mse(x). Under this assumption it is not
hard to show that p→e does the job.

But how can we find a fresh z?

Being faced with this problem for the first
time, we were working with the LISP di-
alect SCHEME which is a functional language
but provides also some procedural facilities.
Therefore at the computer it was no prob-
lem to produce such a z. We simply used the
SCHEME procedure gensym creating a new
symbol every time it is called (such a proce-
dure may be easily defined in any procedural
language).

It is the aim of this work to solve the in-
version problem purely functionally, i.e. in-
side the theory of typed λ–calculus, avoid-
ing procedural elements. This will allow us
to prove some interesting syntactical and se-
mantical properties of typed λ–calculus. The
most remarkable one is the following strong
completeness theorem:

If two closed typed λ-terms have the
same value in some model allowing
the representation of primitive recur-
sive functions, then they are already
provably equal in the βη–calculus.

This generalizes Friedmans ‘extended com-
pleteness theorem’ [?]. Friedman requires the
models to consist of the full (set theoretical)
function space at all functional types whereas
in our theorem only for types of level 1 condi-
tions on the model are imposed.

To achieve our aim we will introduce in the
Sections 2 and 3 a renaming and coding ma-
chinery for λ–terms in a large class of mod-
els. These models will be called admissible.
The point is that single terms are replaced by
families of α–equivalent terms for which the
‘fresh z’ is very easy to compute. In Section
4 we define the inversion functional for ad-
missible models and prove the completeness
theorem. In Section 5 we construct a specific
model where this functional yields a normal-
ization algorithm which is as efficient as the
one based on gensym. In Section 6 we ex-
tend the results of Section 4 to λ-calculi with
constants. Finally in Section 7 we discuss, as
an example of such an extended λ-calculus,
the → ∀-fragment of (higher order) logic and
arithmetic and show how to normalize proofs
with our method.

1 Models of typed λ–calculus

Types are built up from ground types by →.
It will suffice to consider only one ground type
o. λ–terms are constructed from typed vari-
ables xρ by application (tρ→σrρ)σ and abstrac-
tion (λxρ.sσ)ρ→σ. Λ(ρ) is the set of terms (of
type ρ). We will frequently omit types and
parentheses if they can be recovered from the
context. Iterated applications are associated
to the left and application binds more than
abstraction. For example λx.rst stands for
λx.((rs)t).

As for the notion of a model we follow Fried-
man [?] with some change in notation. A pre–
structure M consists of sets Mρ, mappings
Aρ,σ:M

ρ→σ×Mρ →Mσ and equivalence rela-

2

tions =ρ on Mρ which are congruences for the
Aρ,σ, i.e.

a =ρ→σ a
′, b =ρ b

′ ⇒ Aρ,σab =σ Aρ,σa
′b′

Furthermore we require extensionality

∀b ∈MρAρ,σab =σ Aρ,σa
′b⇒ a =ρ→σ a

′

Hence all the =σ are completely determined
by =o because

a =ρ→σ a
′ ⇔ ∀b ∈MρAρ,σab =σ Aρ,σa

′b

If b, b′ ∈Mρ then b = b′ will always mean b =ρ

b′. Furthermore we will write ab for Aρ,σab and
will again associate to the left.

To define models we need environments which
are type respecting mappings from the vari-
ables to M . Let ENV be the set of environ-
ments. For every environment η, variable xρ

and a ∈ Mρ the environment η[xρ 7→ a] is
defined by η[xρ 7→ a](xρ) = a and η[xρ 7→
a](y) = η(y) if y 6= xρ.

A λ–model is a pre–structure M together with
mappings | · |ρ· : Λρ × ENV → Mρ s.t. (omit-
ting types)

|x|η = η(x), |tr|η = |t|η|r|η, |λx.s|ηa = |s|η[x 7→ a].

We write M |=η r = s if in M the equa-
tion |r|η = |s|η holds. M |= r = s:⇔
∀η:M |= r = s. Common λ–models are the
full set–theoretic models TB where To

B = B
is any set and Tρ→σ

B = Tρ
B

Tσ
B [?], domain–

theoretic models D where D0 is a domain
and Dρ→σ is the set of continuous functions
from Dρ to Dσ, or the Kleene–Kreisel func-
tionals. A nice constructive λ–model is the
structure HEO of hereditarily effective opera-
tions where the HEOρ consist of natural num-
bers and Aρ,σen = {e}n [?].

2 Normal forms and α–equality

β–reduction, based on
β–conversion (λx.r)s 7→ r[s/x], and β–normal
forms are defined as usual. We will prefer long
β–normal forms which have the form

λxρ11 . . . λxρn
n .y

σ1→···→σk→osσ1
1 . . . sσk

k

with s1, . . . , sk in long β–normal form (σ1 →
. . .→ σk → o is associated to the right) [?, §0].
Obviously each term in β–normal form may be
transformed into long β–normal form by suit-
able η–expansions. Therefore each term r may
be transformed into a unique long β–normal
form r∗ by β–conversions and η–expansions.

