
An arithmetic for polynomial-time computation

Helmut Schwichtenberg∗

July 25, 2005

Abstract

We define a restriction LHA of Heyting arithmetic HA with the
property that all extracted programs are feasible. The restrictions
consist in linearity and ramification requirements.

1 Introduction

It is well known that it is undecidable in general whether a given program
meets its specification. In contrast, it can be checked easily by a machine
whether a formal proof is correct, and from a constructive proof one can
automatically extract a corresponding program, which by its very construc-
tion is correct as well. This – at least in principle – opens a way to produce
correct software, e.g. for safety-critical applications. Moreover, programs ob-
tained from proofs are “commented” in a rather extreme sense. Therefore
it is easy to maintain them, and also to adapt them to particular situations.

Clearly efficiency of the extracted program is a major concern for such a
project. The goal of the present paper is to present a constructive arithmetic
which ensures that all extracted programs are polynomial-time computable,
and at the same time is flexible enough to allow for the representation of
particular polynomial-time algorithms, not just polynomial-time functions.

Recursion in all finite types was introduced by Hilbert [14], the system
later becoming known as Gödel’s system T [13]. The value computed by
a higher type recursion can be any functional, which is to say a mapping
that takes other mappings as arguments and produces a new mapping. Cor-
respondingly one defines a type system of functions and functionals over
some ground types. This recursion in higher types has long been viewed as
a powerful scheme unsuitable for describing small complexity classes such
as polynomial time. It is well known that ramification can be used to re-
strict higher type recursion. However, to characterize the very small class

∗Mathematisches Institut der Universität München, Theresienstraße 39, D-80333

München, Germany. Phone +49 89 2180 4413, Fax +49 89 280 5248, e-mail address

schwicht@mathematik.uni-muenchen.de

1

of polynomial-time computable functions while still admitting higher type
recursion, an additional principle is required. It turned out that by in-
troducing linearity constraints in conjunction with ramified recursion, one
can characterize polynomial-time computability while admitting recursion
in higher types [5, 24]. The resulting restriction LT of Gödel’s system T
has as its definable functions exactly the polynomial time computable ones.

In the present paper, we wish to solve the equation

Heyting Arithmetic

Gödel’s T
=

???

LT

In other words, we seek a logic whose Π0
2-proofs can be realised by terms

in the system LT and thus in particular have polynomial-time Skolem func-
tions. To this end we define a restriction LHA of Heyting arithmetic HA
which incorporates linearity as well as ramification. More precisely, we com-
bine

• a liberalized form of linearity for object and assumption variables (al-
lowing multiple use of ground type results) with

• an extension of ramification concepts to all finite types and formulas,
by allowing a “computationally irrelevant” universal quantifier ∀ncxρA,
and also A → B and ∀x̄ρA as well as A (B and ∀xρA, and a cor-
responding distinction between complete and incomplete (assumption
and object) variables.

We will show that the provably recursive functions of LHA are exactly the
polynomial-time computable ones.

It is hoped that the present approach will be useful for studying program
extraction, since it is based on intuitionistic logic formulated with proof
terms, via the Curry-Howard correspondence.

Related work

Work related to the underlying term system LT [24] has been done by Hof-
mann [15], who obtained similar results with a very different proof technique.
Ramification concepts have been considered much earlier e.g. by Simmons
[25], Bellantoni and Cook [3], Leivant and Marion [20, 19], and Pfenning
[23]. Notice however that the “tiered” typed λ-calculi of Leivant and Mar-
ion [20] depend heavily on different representations of data (as words and as
Church-like abstraction terms), which is not necessary in the LT-approach.

It is well known that many complexity classes can be characterized by
certain restricted systems of arithmetic, for instance bounded arithmetic
(cf. Buss [7], and Clote and Takeuti [8]). One should also mention bounded
linear logic of Girard, Scedrov and Scott [12], and the so-called light linear
logic of Girard [11]. The former differs from what we do here by requiring

2

explicit bounds. A precise relation to the latter still needs to be clarified.
Hofmann’s recursive term system from [15] was lifted to a polytime classical
modal arithmetic by Bellantoni and Hofmann [4]. The earlier “intrinsic
theories” of Leivant [17] followed the tradition of quantifier restrictions in
induction.

A quite different approach to proof theoretic characterizations of polyno-
mial-time computable functions is a restriction on the range of quantifiers
to “actual terms” Marion’s [21], that is constructor terms with variables;
this leads to a particularly simple characterization of polynomial-time. A
somewhat similar approach (by means of a two-sorted arithmetic) has been
worked out by Ostrin and Wainer [22]. Leivant [18] obtained a characteri-
zation of polynomial-time computable functions by a restriction of formulas
in crucial positions in a proof, rather than by data-tiering.

2 Motivation

To motivate our restrictions let us look at some examples of arithmetical
existence proofs exhibiting exponential growth.

2.1 Double use of assumptions

Consider

e(1, y) := S0(y)

e(Si(x), y) := e(x, e(x, y))
or

e(1) := S0

e(Si(x)) := e(x) ◦ e(x).

Then e(x) = S
(2|x|−1)
0 , i.e. e grows exponentially. Here is a corresponding

existence proof. We have to show

∀x, y∃z |z| = 2|x|−1 + |y|.

Proof. By induction on x. The base case is obvious. For the step let x be
given and assume (IH) ∀y∃z |z| = 2|x|−1 + |y|. We must show ∀y∃z′ |z′| =
2|x| + |y|. Given y, construct z′ by using (IH) with y to find z1, and then
using (IH) again, this time with z1, to find z′.

