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Abstract

In this paper we introduce the notion of map, which is a notation for the
set of occurrences of a symbol in a syntactic expression such as a formula
or a λ-term. We use binary trees over 0 and 1 as maps, but some well-
formedness conditions are required. We develop a representation of lambda
terms using maps. The representation is concrete (inductively definable in
HOL or Constructive Type Theory) and canonical (one representative per
λ-term). We define substitution for our map representation, and prove the
representation is in substitution preserving isomorphism with both nominal
logic λ-terms and de Bruijn nameless terms. These proofs are mechanically
checked in Isabelle/HOL and Minlog respectively.

The map representation has good properties. Substitution does not re-
quire adjustment of binding information: neither α-conversion of the body
being substituted into, nor de Bruijn lifting of the term being implanted. We
have a natural proof of the substitution lemma of λ calculus that requires no
fresh names, or index manipulation.
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Using the notion of map we study conventional raw λ syntax. E.g. we
give, and prove correct, a decision procedure for α-equivalence of raw λ terms
that does not require fresh names.

We conclude with a definition of β-reduction of map terms, some dis-
cussion on the limitations of our current work, and suggestions for future
work.

1. Introduction

In this paper we introduce the notion of map which is a generalization of
the notion of occurrence of a symbol in syntactic expressions such as formulas
or λ-terms. We use binary trees over 0 and 1 as maps. For example, consider
a λ-term (xz)(yz) in which each of the symbols x and y occurs once and the
symbol z occurs twice; we use (10)(00), (00)(10) and (01)(01) to represent
the occurrences of the symbols x, y and z respectively. The bound positions
are represented only by a constant 2 (called box ). We will write (omitting
some parentheses for readability)

(10 00)\(00 10)\(01 01)\(22 22)

for the S combinator λxyz. (xz)(yz). 2 may also occur unbound. Free vari-
ables may still occur in terms, e.g. the informal term λz.(xz) is written as
01\(x 2), but there are no bound names or de Bruijn indices.

Some well-formedness conditions will be required (sections 2 and 3). Since
we want a canonical representation (one notation per lambda term), although
λxx. x is accepted as a correct notation for a lambda term, we will not accept
1\1\2 as a correct notation. Also, consider the substitution of (2 2) for
the position 10 (the first 2) in 01\(2 2); we get 01\((2 2) 2) which does
not match the intuition hinted at above because 0 is not a position in (2 2).
For this reason we identify the map (0 0) with the map 0, as discussed in
section 2.

1.1. Three abstraction mechanisms

In this paper we study three abstraction mechanisms and the three as-
sociated representations of lambda terms: Λ of raw λ-terms [2], L of map
λ-expressions and D of de Bruijn-expressions [5], generated by the following

2



grammar:

K,L ∈ Λ ::= x | 2 | app(K,L) | lam(x,K).

M,N ∈ L ::= x | 2 | app(M,N) | mask(m,M) (m |M).

D,E ∈ D ::= x | 2 | app(D,E) | i | bind(D).

x ∈ X The type of atoms or parameters .

i ∈ I The type of natural numbers, used as indices.

m ∈M The type of maps .

The three abstraction mechanisms of these three representations are:

Lambda-abstraction This is abstraction by parameters, and is realized by
the constructor lam (λ) in Λ. Quotienting by α-equivalence is needed to
make this mechanism work. The information about binding is shared
between binding occurrences and bound occurrences (as shared names),
and substitution may require adjusting both binding occurrences and
bound occurrences of the base term (α-conversion).

Mask-abstraction This is abstraction by maps, and is realized by the con-
structor mask in L. (We write m\M for mask(m,M).) For this repre-
sentation to work, mask must be guarded by a simultaneously defined
relation, written m|M , which is explained in Sect. 3. The information
about binding is carried only at the binding occurrences (as maps).
It will be seen that substitution does not require any adjustment of
binding information.

Bind-abstraction This is abstraction by indices, and is realized by the con-
structor bind in D. The information about binding is carried only at
the bound occurrences (as indices pointing to the binding point). Sub-
stitution requires adjustment of the implanted term (de Bruijn lifting).

The three types, Λ,L and D all have parameters x ∈ X and 2 (box or hole)
as atomic objects, and have the constructor app in common.

We will compare these three types through maps. Our strategy is to use L
as the main type by which the types Λ and D are analyzed. The main results
of the paper will show that Λ quotiented by the α-equivalence relation, and
the datatype D, are both isomorphic to L. Here, by an isomorphism we mean
a bijection which respects constants, application and substitution.
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1.2. Some properties of L
The datatype L enjoys good properties. First, the closed expressions in

L (possibly containing unbound 2) are constructed from a finite set of ele-
ments, whereas the traditional approach requires an infinite set of variables
even to represent all closed terms. For example, to construct the S combina-
tor λxyz. (xz)(yz), one must first construct (xz)(yz) containing three distinct
free variables. In our approach S = (10 00)\(00 10)\(01 01)\(22 22),
can be constructed from the expression (22 22) by abstracting the three
maps (01 01), (00 10), and (10 00). Also note that we can compute the
three maps from λxyz. (xz)(yz), but cannot recover the three variables x, y, z
from our representation of the S combinator since, in the traditional ap-
proach, there are infinitely many α-equivalent representations of S. Of course
de Bruijn nameless terms have these properties too.