It is common (and was done above) to iden-
tify α–equal terms i.e. terms interconvertible
by bound renaming. However, for the algo-
rithms we will define, concrete λ–terms with
specific bound variables are needed. For ev-
ery finite 0–1 sequence k let αkr be the result
of replacing each bound variable yσ in r with
binding position l ∈ {0, 1}∗ by xρk∗l (∗ denotes
concatenation). We can make this precise by
defining inductively

αkx = x

αkrs = (αk∗0r)(αk∗1s)

αk(λy
ρ.r) = λxρk.αk∗0(r[x

ρ
k/y

ρ])

Lemma 1.

(a) r =α s⇒ αkr = αks.

(b) If r contains no free variables of the form
xk∗l then αkr =α r.

Proof: Induction on the length of r. 2

By this lemma, for every term r ∈ Λρ, the
term family EMBr: {0, 1}∗ → Λρ, defined by

EMBrk := αk(r)

3

may be viewed as a representation of r (by (b))
which abstracts from α–equality (by (a)). (b)
also tells us how to recover an α–variant of
r from EMBr: Take EMBrk̂ where k̂ is such
that there is no index in the finite set {l ∈
{0, 1}∗|xl free in r} extending k̂. This set can
be computed easily because a variable in r is
free in r iff it is not changed in EMBrk when k
changes. Therefore we only need to determine
all l s.t. xl appears in EMBrε and EMBr0 at
the same position (ε is the empty sequence,
0 stands for the sequence containing only 0).
In fact k̂ only depends on EMBr and is well
defined not only for EMBr but for any term
family F : {0, 1}∗ → Λ. Therefore we may de-
fine EXTRACT(F) := EMBF k̂. Let us sum-
marize some properties of EMB: Λ → Λ{0,1}∗

and EXTRACT: Λ{0,1}∗ → Λ.

Lemma 2.

(a) r =α s⇒ EMB(r) = EMB(s).

(b) EXTRACT(EMBr) =α r.

(c) EMB(EMBrk)k = EMBrk.

Proof: (a) : “⇒” is Lemma 1(a) and “⇐” fol-
lows from (b) of this lemma. (b) follows from
Lemma 1(b) and the definition of EXTRACT.
(c) is proved by induction on r. 2

3 Admissible λ–models and pr–
models

Now we tackle the problem of inverting the
evaluation functional | · |. Because the final
solution will be rather technical, it might be
helpful to sketch the algorithms in a particu-
lar model where things are simple. Suppose
M is a λ–model s.t. M o contains syntacti-
cal material such as indices (0–1 sequences)
and λ–terms and assume that all usual syn-
tactic operations exist in M . In particular
EMB ∈ M o→o and EXTRACT ∈ M (o→o)→o

(We assume that Mρ→σ consists of set theo-
retic functions). The inversion functional will
be based on functionals Φρ ∈ Mρ→(o→o) and
Ψρ ∈M (o→o)→ρ defined by

Φor = EMBr

Ψof = EXTRACTf

Φρ→σak = λxρk.Φσ(a(Ψρ(EMBxρk)))(k ∗ 0)

Ψρ→σfa = Ψσ(f-APPf(Φρa))

where f-APP is application for term fami-
lies i.e. f-APP(EMBr)(EMBs) = EMB(rs)
should hold. The crucial property of Φ is

• If r is a closed term in long β–normal form
then Φ|r| = EMBr.

Now we define p→eρ:M
ρ → Λρ by

p→eρ(a) = EXTRACT(Φρa).

This works because if a ∈ Mρ is λ–definable
then there is a term r in long β–normal form
s.t. |r| = a and consequently

|p→eρ(a)| = |EXTRACT(EMBr)| = |r| = a,

i.e. p→eρ(a) is a term with value a. Further-
more, for closed r ∈ Λρ,

norm(r) := p→eρ(|r|)

is the long β–normal form of r, because |r| =
|r∗| and therefore

norm(r)

= EXTRACT(Φρ|r∗|)
= EXTRACT(EMBr∗)

=α r∗

which means that norm(r) is (as an α–variant
of r∗) the long β–normalform of r as well.
A third consequence is a completeness result

4

for βη–reduction: Let r, s ∈ Λρ be closed
with |r| = |s|. Then norm(r) = p→eρ(|r|) =
p→eρ(|s|) = norm(s) and therefore r and s are
provably equal in the βη–calculus.

To prove the stated property of Φ for closed
terms, one has to show a more general state-
ment involving also Ψ and open terms. For
any substitution θ define ηθ ∈ ENV by
ηθ(y

ρ) = Ψρ(EMB(θyρ)). Now it is an easy
but very instructive exercise to show (by in-
duction on r distinguishing the cases ρ = o
and ρ 6= o) that the equation

Φ(|r|ηθ) = EMB(rθ)

holds for every term r in long β–normal
form. A detailed proof of this equation in a
more general framework will be carried out in
Lemma 5 in the next section.

Now we will precisely describe the require-
ments on a λ–model making these construc-
tions possible. In fact we will describe a more
general situation which will strengthen our
completeness result and allows for the defini-
tion of an efficient normalization procedure.