The double use of the (“functional”) induction hypothesis clearly is re-
sponsible for the exponential growth. Our linearity restriction will exclude
such proofs.

2.2 Substitution in function parameters

Consider the iteration functional

I(1, f, y) := y, I(Si(x), f, y) := f(I(x, f, y)).

3

I can also be written as a binary function, with unary functions as values:

I(1, f) := id. I(Si(x), f) := f ◦ I(x, f).

Then I(x, f) = f (|x|−1); it is considered feasible in our setting. However,
substituting the easily definable doubling function d satisfying |d(x)| = 2|x|
yields the exponential function I(x, d) = d(|x|−1). (Note that therefore the
functional I cannot be definable in the system PVω of basic feasible func-
tions (cf. [10, 9]), since the latter is closed under substitution). The corre-
sponding proofs of

∀x.∀y1∃y2 |y2| = 2|y1| → ∀z∃y |y| = 2|x|−1 + |z| (1)

∀y1∃y2 |y2| = 2|y1| (2)

are unproblematic, but we need to forbid applying a cut here.
Our solution is to introduce a ramification concept. (2) is proved by

induction on y1, hence needs a complete quantifier: ∀ȳ1∃y2 |y2| = 2|ȳ1|. We
exclude applicability of a cut by our ramification condition, which requires
that the “kernel” (or “body”) of (1) – which is to be proved by induction
on x – does not contain universal subformulas proved by induction.

2.3 Iterated induction

It might seem that our restrictions are so tight that they rule out any form
of nested induction. However, this is not true. One can define e.g. (a form
of) multiplication on top of addition: First one proves ∀x̄∀y∃z |z| = |x̄|+ |y|
by induction on x̄, and then ∀ȳ∃z |z| = |x̄| · |ȳ| by induction on ȳ with a
parameter x̄.

Note that the distinction in Hofmann [16] between iteration and re-
cursion operators does not show up here, since in our ramified setting the
recursion variable will be complete and hence can be used many times.

3 Feasible computation with higher types

Our arithmetical system LHA will be modelled after a corresponding term
system LT. We recall some material from [5, 24].

The types are ρ, σ ::= U | B | L(ρ) | ρ (σ | ρ → σ | ρ ⊗ σ | ρ × σ, and
the level of a type is defined by

l(U) := 0

l(B) := 0

l(L(ρ)) := l(ρ)

l(ρ (σ) := max{l(σ), 1 + l(ρ)}

l(ρ → σ) := max{l(σ), 1 + l(ρ)}

l(ρ ⊗ σ) := max{l(ρ), l(σ)}

l(ρ × σ) := max{l(ρ), l(σ)}.

4

Ground types are the types of level 0, and a higher type is any type of level
at least 1. The →-free types are also called linear types. In particular, each
ground type is linear.

The constant symbols are

xx : U

tt : B

ff : B

ερ : L(ρ)

∗ρ : ρ (L(ρ) (L(ρ)

ifτ : B (τ × τ (τ (τ linear)

c
ρ
τ : L(ρ) (τ × (ρ (L(ρ) (τ) (τ (τ linear)

Rρ
τ : L(ρ) → (ρ → L(ρ) → τ (τ) → τ (τ (ρ, τ linear)

and for linear ρ, σ, τ

⊗+
ρσ : ρ (σ (ρ ⊗ σ

⊗−
ρστ : ρ ⊗ σ ((ρ (σ (τ) (τ

×+
ρσ : ρ (σ (ρ × σ (if ρ, σ ground)

×+
ρστ : (τ (ρ) ((τ (σ) (τ (ρ × σ (if l(ρ × σ) > 0)

fstρσ : ρ × σ (ρ

sndρσ : ρ × σ (σ.

The restrictions to linear types ρ, σ, τ are needed in the proof of the Nor-
malization theorem in [24]. c

ρ
τ is used for definition by cases, and Rρ

τ as
a recursion operator. Notice that a single recursion operator (over lists) is
used here to cover both, numeric and word recursion. The type of ×+

ρστ can
be explained as follows. In our linear setting, using a term of type ρ × σ
might be allowed only once. So if one component is formed, the other one
is lost. Therefore it is perfectly legal to have an occurrence of a higher type
incomplete variable in both components. Now the type of ×+

ρστ allows such
duplications, via the argument of type τ .

Terms of the form (. . . (ερ ∗ρ rρ
n) . . . ∗ρ rρ

2) ∗ρ rρ
1 are called lists (we use

reverse infix notation here, writing l ∗ r instead of ∗rl). We will make use
of the following abbreviations for N := L(U) and W := L(B).

0 := εU

S := λlNl ∗ xx

1 := εB

S0 := λlWl ∗ ff

S1 := λlWl ∗ tt.

Particular lists are S(. . . (S0) . . .) and Si1(. . . (Sin1) . . .). The former are
called unary numerals, the latter binary numerals (or numerals of type W).

Definition (LT-terms). LT terms (terms for short) are built from these
constants and typed variables x̄σ (complete variables) and xσ (incomplete
variables) and by introduction and elimination rules for the two type forms
ρ (σ and ρ → σ, i.e.,

cρ (constant) |

5

x̄ρ (complete variable) |

xρ (incomplete variable) |

(λxρrσ)ρ(σ |

(rρ(σsρ)σ with higher type incomplete variables in r, s distinct |

(λx̄ρrσ)ρ→σ |

(rρ→σsρ)σ with s complete.