Call a λ–model admissible if there are types f
(type of term families) and ι (type of indices),
coding functions d·eo: Λ →M o, d·eι: {0, 1}∗ →
M ι and objects append ∈ M ι→ι→ι, mvarρ ∈
M ι→o, app ∈ M o→o→o, abstρ ∈ M ι→o→o (for
every type ρ), emb ∈ M o→f , fun ∈ M f→(ι→o)

and extract ∈ M (ι→o)→o s.t. the following
holds (omitting types)

(append) appenddkedle = dk ∗ le

(mvar) mvarρdke = dxρke

(app) appdredse = drse

(abst) abstρdkedre = dλxρk.re

(d·e) dre = dse ⇒ EMBr = EMBs

(emb) EMBr = EMBs⇒ embdre = embdse

(fun) fun(embdre)dke = dEMBrke

(extract) ∀k: adke = dEMBrke
⇒ extract(a) = dEXTRACT(EMBr)e

All infinite λ–models mentioned in Section 1
are easily seen to be admissible by letting ι = o
and f = o→ o.

Because the definition given above is not very
comprehensible, we will define a more natural,
smaller but still very large class of λ–models,
showing that admissibility is in fact a very
weak requirement.

Call a λ–model M a pr–model if all binary
primitive recursive functions are represented
in it. This shall mean that there is an injec-
tion ν:ω → M o and for every binary prim-
itive recursive function h:ω2 → ω an object
h ∈ M o→o→o s.t. h(νn)(νm) = ν(hnm) for all
n,m ∈ ω. In fact in a pr–model all prim-
itive recursive functions are represented be-
cause every primitive recursive function is ex-
plicitely definable from binary ones. However
we will only need that in pr–models all unary
and binary primitive recursive functions are
represented.

Lemma 3. Every pr–model is admissible.

Proof: Let r1, r2, . . . resp. k1, k2, . . . be ef-
fective repitition free numberings of Λ resp.
{0, 1}∗. ‘Effective’ shall mean that there
are primitive recursive functions APPEND,
MVARρ, APP, ABST, EXEMB and
ALPHA s.t.

kAPPEND(n,m) = kn ∗ km,

rMVARρ(n) = xρkn

rAPP(n,m) = rnrm

kABSTρ(n,m) = λxρkn
rm

rEXEMB(n) = EXTRACT(EMBrn)

5

rALPHA(n,m) = EMBrnkm

In the previous section we defined

EXTRACT(EMBr) = EMBrk̂

where k̂ can be computed from EMBrε and
EMBr0. Hence we may assume furthermore
that there exists a primitive recursive function
INDEXT s.t. if EMBrε = rn and EMBr0 =
rm then

EXTRACT(EMBr) = EMBrkINDEXT(n,m)

Now we turn M into an admissible model
by letting ι = o, f = o, drneo = νn,
dkneι = νn, append = APPEND, mvarρ =
MVARρ, app = APP, abstρ = ABSTρ, emb =
EXEMB, fun = ALPHA and define extract ∈
M (ι→o)→o by

extract(a) = a(INDEXT(adεe)(ad0e))

extract exists in M because it is explicitely
defined from elements of M and M is a λ–
model. We have to verify the laws for admis-
sibility. (append), (mvar), (app), (abst), (d·e)
and (emb) clearly hold.
(fun):

fun(embdrne)dkme
= ALPHA(EXEMBνn)(νm)

= ν(ALPHA(EXEMBn)m)

= drALPHA(EXEMBn)me
= dEMBrEXEMBnkme
= dEMB(EXTRACT(EMBrn))kme
= dEMBrnkme

by Lemma 2 (a) and (b).
(extract): Let EMBrε = rn and EMBr0 =
rm and assume adke = dEMBrke for all
k ∈ {0, 1}∗. Then in particular adεe =

dEMBrεe = drne = νn and likewise da0e =
νm. Hence

extract(a)

= a(INDEXT(adεe)(adoe))
= a(INDEXT(νn)(νm))

= a(ν(INDEXTnm))

= adkINDEXT(n,m)e
= dEMBrkINDEXT(n,m)e
= dEXTRACT(EMBr)e

using the assumption again. 2

To improve readability of the calculations in
the next section we introduce some auxiliary
objects. Let M be an admissible model and
define f-extract ∈ M f→o, f-app ∈ M f→f→f and
fam ∈M (ι→o)→f by

f-extractf = extract(funf)

f-appfg =
emb(app(f-extractf)(f-extractg))

fam(a) = emb(extract(a))

Lemma 4. In every admissible λ–model M
the following equations hold:

(a) f-extract(embdre) =
dEXTRACT(EMBr)e

(b) emb(f-extract(embdre)) = embdre

(c) f-app(embdre)(embdse) = embdrse

(d) ∀k : adke = dEMBrke ⇒ fam(a) =
embdre

Proof:
(a):
f-extract(embdre) = extract(fun(embdre)).
By (fun), fun(embdre)dke = dEMBrke for all
k and hence, by (extract),

extract(fun(embdre)) = dEXTRACT(EMBr)e

6

(b): EMB(EXTRACT(EMBr)) = EMBr, by
Lemma 2. Hence, by
(emb), embdEXTRACT(EMBr)e = embdre.
Therefore, by (a), emb(f-extract(embdre)) =
embdre.
(c): By (a), (app) and (emb), we have

f-app(embdre)(embdse)
= emb(app(f-extract(embdre))(f-extract(embdse)))
= embd(EXTRACT(EMBr))(EXTRACT(EMBs))e
= embdrse

(d): If adke = dEMBrke for all k then, by
(extract),
extract(a) = dEXTRACT(EMBr)e. Hence

fam(a) = emb(extract(a)) = embdre

by (emb). 2

4 Inversion, normalization and
completeness

Let M be an admissible λ–model. By recur-
sion on ρ we define terms Φρ ∈ Λρ→f and
Ψρ ∈ Λf→ρ:

Φo = emb,

Ψo = f-extract,

Φρ→σ =
λaρ→σ.fam(λpι.abstp(fun(Φσ(aψ[p]))(p0)))

where ψ[p] stands for Ψρ(emb(mvarρp)) and
p0 is short for appendpd0e.
Ψρ→σ = λf f .λaρ.Ψσ(f-appf(Φρa)).

Here of course emb, . . . , f-app denote con-
stants, i.e. variables with the valuations
emb, . . . , f-app ∈ M respectively. As with
emb, . . . , f-app, the values |Φρ| ∈ Mρ→f resp.
|Ψρ| ∈ M f→ρ are denoted by Φρ resp. Ψρ

again. Furthermore for f, g ∈M f we will write
fg for f-appfg and f1f2 . . . fn will be associ-
ated to the left. Clearly for ρ = ρ1 → . . . →
ρn → o and a1 ∈Mρ1 , . . . , an ∈Mρn

Ψρfa1 . . . an = f-extract(f(Φρ1a1) . . . (Φρnan))

For any substitution θ define ηθ ∈ ENV by
ηθ(y

ρ) = Ψ(embdθyρe).

Lemma 5 (Main Lemma). For every λ–
term r ∈ Λρ in long β–normal form and every
substitution θ

Φρ(|r|ηθ) = emb(drθe)
Moreover if ρ = o then |r|ηθ = drθe.

Proof: Induction on r. Recall that fg stands
for f-appfg.

1. ρ = o, r = xρ1→...→ρn→osρ11 . . . sρn
n :

|xs1 . . . sn|ηθ
= Ψ(embdθxe)|s1|ηθ . . . |sn|ηθ
= f-extract((embdxθe)(Φ|s1|ηθ) . . . (Φ|sn|ηθ))
= f-extract((embdxθe)(embds1θe) . . . (embdsnθe))
= f-extract(embd(xs1 . . . sn)θe)
= dEXTRACT(EMBrθ)e

But EXTRACT(EMBrθ) =α rθ, by Lemma
2(c), and since substitution is determined
only up to α–equivalence, we may write
EXTRACT(EMBrθ) = rθ.

2. ρ → σ, r = λxρ.sσ (w.l.o.g. θxρ = xρ and
xρ not free in θy for any y 6= xρ free in sσ):
Φρ→σ(|λx.s|ηθ) = fam(a), where a ∈ M ι→o is
s.t. (using the same abbreviations as in the
definition of Φρ→σ)

ap = abstρp(fun(Φσ(|s|ηθ[x 7→ ψ[p]]))(p0))

for all p ∈M ι. We have to show that fam(a) =
embd(λx.s)θe. By virtue of Lemma 4 (d) it
will suffice to show adke = dEMB((λx.s)θ)ke
for all k ∈ {0, 1}∗:

adke
= abstρdke(fun(Φσ(|s|ηθ[x 7→ ψ[dke]]))(dke ∗ d0e))
= abstρdke(fun(Φσ(|s|ηθ[x7→xρ

k
]))dk ∗ 0e)

= abstρdke(fun(embds(θ[x 7→ xρk])e)dk ∗ 0e)
= abstρdkedEMB(s(θ[x 7→ xk]))(k ∗ 0)e
= dλxρk.EMB(sθ[xk/x])(k ∗ 0)e
= dEMB(λx.(sθ))ke

7

Because λx.(sθ) = (λx.s)θ we are done. 2

For every b ∈ dΛe let b∼ ∈ Λ be any term s.t.
db∼e = b. By (emb), we then have dre∼ =α r
for every r ∈ Λ. Now define partial functions
p→eρ:M

ρ → Λρ by

p→eρ(a) ' (f-extractΦρ(a))
∼

Call a ∈ Mρ λ–definable if there is a closed
term r ∈ Λρ s.t. |r| = a.

Theorem 1. Let M be an admissible λ–
model.

1. Inversion: If a ∈ Mρ is λ–definable,
then p→eρ(a) is a closed term of type ρ
in long β–normal form s.t. |p→eρ(a)| = a.

2. Normalization and substitution: For
every term r ∈ Λρ and every substitution
θ

p→eρ(|r|ηθ) =α r
∗θ

3. Completeness: If M |= r = s then
r and s are provably equal in the βη–
calculus.

Proof: 1.: Let a = |r| with r ∈ Λρ closed
and in long β–normal form. By Lemma 5 and
Lemma 4(a)

f-extract(Φρa)

= f-extract(Φρ|r|)
= f-extract(embdre)
= dEXTRACT(EMBr)e

Hence p→eρ(a) = dEXTRACT(EMBr)e∼ =α

r.