We say that a term is linear or ground according as its type is. A
term s is complete if all of its free variables are complete; otherwise it is
incomplete. By the restriction on incomplete variables in the formation of
(rs), every higher type incomplete variable can occur at most once in a given
term.

For later use we fix, for every type ρ, a canonically chosen closed term
ερ of this type:

εU := xx,

εB := tt,

εL(ρ) := ερ

ερ→σ := λx̄ρεσ

ερ(σ := λxρεσ

ερ⊗σ := ⊗+
ρσερεσ

ερ×σ := ×+
ρσU

(λxUερ)(λxUεσ)εU.

The conversion rules are as expected: β-conversion (for complete and
incomplete variables) plus

ifτ tts 7→ fstττs

ifτ ffs 7→ sndττs

c
ρ
τερs 7→ fstτ,σs for σ := ρ (L(ρ) (τ

c
ρ
τ (l ∗ρ r)s 7→ sndτ,σsrl for σ := ρ (L(ρ) (τ

Rρ
τερst 7→ t

Rρ
τ (l ∗ρ r)st 7→ srl(Rρ

τ lst)

⊗−
ρστ (⊗+

ρσrs)t 7→ trs

fstρσ(×+
ρσrs) 7→ r

sndρσ(×+
ρσrs) 7→ s

fstρσ(×+
ρστ rst) 7→ rt

sndρσ(×+
ρστ rst) 7→ st.

Redexes are subterms shown on the left side of the conversion rules above.
We write r → r′ (r →∗ r′) is r can be reduced into r′ by one (an arbitrary
number of) conversion of a subterm.

Notice that projections w.r.t ρ⊗σ can be defined easily: For a term t of
type ρ ⊗ σ we define

t0 := ⊗−
ρσρt(λxρλyσx) and t1 := ⊗−

ρσσt(λxρλyσy).

6

Then clearly

(⊗+
ρσrs)0 = ⊗−

ρσρ(⊗
+
ρσrs)(λxρλyσx) 7→ (λxρλyσx)rs →∗ r

(⊗+
ρσrs)1 = ⊗−

ρσσ(⊗+
ρσrs)(λxρλyσy) 7→ (λxρλyσy)rs →∗ s.

A function f is called definable in LT if there is a closed term r : W �

. . .W � W (�∈ {→,(}) in LT denoting this function.
Using a parse dag model of computation, it is shown in [24] that LT is

closed under reduction, and that the following holds:

Theorem (Normalization). Let r be a closed LT-term of type W �

. . .W � W (�∈ {→,(}). Then r denotes a polytime function.

The converse is shown in [24] as well:

Lemma (Sufficiency). Let f be a polynomial-time computable function.
Then f is denoted by a closed LT-term r.

The proof uses a characterization of the polynomial-time computable
functions given by Bellantoni and Cook [3]. In section 9 we will give a
similar proof, this time via our arithmetical system LHA.

4 LHA-Formulas

We assume a given set of predicate symbols P,Q, . . . of fixed arity (“arity”
here means not just the number of arguments, but also covers the type of
the arguments.) When writing P (~r) we implicitly assume correct length
and types of ~r. Moreover, for every type ρ we assume a special predicate
symbol =ρ, called equality. The intended interpretation of =ρ is extensional
equality between objects of type ρ.

LHA-Formulas (formulas for short) A,B, . . . are

P (~r) | A → B | A (B | A ⊗ B | A ∧ B | ∀ncxρA | ∀x̄ρA | ∀xρA | ∃xρA.

In P (~r), the ~r are terms from T. Define falsity ⊥ by tt = ff and negation ¬A
by A (⊥. Disjunction A ∨ B can be defined by ∃xB.(x = tt (A) ∧ (x =
ff (B). A dot after a quantified variable means that the range of the
quantifier extends as far as allowed by the surrounding parentheses.

Implication A → B is the ordinary one, for multiple uses of the as-
sumption A. In contrast, A (B is the “linear” (or “affine”) implica-
tion, for at most one use of the hypothesis. The conjunction is the “weak”
one corresponding to the pair, i.e. A0 ∧ A1 (Ai will be provable, but
(A (B (C) ((A ∧ B (C) will not. However, A (B (C and
A ⊗ B (C will be equivalent.

The quantifier ∀nc corresponds to the {∀} in Berger’s [6] and marks quan-
tification with no computational content, i.e., a proof of ∀ncxA is of such a

7

form that the realizing term does not depend on x. When we want compu-
tational content, we must either take the “complete” ∀x̄A (for multiple uses
of x) or else the “linear” ∀xA (for at most a single use of x).

Every formula A containing the (constructive) existential quantifier can
be seen as a “computational problem”. We define τ(A) as the type of a
potential realizer of A, i.e. the type of the program to be extracted from a
proof of A.

More precisely, we assign to every formula A an object τ(A) (a type or
the symbol ε). In case τ(A) = ε proofs of A have no computational content;
such formulas A are called Harrop formulas, or computationally irrelevant
(c.i.). Non-Harrop formulas are also called computationally relevant (c.r.).

τ(P (~r)) := ε

τ(A � B) :=

τ(B) if τ(A) = ε

ε if τ(B) = ε

τ(A) � τ(B) otherwise

for �∈ {→,(}

τ(A0 ⊗ A1) :=

{

τ(Ai) if τ(A1−i) = ε

τ(A0) ⊗ τ(A1) otherwise

τ(A0 ∧ A1) :=

{

τ(Ai) if τ(A1−i) = ε

τ(A0) × τ(A1) otherwise

τ(∀ncxρA) := τ(A)

τ(∀x̄ρA) :=

{

ε if τ(A) = ε

ρ → τ(A) otherwise

τ(∀xρA) :=

{

ε if τ(A) = ε

ρ (τ(A) otherwise

τ(∃xρA) :=

ρ if τ(A) = ε

ρ × τ(A) if l(ρ) = l(τ(A)) = 0

ρ ⊗ τ(A) otherwise.