2.:

f-extract(Φρ|r|ηθ)
= f-extract(Φρ|r∗|ηθ)
= f-extract(embdr∗θe)
= dEXTRACT(EMB(r∗θ))e

Hence p→eρ(|r|ηθ) =
dEXTRACT(EMBr∗θ)e =α r

∗θ.
3.: If M |= r = s then |r|ηid = |s|ηid, and
therefore, by 2., r∗ =α s

∗. 2

Let us reformulate this theorem in terms of the
more natural pr–models (see Section 3). Re-
call that with every pr–modelM we associated
an injection ν:ω → M o and that dre = νn
whenever r = rn in the (fixed) effective, repe-
tition free numbering r1, r2, . . . of Λ. We call
dre the canonical code of r in M .

Inversion and normalization theorem

In a pr–model M there exists for every ρ an
object invρ ∈Mρ→o s.t., for every λ–definable
a ∈Mρ, invρa is the canonical code of a closed
term r ∈ Λρ in long β–normal form s.t. |r| = a.
Hence, for every term s of type ρ, invρ|s| is the
canonical code of the long β–normal form of
s.

Proof: By Lemma 3, M is admissible. Hence,
by the previous theorem, we may define invρ
by invρa = f-extract(Φρa). We could de-
fine even simpler invρa = Φρa because in
pr–models f-extract(embdre) = embdre and
therefore, for closed r ∈ Λρ, f-extract(Φρ|r|) =
f-extract(embdre) = embdre = Φρ|r|. 2

Completeness Theorem

If r and s are λ–terms of type ρ s.t. there
exists a pr–model M in which M |= r = s
holds, then r and s are provably equal in the
βη–calculus.

Proof: By Lemma 5 and Theorem 1 part 3. 2

Note that the conditions on a λ–model for
being a pr–model refer only to the types o
and o → o → o. For higher types nothing
is required. Thus this completenss result is
considerably stronger than that obtained by
Friedman [?, Theorem 3] because there the

8

models are required to be full type structures
TB over an infinite set B. Statman proves
another Completeness Theorem [?, Theorem
2]: For every closed λ–term r there is a finite
set E, such that for all closed s, TE |= r =
s ⇔ r =βη s. Let us briefly indicate how this
may be generalized by our method: Call a λ-
model admissible below a natural number n,
if it has the same properties as an admissible
model but everything is restricted to indices
of length < n and terms of length < n built
up from n variables. If any syntactical opera-
tion exeeds this finite set of indices and terms,
then an error element should be retourned.
Clearly this determines an increasing sequence
of finite sets of terms Λn having Λ as their
union s.t. for every model M admissible below
n and every closed r in long β–normal form,
p→eM(|r|) = r if r ∈ Λn and p→eM(|r|) =
error otherwise. Now let M be admissible be-
low n and let r be closed s.t. r∗ ∈ Λn. Then
for every closed s s.t. M |= r = s we have
p→eM(|s|) = r∗ 6= error, and hence s∗ ∈ Λn

and r∗ = s∗. Because clearly for every n there
is a finite set E s.t. TE is admissible below n
we have generalized Statmans Theorem.

The completeness theorem may be formulated
equivalently as follows: In every pr–model M
for every type ρ = ρ1 → . . .→ ρn → o,

∀r, s ∈ Λρ(r 6=βη s⇒ ∃η ∈ ENV,~a : |r|η~a 6= |s|η~a)

holds where η and ~a ∈ Mρ1 × . . . ×Mρn may
depend on r and s. But in fact η and ~a may be
chosen independently from r and s because we
can take η = ηid and ai = Ψρi

(emb(xρi

0 . . . 0︸ ︷︷ ︸
i−1

)).

Therefore the stronger formula

∃η ∈ ENV∃~a∀r, s ∈ Λρ(r 6=βη s⇒ |r|η~a 6= |s|η~a)

is true in every pr–model.

5 An efficient normalization al-
gorithm

So far we were studying the theoretical con-
sequences of our inversion method. Now we
will discuss the question if our results also
are of practical interest. In particular we will
examine the normalization procedure defined
in the previous section. This procedure is
based on Φ and Ψ and hence on EMB and
EXTRACT which are rather expensive oper-
ations. Now if we work in the naive model
described in Section 3, emb = EMB and
extract = f-extract = EXTRACT and hence
we have not gained very much on the com-
putational side. In pr–models the algorithms
are even worse. Therefore, if we want an effi-
cient normalization procedure, we must look
for a more sophisticated model where emb
and extract are as simple as possible. At this
point the generality of admissible models pays
out: We can find an admissible λ–model where
emb = extract = identity. Before we define
such a model, let us look how Φ and Ψ may
then be computed.

Assume M to be an admissible λ–model s.t.
f = o, M o = Λ{0,1}∗ , Mρ→σ = (Mρ)M

σ
,

Aρ,σ = function application, dreo = EMBr
and emb = f-extract = identity. Then Φo =
Ψo = identity and by Lemma 5 for r = λx.s ∈
Λρ→σ in long β–normal form, any substitution
θ and any k ∈ {0, 1}∗

Φρ→σ(|r|ηθ)k
= emb(drθe)k
= EMB(λx.s(θ[x 7→ x]))k

= λxρk.EMB(s(θ[x 7→ xk]))(k ∗ 0)

= λxρk.Φρ(|s|ηθ[x 7→xk])(k ∗ 0)

= λxρk.Φρ(|s|ηθ[x 7→ Ψρ(embdxke)])(k ∗ 0)

= λxρk.Φρ(|r|ηθ(Ψρ(EMBxk)))(k ∗ 0)

i.e. for all a ∈Mρ→σ of the form a = |r|ηθ,

Φρ→σak = λxρk.Φσ(a(Ψρ(EMBxk)))(k ∗ 0).

9

Furthermore for t ∈ Λρ→σ and r ∈ Λρ, defining
f-APPfgk = f(k ∗ 0)g(k ∗ 1),

Ψρ→σ(EMBt)|r|ηθ
= Ψσ(f-app(EMBt)|r|ηθ)
= Ψσ(f-app(embdte)(embdrθe))
= Ψσ(embdt(rθ)e)
= Ψσ(EMB(t(rθ)))

= Ψσ(f-APP(EMBt)(EMB(rθ)))

= Ψσ(f-APP(EMBt)(Φρ|r|ηθ))

i.e. for f ∈ EMB(Λρ→σ) and b of the form
b = |r|ηθ we have

Ψρ→σfb = Ψσ(f-APPf(Φρb)).

These very easy recursion equations for Φ and
Ψ suggest to define Φρ ∈ Mρ→o and Ψρ ∈
Mρ→o by

Φof = Ψof = f

Φρ→σak = λxρk.Φρ(a(Ψρ(EMBxk)))(k ∗ 0)

Ψρ→σfb = Ψσ(f-APPf(Φρb))

for all f ∈M o, a ∈Mρ→σ and b ∈Mρ.

Now it can be shown that for r ∈ Λρ in long
β–normal form again the equation Φρ(|r|ηθ) =
EMB(rθ) holds, where ηθ(x

ρ) = Ψρ(EMBxρ),
with a proof much simpler than the proof for
Φ in Lemma 5.
Thus for r ∈ Λρ containing no variables xk free
we get an efficient normalization algorithm by
defining

norm(r) = Φρ(|r|ηid)ε.

The hard part in the computation of norm(r)
is to compute |r|ηid which is done by the com-
piler of a functional programming language.
Therefore, this normalization procedure will
be as efficient as the compiler is.

Note that the definitions of Φ and Ψ are exter-
nal, i.e. Φ and Ψ are not defined as the values
in M of certain λ–terms. The definition takes
place in a different λ–model M over ground
types o and ι with M o = Λ, M

ι
= {0, 1}∗ and

M
ρ→σ

= (M
σ
)M

ρ

(Hence Mρ = M
ρ[ι→o/o]

).

It remains to define an admissible λ–model
M with the properties postulated at the
beginning of this section: M o = Λ{0,1}∗ ,
Mρ→σ = (Mρ)M

ρ
, Aρ,σ = function applica-

tion, ι = f = o, dreo = EMBr, dke =
EMBxok. For the definition of the remain-
ing functions we use the auxiliary function
·̃ι:M o → {0, 1}∗ defined by F̃ ι = k if
Fε = xok, otherwise F̃ ι = anything. Now
define appendFG = dF̃ ι ∗ G̃ιeι, mvarρF =
EMB(xρ

F̃ ι), app = f-APP, abstρFG =
EMB(λxρ

F̃ ι .EXTRACT(G)), embF = F ,

funFG = EMB(FG̃ι), extractak = adkek.
Let’s verify the laws for admissibility:
(append), (mvar), (app), (abst), (d.e) and
(emb) clearly hold.
(fun): fun(embdre)dke =

EMB(emb(EMBr)d̃ke
ι
) = dEMBrke.

(extract): If dake = dEMBrke then
extractak = adkek = dEMBrkek =
EMB(EMBrk)k = EMBrk by Lemma
2 (c). Because by assumption this is
true for all k, we get extract(a) =
EMBr = EMB(EXTRACT(EMBr)) =
dEXTRACT(EMBr)e.

6 Integrating constants

In this section we will extend our method from
pure terms to terms containing constants.
Suppose we are given a set C of typed con-
stants equipped with an operational seman-
tics opC given by C–conversions cr1 . . . rn 7→ s
for several c ∈ C. These, together with β–
conversion and η–expansion, induce a reduc-
tion relation →C on the set ΛC of λ–terms
possibly containing constants from C. Call

10

r ∈ ΛC in C-normal form if it is in normal form
with respect to →C, i.e., r is in long β–normal
form and doesn’t contain C–convertible sub-
terms. opC is weakly normalizing iff every term
ΛC is reducible by →C, β–reduction and η–
expansion to a term in C–normal form.

A C–model is a λ–model M together with an
interpretation cM ∈Mρ for every constant c ∈
C of type ρ. This extends to an interpretation
|r|η ∈ C for all r ∈ ΛC and all η ∈ ENV
in the obvious way. A C–model M is called
admissible for opC iff it is admissible (where
of course dre has to be defined for all r ∈ ΛC)
and for all substitution θ the following holds:

(C1) If r 7→ s by a C–conversion then |r|ηθ =
|s|ηθ.

(C2) For all terms of type o of the form
cs1 . . . sk (c a constant) in C–normal form

|cs1 . . . sn| = Ψ(embdce)|s1|ηθ . . . |sn|ηθ.