Notice that a formula A is c.i. iff A contains no existential subformula in a
strictly positive position.

A formula A is called linear if τ(A) is linear, i.e. →-free. For instance,
every formula without complete universal quantifiers ∀x̄ρ and → is linear.

5 Proof Terms and Proofs

We consider a formal system of constructive arithmetic; the standard choice
for this is Heyting arithmetic HA (see e.g. [26]). However, it is convenient
here to base our treatment on lists and list induction, rather than on the

8

(unary) natural numbers and induction on these. HA is directly inter-
pretable in this theory, and clearly has the same proof theoretic strength.
For convenience we continue to use the name HA for our (slightly modified)
theory.

Proof terms denote proofs in natural deduction style. Similar to the
(object) terms, they are built from assumption constants (“axioms”) and
complete as well as incomplete assumption and object variables by intro-
duction and elimination rules for A → B, A (B, ∀ncxρA, ∀x̄ρA and ∀xρA.

The axioms can be divided into four groups: induction and cases ax-
ioms, logical axioms, equality axioms, and axioms specifying some predi-
cates P,Q, We will only give the axioms of the first three groups; they
define the core system. The last group depends on particular applications.

Axioms are always closed formulas. However, for readability we some-
times omit the leading universal quantifiers. The induction axioms Indl,A

are, for A and ρ linear

∀l̄L(ρ).(∀x̄ρ∀l̄L(ρ).A (A[l̄ := l̄ ∗ρ x̄]) → A[l̄:=ερ] (A.

We also provide the cases axioms Casesl,A and IfA, for A linear:

∀lL(ρ).A[l:=ερ] ∧ ∀xρ∀lL(ρ)A[l := l ∗ρ x] (A

∀pB.A[p:=tt] ∧ A[p:=ff] (A.

Let l(ε) := 0. Logical axioms:

A (B (A ⊗ B

A ⊗ B ((A (B (C) (C

A (B (A ∧ B if l(τ(A)) = l(τ(B)) = 0

(C (A) ((C (B) (C (A ∧ B if l(τ(A)) + l(τ(B)) > 0

A0 ∧ A1 (Ai

∀x.A (∃xA,

∃xA ((∀x.A (B) (B if x /∈ FV(B)

⊥ (P (x1, . . . , xn).

Equality axioms:

Transitivity, symmetry and reflexivity of =ρ

Conversions

f = g (x =ρ y (fx =σ gy

x1 = y1 (. . . (xn = yn (P (x1, . . . , xn) (P (y1, . . . , yn)

x =U xx

9

∀x fx =σ gx (f = g

fstρσz =ρ fstρσz′ ∧ sndρσz =σ sndρσz′ (z =ρ×σ z′

z0 =ρ z′0 → z1 = z′1 → z =ρ⊗σ z′.

If we disregard the difference between complete and incomplete vari-
ables and also between the two implications → and (, then the axioms are
derivable in HA.

By an “ordinary proof term” (in HA) we mean a standard proof term
built from axioms, assumption and object variables by introduction and
elimination rules for implication and the universal quantifier:

Definition (Ordinary proof term).

cA (axiom) |

ūA, uA (complete and incomplete assumption variables) |

(λūAMB)A→B | (MA→BNA)B | (λuAMB)A(B | (MA(BNA)B |

(λxρMA)∀
ncxA | (M∀ncxρArρ)A[x:=r] |

(λx̄ρMA)∀x̄A | (M∀x̄ρArρ)A[x̄:=r] | (λxρMA)∀xA | (M∀xρArρ)A[x:=r].

Here we do not distinguish between ∀ and ∀nc, and again disregard the differ-
ence between complete and incomplete variables, and the two implications
→ and (. In the three introduction rules for the universal quantifier we
assume the usual condition on free variables, i.e., that x must not be free in
the formula of any free assumption variable. In the elimination rules for the
universal quantifier, r is a term in T.

Every proof term M has a formula A as its type; we shall also speak of
a derivation M of the formula A.

The proof terms which make up our linear arithmetic will be selected
from the ordinary ones, by conditions similar to those that distinguish LT-
terms from the ordinary terms in T. Before we can give this definition, we
need to define what an “extracted term” of an ordinary proof term is.

6 Term Extraction

Given a derivation M of a formula A, we define its extracted term [[M]], of
type τ(A). This definition is relative to a fixed assignment of object variables

to assumption variables: we assign x̄
τ(A)
ū to ūA, and x

τ(A)
u to uA.

Definition (Extracted term [[M]]). Let M be a derivation of A. If τ(A) =
ε, then [[M]] is defined to be ετ(A), the canonically chosen closed term of this
type (see section 3); for the rest of the definition assume τ(A) 6= ε.

10

The induction and cases axioms have the extracted terms (for A linear,
τ := τ(A), and ρ linear in the induction axiom)

[[Indl,A]] := RL(ρ)
τ : L(ρ) → (ρ → L(ρ) → τ (τ) → τ (τ

[[Casesl,A]] := cτ : L(ρ) (τ × (ρ (L(ρ) (τ) (τ

[[IfA]] := ifτ : B (τ × τ (τ.