Now we may extend the results of Section 4:

Lemma 6 (Extended Main Lemma). Let
M be a C–model admissible for opC. Then
for every r ∈ Λρ

C in C–normal form and every
substitution θ

Φρ(|r|ηθ) = emb(drθe)

Moreover if ρ = o then |r|ηθ = drθe.

Proof: Copy the proof of Lemma 5. There is
only one additional case, namely when ρ = o
and r has the form cs1 . . . sn. But then (C2)
applies. 2

Theorem 2. Let opC be weakly normalizing
and let M be a C–model admissible for opC.

1. Inversion: If a ∈Mρ is λ–definable from
C then p→eρ(a) is a closed term in Λρ

C s.t.
|p→eρ(a)| = a.

2. Normalization and confluence: The
reduction relation →C is confluent. In
particular every term r ∈ Λρ

C reduces to
a unique C–normal form r∗ which may be
computed by

p→eρ(|r|ηid) = r∗

3. Completeness: If M |= r = s then
r and s are provably equal in the βηC–
calculus.

Proof: Clearly, by (C1), |r|ηθ = |s|ηθ if r →C
s. Hence, if r →∗

C s with s in C–normal form,
then |r|ηθ = |s|ηθ. Now we may prove the
theorem in the same manner as Theorem 1,
using Lemma 6 instead of Lemma 5. 2

7 Normalization of proofs

By the Curry–Howard correspondence, every
proof in the → ∀–fragment of Gentzens natu-
ral deduction calculus may be represented as a
typed λ–term. The type of a term (derivation)
dϕ is the formula ϕ being derived, variables
correspond to assumptions and λ–abstraction
resp. application correspond to the introduc-
tion resp. elimination rules for → and ∀. This
correspondence is the basis for the use of
proofs as programs, where execution of pro-
grams is performed by normalizing proofs [?].

We now show how the normalization proce-
dure derived in the previous sections may be
used for the normalization of proofs. At first
glance there seems to be a difficulty because
we only considered terms typed by o and
ρ → σ and not by arbitrary → ∀–formulas.
But note that the normal form of a typed term
is completely determined by the underlying
type free term (obtained by erasing all types).
Therefore we only need to define for every →
∀–formula ϕ a type τ(ϕ) (built up from o and
→) such that if d is a derivation then τ(d) is a
wellformed typed term, where τ(d) is obtained

11

from d by replacing all formulas ϕ by τ(ϕ).
The definition of τ is obvious: τ(π) = o for
atomic formulas π, τ(ϕ→ ψ) = τ(ϕ) → τ(ψ)
and τ(∀xρϕ) = τ(ρ) → τ(ϕ), where for types
ρ built from ground types other than o, τ(ρ)
is defined by replacing all ground types by o.
Hence a derivation d of a formula ϕ may be
normalized by computing

p→eτ(ϕ)(|τ(d)|ηid).

At least from this we obtain the type free term
underlying the normal form of d. At the end of
this section it is indicated how we can recover
therefrom the complete normalized derivation.

One important point is still missing: In the
∀–elimination rule, which may be written as
the term construction rule (d∀xϕr)ϕ[r/x] the de-
rived formula is obtained by a substitution.
Therefore if r is of functional type then ϕ[r/x]
may contain non-normal object terms which
we may want to normalize. These substitu-
tions and normalizations may be performed
by our method if we represent formulas as λ–
terms of a new ground type formula. Pred-
icate symbols for predicates over objects of
type ρ1, . . . , ρn are then constants of type
ρ1 → . . . → ρn → formula, implication is
a constant of type formula → formula →
formula and quantification over objects of
type ρ is represented by a constant ∀ρ of type
(ρ → formula) → formula. ∀xρϕ then stands
for ∀ρλxρ.ϕ. Now the normal form of ϕ[r/x]
may be computed by normalizing (λx.ϕ)r.
Since we have no conversion rules for the log-
ical constants → and ∀ρ, we have, by (C2)
of the previous section, to interpret them by
mseo→o→o(→) and mse(τ(ρ)→o)→o(∀ρ) respec-
tively, where for r ∈ Λρ we define mseρ(r) =
Ψρ(embdre) (make self evaluating, see intro-
duction).

So far we have only considered pure logic. To
normalize proofs in (higher order) arithmetic
we have to deal with further constants: At the

object level, constants 0 for zero,]t,]f for the
boolean objects, S for the successor and Rρ for
recursion operators of type

rec(ρ) := ρ→ (nat → ρ→ ρ) → nat → ρ.

At the proof level, constants Inat
∀xϕ(x) for induc-

tion over the natural numbers

ind(∀xϕ(x)) := ϕ(0) → ∀x(ϕ(x) → ϕ(Sx)) → ∀xϕ(x),

constants Iboole
∀xϕ(x) for boolean induction (case

analysis)

ϕ(]t) → ϕ(]f) → ∀xϕ(x)

and a truth constant T of type atom(]t),
where atom is a constant of type boole →
formula, i.e., a predicate symbol (in fact it suf-
fices to have atom as the only predicate sym-
bol).

Note that we can define proofs of the ‘stabil-
ity axioms’ ¬¬ϕ → ϕ for every arithmetical
formula ϕ by induction on ϕ (¬ϕ := ϕ →
atom(]f)). For prime formulas atom(b), sta-
bility is proved by boolean induction. Hence,
if ∃ and ∨ are defined as usual, we get full
classical arithmetic.

In order to use arithmetical proofs as pro-
grams, the purely logical β–conversion has to
be supplemented by conversion rules for the
recursion and induction constants. With a
recursion constant Rρ we associate the usual
conversions

Rρrs0 7→ r

Rρrs(St) 7→ st(Rρrst)

Similary for induction over the natual num-
bers Inat

∀xϕ(x) (omitting formulas)

Inatde0 7→ d

Inatde(St) 7→ et(Inatdet)

12

and for case analysis Iboole
∀xϕ(x)

Iboolede]t 7→ d

Iboolede]f 7→ e

Note that τ(ind(∀xϕ(x))) = τ(rec(ρ)) pro-
vided τ(ϕ(x)) = τ(ρ). Hence, for the purpose
of normalization, recursion and induction over
the natural numbers may be identified.

By the results of the previous section, we
have to interpret the arithmetical constants
in an admissible model M in such a way that
(C1) and (C2) are satisfied. Hence we define
0M = mseo(0) (= d0e) etc., SM = mseo→o(S)
and for a recursion constant Rρ, regarded as a
constant of type τ(rec(ρ)), we define (ommit-
ting types)

RMabd0e = a,

RMabdSte = bdte(RMabdte),

RMabc = mseRabc otherwise.

Case analysis is interpreted similary. Of
course we must have chosen a model M in
which RM exists (For the model defined in
Section 5 this is certainly the case). The prop-
erties (C1) and (C2) are rather obvious. (C1)
immediately follows from Lemma 6(a) (which
doesn’t use (C1)!). To prove (C2), Lemma
6(a) is needed too. But Lemma 6 in turn needs
(C2). Therefore one has to prove (C2) and
Lemma 6 simultaneously by induction on the
length of the term.

Now, because of the well known fact that the
operative semantics defined by the conversions
above is (even strongly) normalizing, we can
apply the second part of Theorem 2 which
gives us a normalization algorithm.

Remark: Our arithmetical system includes the
calculus of primitive recursive functionals in

all finite types (Gödels T, R–λ–calculus [?]).
Because the full type structure over the natu-
rals Tω clearly is admissible, we can conclude
from Theorem 2, part 3 that for closed primi-
tive recursive terms (of finite type) Tω |= r =
s holds if and only if r and s have the same
normal form. Since normal forms may be com-
puted, this means that equality between prim.
rec. terms in Tω is decidable. This sharply
contrasts Friedmans result that, for prim. rec.
terms r, s, the relation Tω |= r = s is com-
plete Π1

1 [?, Theorem 6]. The point is that the
arithmetical constants are interpreted differ-
ently: In [?] they operate on the natural num-
bers as usual whereas here all (possibly open)
terms are coded into ω. Therefore Tω |= r = s
in our sense is much stronger than in the usual
sense.

Presently we experiment with an implemen-
tation of proofs along these lines. There are
two technical points in this implementation
which are worth noticing: 1. In an implica-
tion elimination (dϕ→ψeχ)ψ we don’t require
the formulas ϕ and χ to be identical. It suf-
fices if they have α–identical normal forms.
This means that a big deal of (in most cases)
uninteresting equational reasoning is shifted
from the proof into the evaluation mechanism
of the programming language. 2. We don’t
save complete proofs but only three charac-
teristic components of them: A list of the free
object and assumption variables together with
their types, the derived formula and the un-
derlying type–free λ–term of the proof. If the
proof is in normal form then the completely
typed proof expression may be recovered from
these data. This yields a very compact repre-
sentation of proofs making it possible to han-
dle even very large proofs. In [?] this has been
done for proofs using the full strength of Peano
arithmetic.

13

8 Summary and conclusions

It has been shown how to invert the evalua-
tion functional for typed λ–calculus in a large
class of models. The main consequences were
an efficient normalization procedure for typed
λ–terms and a completeness theorem for the
βη–calculus. Furthermore we used the nor-
malization procedure to normalize natural de-
duction proofs of higher order arithmetic.

We think that the normalization method pre-
sented here is an excellent example for the
use of the abstract concept of functionals
of higher type in constructing and analyz-
ing concrete algorithms: The normalization
algorithm takes and returns concrete objects
(terms) but it uses the evaluation procedure
which returns functionals in all higher types.

Our technique may be extended to infinite
terms and terms containing full recursion, i.e.,
fixed point operators. We also plan to extend
it to second order λ–calculus.

References

[1] H. Friedman, Equality between func-
tionals, Lecture Notes in Mathemat-
ics(R. Parikh, Editor), vol. 453, Springer-
Verlag, Berlin and New York, 1975, pp.
22-37.

[2] H. Schwichtenberg, Proofs as Pro-
grams, Leeds: Proof theory ‘90 (P. Aczel,
H. Simmons, Editors), 1991.

[3] R. Statman, Completeness, invariance
and λ-definability, The Journal of
Symbolic Logic, Vol. 47, no. 1, 1982,
pp. 17-26.

[4] A. S. Troelstra, Metamathemati-
cal investigation of intuitionistic arith-
metic and analysis, Lecture Notes
in Mathematics, vol. 344, Springer-
Verlag, Berlin and New York, 1973.

14