For the other axioms we need to distinguish cases according to which of
the formulas involved have computational content. For ⊗-introduction we
define (writing [[A]] for [[c : A]])

[[A (B (A ⊗ B]] :=

λyτ(B)y if τ(A) = ε

λxτ(A)x if τ(B) = ε

⊗+
τ(A),τ(B) otherwise

and for ⊗-elimination

[[A ⊗ B ((A (B (C) (C]] :=

λzτ(C)z if τ(A) = ε, τ(B) = ε

λyτ(B)λgτ(B)(τ(C).gy if τ(A) = ε, τ(B) 6= ε

λxτ(A)λf τ(A)(τ(C).fx if τ(A) 6= ε, τ(B) = ε

⊗−
τ(A),τ(B),τ(C) otherwise.

For ∧-introduction we define [[A (B (A∧B]] just as [[A (B (A⊗B]],
but with ×+

τ(A),τ(B) instead of ⊗+
τ(A),τ(B), and

[[(C (A) ((C (B) (C (A ∧ B]] :=

λyτ(B)y if τ(A) = ε, τ(C) = ε

λxτ(A)x if τ(B) = ε, τ(C) = ε

λxτ(A)λyτ(B).×+
τ(A),τ(B),U(λzx)(λzy)εU if τ(A), τ(B) 6= ε, τ(C) = ε

λgτ(C)(τ(B)g if τ(A) = ε, τ(C) 6= ε

λf τ(C)(τ(A)f if τ(B) = ε, τ(C) 6= ε

×+
τ(A),τ(B),τ(C) otherwise

and for ∧-elimination

[[A ∧ B (A]] :=

{

λxτ(A)x if τ(B) = ε

fstτ(A),τ(B) otherwise

[[A ∧ B (B]] :=

{

λyτ(B)y if τ(A) = ε

sndτ(A),τ(B) otherwise.

11

Finally for the ∃-axioms we have in case l(ρ) + l(τ(B)) > 0

[[∀xρ.A (∃xA]] :=

{

λxρx if τ(A) = ε

⊗+
ρ,τ(A) otherwise

[[∃xρA ((∀x.A (B) (B]] :=

{

λxρλfρ(τ(B).fx if τ(A) = ε

⊗−
ρ,τ(A),τ(B) otherwise,

and in case l(ρ) = l(τ(B)) = 0

[[∀xρ.A (∃xA]] :=

{

λxρx if τ(A) = ε

×+
ρ,τ(A) otherwise

[[∃xρA ((∀xρ.A (B) (B]] :=
{

λxρλfρ(τ(B).fx if τ(A) = ε

λpρ×τ(A)λfρ(τ(A)(τ(B).f(fstp)(sndp) otherwise

[[∃xρA → (∀x̄ρ.A (B) (B]] :=
{

λx̄ρλfρ→τ(B).f x̄ if τ(A) = ε

λp̄ρ×τ(A)λfρ→τ(A)(τ(B).f(fstp̄)(sndp̄) otherwise

For proof terms which are not axioms we define

[[ūA]] := x̄
τ(A)
ū (x̄

τ(A)
ū uniquely associated with ūA)

[[uA]] := xτ(A)
u (x

τ(A)
u uniquely associated with uA)

[[λūAM]] :=

{

[[M]] if τ(A) = ε

λx̄
τ(A)
ū [[M]] otherwise

[[λuAM]] :=

{

[[M]] if τ(A) = ε

λx
τ(A)
u [[M]] otherwise

[[MA→BN]] := [[MA(BN]] :=

{

[[M]] if τ(A) = ε

[[M]][[N]] otherwise

[[(λxρM)∀
ncxA]] := [[M]]

[[M∀ncxAr]] := [[M]] (r term of T)

[[(λx̃ρM)∀x̃A]] := λx̃ρ[[M]]

[[M∀x̃Ar]] := [[M]]r (r term of T),

with x̃ a complete or incomplete variable.

The following can be seen easily: Assume that M : A is an ordinary
proof term whose free object variables are from Γ (complete variables) and
∆ (incomplete variables), and whose free assumption variables are from

12

ūB1

1 , . . . , ūBn
n and vC1

1 , . . . , vCm
m . Then its extracted (object) term [[M]] : τ(A)

is in T, and its free variables are from Γ, x̄ū1
, . . . , x̄ūn

(the complete ones)
and ∆, xv1

, . . . , xvm
(the incomplete ones).

7 Modified Realizability and Soundness

Intuitively it is rather clear that the extracted term [[MA]] of a proof term
MA indeed “realizes” the formula A. However, this can and should be made
more precise.

We define ordinary (if we disregard the difference between complete and
incomplete variables) HA-formulas r mrA, where A is an LHA-formula
and r is a term of type τ(A).

εmrP (~r) := P (~r)

r mr (A → B) := r mr (A (B)

:=

εmrA → r mrB if τ(A) = ε

∀x.xmrA → εmrB if τ(A) 6= ε = τ(B)

∀x.xmrA → rxmrB otherwise

r mr (A ⊗ B) :=

εmrA ∧ r mrB if τ(A) = ε

r mrA ∧ εmrB if τ(B) = ε

r0mrA ∧ r1mrB otherwise

r mr (A ∧ B) :=

εmrA ∧ r mrB if τ(A) = ε

r mrA ∧ εmrB if τ(B) = ε

fstτ(A)τ(B)r mrA ∧ sndτ(A)τ(B)r mrB otherwise

r mr (∀ncxA) :=

{

∀x.εmrA if τ(A) = ε

∀x.r mrA otherwise

r mr (∀x̃A) :=

{

∀x̃.εmrA if τ(A) = ε

∀x̃.rx̄mrA otherwise

r mr (∃xρA) :=

εmrA[x := r] if τ(A) = ε

sndρτ(A)r mrA[x := fstρτ(A)r] if l(ρ) = l(τ(A)) = 0

r1mrA[x := r0] otherwise,

again with x̃ a complete or incomplete variable. Notice that for an HA-
formula A without ∃x, the formula r mrA is provably equivalent to A.

Theorem (Soundness). Assume that M : A is an ordinary proof term
whose free assumption variables are from ūB1

1 , . . . , ūBn
n and vC1

1 , . . . , vCm
m .

Then there is an ordinary proof term µ(M) : ([[M]]mr A) with free assump-
tions among x̄ūi

mrBi and xvj
mrCj .

13

Proof. By induction on M . The proof is standard (that is, our restrictions
for LHA play no role here), and can be found e.g. in [26].

8 LHA Proof Terms

We now restrict the rules for generating proof terms in a similar way as
we did for object terms. The consequence will be that the extracted term
actually is in LT.

We simultaneously define LHA proof terms M and the set CV(M) of
their “computational variables”, which in fact will be the set of variables
free in [[M]].

Definition (LHA proof terms). LHA proof terms M and the set CV(M)
of their computational variables are defined inductively, as follows.

(a) If τ(A) = ε, then every ordinary proof term MA is an LHA proof term,
and CV(M) := ∅.

(b) Every assumption constant (axiom) cA and every complete or incomplete
assumption variable ūA or uA is an LHA proof term. CV(ūA) := {x̄ū}
and CV(uA) := {xu}.

(c) If MA is an LHA proof term, then so is (λūAM)A→B and (λuAM)A(B .
CV(λūAM) = CV(M) \ {x̄ū} and CV(λuAM) = CV(M) \ {xu}.

(d) If MA→B and NA are LHA proof terms, then so is (MN)B , provided
all variables in CV(N) are complete. CV(MN) := CV(M) ∪ CV(N).

(e) If MA(B and NA are LHA proof terms, then so is (MN)B , provided
the higher type incomplete variables in CV(M) and CV(N) are disjoint.
CV(MN) := CV(M) ∪ CV(N).

(f) If MA is an LHA proof term, x /∈ FV(B) for every formula B of a free
assumption variable in M , and moreover x /∈ CV(M), then (λxM)∀

ncxA

is an LHA proof term. CV(λxM) := CV(M).

(g) If MA is an LHA proof term, and x̃ /∈ FV(B) for every formula B of
a free assumption variable in M , then so is (λx̃M)∀x̃A. CV(λx̃M) :=
CV(M) \ {x̃} (x̃ a complete or incomplete variable).

(h) If M∀ncxA is an LHA proof term and r is a T-term, then (Mr)A[x:=r] is
an LHA proof term. CV(Mr) := CV(M).

(i) If M∀x̄A is an LHA proof term and r is a complete LT-term, then
(Mr)A[x̄:=r] is an LHA proof term. CV(Mr) := CV(M) ∪ FV(r).

14

(j) If M∀xA is an LHA proof term and r is an LT-term, then (Mr)A[x:=r]

is an LHA proof term, provided the higher type incomplete variables
in CV(M) are not free in r. CV(Mr) := CV(M) ∪ FV(r).

Let us first verify that the computational variables of an LHA proof
term M are indeed the variables free in [[M]].

Lemma. For every LHA proof term M we have CV(M) = FV([[M]]).

Proof. Induction on M . We may assume that the derived formula has com-
putational content, for otherwise the claim is obvious.

Case MA(BNA with τ(A) 6= ε. Then CV(MN) = CV(M)∪CV(N) =IH

FV([[M]]) ∪ FV([[N]]) = FV([[M]][[N]]) = FV([[MN]]).
Case (λxM)∀

ncxA. Then CV(λxM) = CV(M) =IH FV([[M]]). The claim
now follows, since by definition [[(λxM)∀

ncxA]] = [[M]].

We can now give a simple characterization of LHA proof terms, which
refers to extracted terms and LT and moreover to the notion of an nc-correct
(ordinary) proof term, which is defined as follows:

Definition (nc-correct proof terms). We again use x̃ for a complete or
incomplete variable.

(a) If τ(A) = ε, then every ordinary proof term MA is nc-correct.

(b) Every assumption constant (axiom) cA and every complete or incomplete
assumption variable ūA or uA is an nc-correct proof term.

(c) If MA is nc-correct, then so is (λūAM)A→B as well as (λuAM)A(B .

(d) If MA�B and NA are nc-correct (�∈ {→,(}), then so is (MN)B .

(e) If MA is nc-correct, x /∈ FV(B) for every uB ∈ FA(M) and moreover
x /∈ FV([[M]]), then (λxM)∀

ncxA is nc-correct.

(f) If MA is nc-correct, and x̃ /∈ FV(B) for every uB ∈ FA(M), then
(λx̃M)∀x̃A is nc-correct.

(g) If M∀ncxA is nc-correct and r is a T-term, then (Mr)A[x:=r] is nc-correct.

(h) If M∀x̃A is nc-correct and r is a T-term, then (Mr)A[x̃:=r] is nc-correct.

Theorem (Characterization of LHA proof terms). An ordinary proof
term MA is an LHA proof term iff M is an nc-correct proof term such that
[[M]] ∈ LT.

Proof. We proceed by induction on M , assuming that M is an ordinary
proof term. We can assume τ(A) 6= ε, for otherwise the claim is obvious.

Case MA(BNA with τ(A) 6= ε. The following are equivalent.

15

• MN is an LHA proof term

• M , N are LHA proof terms, and the higher type incomplete variables
in CV(M) and CV(N) are disjoint

• [[M]] and [[N]] are LT-terms, and the higher type incomplete variables
in FV([[M]]) and FV([[N]]) are disjoint

• [[M]][[N]] (= [[MN]]) is an LT-term.

Case (λxM)∀
ncxA. Notice that x /∈ FV(B) for every formula B of a free

assumption variable in M , since M is an ordinary proof term. The following
are equivalent.

(λxM)∀
ncxA is an LHA proof term

M is an LHA proof term, and x /∈ CV(M)

[[M]] is an LT-term, M is nc-correct and x /∈ FV([[M]])

[[(λxM)∀
ncxA]] (= [[M]]) is an LT-term and (λxM)∀

ncxA is nc-correct.

The other cases are similar.

As expected we can derive A ⊗ B (A ∧ B, but the converse A ∧ B (

A ⊗ B is derivable only if l(τ(A)) = l(τ(B)) = 0. In contrast, A ∧ B →
A ⊗ B is easily derivable. Moreover, we can derive (A (B) ((A → B),
∀ncxA (∀xA and ∀xA (∀x̄A[x := x̄]. Note that if τ(A) = ε, then
∀xA ↔ ∀ncxA. Hence in this case it doesn’t matter which of the universal
quantifiers is used.

The natural deduction framework allows a straightforward formalization
of proofs in LHA. This applies e.g. to the proofs sketched in sections 2.2
and 2.3. Further examples of derivations will be given in section 9.

9 LHA and its Provably Recursive Functions

An n-ary numerical function f is called provably recursive in LHA if there
is a Σ1-formula Gf (x̃1, . . . , x̃n, z) denoting the graph of f , and a derivation
Mf in LHA of

∀x̃1, . . . ,∀x̃n∃zGf (x̃1, . . . , x̃n, z).

Here the x̃i denote complete or incomplete variables of type W.

Theorem. A function is provably recursive in LHA if and only if it is
computable in polynomial time.

Proof. ⇒. Let M be a derivation in LHA proving a formula of type ~Wk →
~Wl (W. Then [[M]] belongs to LT, hence the claim follows from the
Normalization Theorem.

16

⇐. In Bellantoni and Cook [3] the polynomial time computable functions
are characterized by a function algebra B based on untyped schemata of safe
recursion and safe composition. There every function is written in the form
f(~x; ~y) where ~x; ~y denotes a bookkeeping of those variables ~x that are used
in a recursion defining f , and those variables ~y that are not recursed on.
We proceed by induction on the definition of f(x1, . . . , xk; y1, . . . , yl) in B,
associating to f a Σ0

1-formula Gf (x̄1, . . . , x̄k, y1, . . . , yl, z) denoting the graph
of f , and a derivation Mf in LHA of

∀x̄1, . . . ,∀x̄k∀y1, . . . ,∀yl∃zGf (x̄1, . . . , x̄k, y1, . . . , yl, z).

If f in B is an initial function 1, S0, S1, P, conditional C or projection
πm,n

i , then Gf and Mf are easily defined.
If f is defined by safe composition in system B, then

f(~x; ~y) := g(r1(~x;), . . . , rm(~x;); s1(~x; ~y), . . . , sn(~x; ~y)).

Using the induction hypothesis to obtain Gg, G~r, G~s and Mg, M~r and M~s,
define the Σ0

1-formula Gf and the derivation Mf in the obvious way.
Finally consider the case when f is defined by safe recursion

f(1, ~x; ~y) := g(~x; ~y)

f(Six, ~x; ~y) := hi(x, ~x; ~y, f(x, ~x; ~y)).

One has Gg, Gh0
, Gh1

and Mg, Mh0
, Mh1

by induction hypothesis. Define
Gf (x̄, ~̄x, ~y, z) to mean that there is a list l of the same length as x̄, whose last
element is z, and such that for all i < len(l) we have Ghj

(x̄�i, ~̄x, ~y, li, li+1)
(with j := 0 if x̄i = tt and j := 1 if x̄i = ff), and also Gg(~̄x, ~y, l0). Now fix
the complete variables ~̄x, and prove

∀x̄∀~y ∃zGf (x̄, ~̄x, ~y, z).

by induction on x̄ (notice that the induction formula ∀~y∃zGf (x̄, ~̄x, ~y, z) is
linear). The base case follows from ∀~y ∃zGg(~̄x, ~y, z), and for the step we use

∀x̄∀~y ∀y1∃zjGhj
(x̄, ~̄x, ~y, y1, zj)

and argue as follows. Given Sjx̄, the induction hypothesis on x̄ yields y1 with
Gf (x̄, ~̄x, ~y, y1). But then there is a zj such that Ghj

(x̄, ~̄x, ~y, y1, zj), which is
what we want. Note that the derivation contains no free incomplete (object
or assumption) variables any more (~y is universally quantified). Note also
that zj is used only once, so the derivation is in LHA.

Acknowledgements

This paper builds an arithmetical system corresponding to the term system
in [5, 24], as [1] does for Hofmann’s “non-size-increasing” term system [16, 2];
it therefore owes a lot to all the researchers involved. Also, I would like to
thank Neil Jones, Frank Pfenning, Stefan Schimanski and an anonymous
referee for their useful comments on earlier versions of this work.

17

References

[1] Klaus Aehlig, Ulrich Berger, Martin Hofmann, and Helmut Schwicht-
enberg, An arithmetic for non-size-increasing polynomial time compu-
tation, Theoretical Computer Science 318 (2004), no. 1–2, 3–27.

[2] Klaus Aehlig and Helmut Schwichtenberg, A syntactical analysis of
non-size-increasing polynomial time computation, ACM Transactions
of Computational Logic 3 (2002), no. 3, 383–401.

[3] Stephen Bellantoni and Stephen Cook, A new recursion-theoretic char-
acterization of the polytime functions, Computational Complexity 2
(1992), 97–110.

[4] Stephen Bellantoni and Martin Hofmann, A new “feasible” arithmetic,
The Journal of Symbolic Logic 67 (2002), no. 1, 104–116.

[5] Stephen Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg,
Higher type recursion, ramification and polynomial time, Annals of Pure
and Applied Logic 104 (2000), 17–30.

[6] Ulrich Berger, Program extraction from normalization proofs, Typed
Lambda Calculi and Applications (M. Bezem and J.F. Groote, eds.),
LNCS, vol. 664, Springer Verlag, Berlin, Heidelberg, New York, 1993,
pp. 91–106.

[7] Samuel R. Buss, Bounded arithmetic, Studies in Proof Theory, Lecture
Notes, Bibliopolis, Napoli, 1986.

[8] Peter Clote and Gaisi Takeuti, Bounded arithmetic for NC, ALogTIME,
L and NL, Annals of Pure and Applied Logic 56 (1992), 73–117.

[9] Stephen A. Cook, Computability and complexity of higher type func-
tions, Logic from Computer Science, Proceedings of a Workshop held
November 13–17, 1989 (Y.N. Moschovakis, ed.), MSRI Publications,
no. 21, Springer Verlag, Berlin, Heidelberg, New York, 1992, pp. 51–72.

[10] Stephen A. Cook and Bruce M. Kapron, Characterizations of the basic
feasible functionals of finite type, Feasible Mathematics (S. Buss and
P. Scott, eds.), Birkhäuser, 1990, pp. 71–96.

[11] Jean-Yves Girard, Light linear logic, Information and Computation 143
(1998).

[12] Jean-Yves Girard, Andre Scedrov, and Philipp J. Scott, Bounded lin-
ear logic, Feasible Mathematics (S.R. Buss and Ph.J. Scott, eds.),
Birkhäuser, Boston, 1990, pp. 195–209.

18

[13] Kurt Gödel, Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunkts, Dialectica 12 (1958), 280–287.

[14] David Hilbert, Über das Unendliche, Mathematische Annalen 95
(1925), 161–190.

[15] Martin Hofmann, Typed lambda calculi for polynomial-time computa-
tion, Habilitation thesis, Mathematisches Institut, TU Darmstadt, Ger-
many. Available under www.dcs.ed.ac.uk/home/mxh/habil.ps.gz, 1998.

[16] , Linear types and non-size-increasing polynomial time compu-
tation, Proceedings 14’th Symposium on Logic in Computer Science
(LICS’99), 1999, pp. 464–473.

[17] Daniel Leivant, Intrinsic theories and computational complexity, Logic
and Computational Complexity, International Workshop LCC ’94, In-
dianapolis, IN, USA, October 1994 (D. Leivant, ed.), LNCS, vol. 960,
Springer Verlag, Berlin, Heidelberg, New York, 1995, pp. 177–194.

[18] , Termination proofs and complexity certification, Proc 4th
TACS (Heidelberg) (B.C. Pierce N. Kobayashi, ed.), LNCS, vol. 2215,
Springer, 2001, pp. 183–200.

[19] Daniel Leivant and Jean-Yves Marion, Ramified recurrence and compu-
tational complexity IV: Predicative functionals and poly-space, To ap-
pear: Information and Computation.

[20] , Lambda calculus characterization of poly–time, Typed Lambda
Calculi and Applications (M. Bezem and J.F. Groote, eds.), LNCS Vol.
664, 1993, pp. 274–288.

[21] J-Y Marion, Actual arithmetic and feasibility, 15th International work-
shop, Computer Science Logic, CSL’01 (L.Fribourg, ed.), Lecture Notes
in Computer Science, vol. 2142, Springer, 2001, pp. 115–139.

[22] Geoffrey Ostrin and Stanley S. Wainer, Elementary arithmetic, Annals
of Pure and Applied Logic 133 (2005), 275–292.

[23] Frank Pfenning, Intensionality, extensionality, and proof irrelevance in
modal type theory, Proceedings of the 16th Annual Symposium on Logic
in Computer Science (LICS’01) (J. Halpern, ed.), 2001, pp. 221–230.

[24] Helmut Schwichtenberg and Stephen Bellantoni, Feasible computation
with higher types, Proof and System-Reliability (H. Schwichtenberg and
R. Steinbrüggen, eds.), Proceedings NATO Advanced Study Institute,
Marktoberdorf, 2001, Kluwer Academic Publisher, 2002, pp. 399–415.

[25] Harold Simmons, The realm of primitive recursion, Archive for Mathe-
matical Logic 27 (1988), 177–188.

19

[26] Anne S. Troelstra (ed.), Metamathematical investigation of intuition-
istic arithmetic and analysis, Lecture Notes in Mathematics, vol. 344,
Springer Verlag, Berlin, Heidelberg, New York, 1973.

20