A property that distinguishes L from D is the convenient structural in-
duction principle for L-terms. A classic example of the use of term induction
is the proof of the substitution lemma. The structural induction principle
for raw lambda terms is not an induction principle for the quotiented notion
of lambda terms, and we know of no named representation that supports a
proof of this lemma without name manipulation. De Bruijn nameless terms,
as a concrete datatype, have a structural induction principle, but it does
not capture the intended reading of the concrete structure as representing
binding. The substitution lemma for de Bruijn terms is proved by structural
induction, but with tricky adjustment of indexes. In Lemma 2 we give a proof
by structural induction over L-terms and equational reasoning; no name or
index adjustment is required.

1.3. Formal development

Much of the work in this paper is formalized and mechanically checked
in Isabelle/HOL/Nominal [23] and/or in Minlog [22]. Section 4.5 outlines
a formal development of the adequacy of the representation L with respect
to lambda terms in Nominal Isabelle; i.e. an isomorphism that respects sub-
stitution. Section 5 describes a proof of adequacy of the representation L
with respect to lambda terms in de Bruijn nameless notation. This proof
is formalized in Minlog. The proof developments are available online from
http://homepages.inf.ed.ac.uk/rpollack/export/
{SatoPollackSchwichtenbergSakurai-isabelle.tgz,
SatoPollackSchwichtenbergSakurai-minlog.tgz}.
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2. The types X, I and M

In this section we introduce the datatype M of maps which will be used
througout the paper. We also mention the type X of parameters and the
type of natural numbers, I, used as indices. We use i, j, k as metavariables
ranging over I. We reserve and use the box symbol 2 as a special constant
denoting a hole to be filled with other expressions.

Fix a countably infinite set of atoms X for global (free) variables (also
called parameters), and assume only that equality between parameters is
decidable. We use x, y, z, as metavariables ranging over parameters. We
adopt the polymorphic notation x ]Σ to mean parameter x literally does not
occur in structure Σ of whatever type.

2.1. The datatype M of maps

The type M of maps will be used to realize the abstraction mechanism in
our target domain L. One can obtain the domain M from the domain of Lisp
symbolic expressions (binary trees) generated from the two atoms 0 and 1, by
making the identification cons(0, 0) = 0. This kind of symbolic expressions
with the property cons(0, 0) = 0 was introduced by the first author of this
paper in Sato-Hagiya [17] and Sato [18].

In order to formalize M as a datatype (Fig. 1) we introduce an auxiliary
datatype M+ of non-zero maps. We can also represent M by the following
unambiguous context-free grammar.

M ::= zero | m+.

m+, n+ ∈M+ ::= one | inl(m+) | inr(m+) | cons(m+, n+).

Notational Convention 1. We use m,n, p etc. as metavariables ranging
over maps. We write 0 for zero and 1 for one. In the formal development we
occasionally must pay attention to the difference between M and M+, but
we suppress it in the rest of this paper.

As a general notational convention, throughout the paper we use sans-serif
font for constructor functions and slant font for non-constructor functions.
For example, in Fig. 1, the first five rules are all constructor rules which are
used to construct new objects, while the last rule incl is a non-constructor
rule used to include already constructed non-zero maps as elements in M.
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one ∈M+
m+ ∈M+

inl(m+) ∈M+
n+ ∈M+

inr(n+) ∈M+
m+ ∈M+ n+ ∈M+

cons(m+, n+) ∈M+

zero ∈M zero
m+ ∈M+

m+ ∈M incl

Figure 1: The datatype M

An important function mapp : M×M→M is defined as follows.

mapp(m,n) :=


0 if m = n = 0,
inl(m) if m 6= 0 and n = 0,
inr(n) if m = 0 and n 6= 0,
cons(m,n) if m 6= 0 and n 6= 0.

It is easily seen that mapp is injective. We write (m n) and also mn for
mapp(m,n). Moreover, we write (m n p) for ((m n) p) and mnp for (mn)p.
For example, (0 0 0) = ((0 0) 0) = (0 0)0 = 00 = 0.

We define the orthogonality relation ⊥ on M by the following inductive
definition:

m⊥ 0 0⊥ n
m⊥ n m′ ⊥ n′

mm′ ⊥ nn′

Note that ⊥ is symmetric, and 0 ⊥ n for every map n. We can also easily
verify that if 1⊥m, then m = 0.

3. The datatype L of lambda-expressions

Our target domain L of map λ-expressions (or, simply, lambda-expressions)
is defined by the rules in Fig. 2. In this definition, we use maps in the rule
which constructs lambda expressions mask(m,M) ∈ L, called abstracts. In
this rule, there is a third premise m|M (read m divides M) which allows the
construction of an abstract m\M from m and M only when this divisibility
condition is satisfied.

We can also define L by the following grammar.

M,N ∈ L ::= x | 2 | app(M,N) | mask(m,M) (m |M).
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x ∈ L 2 ∈ L
M ∈ L N ∈ L
app(M,N) ∈ L

m ∈M M ∈ L m |M
mask(m,M) ∈ L

0 | x 0 |2 1 |2
m |M n |N

mapp(m,n) | app(M,N)
m |N n |N m⊥ n

m |mask(n,N)

Figure 2: Simultaneous inductive definition of the type L and the divisibility relation
| ⊆M× L.

This grammar is not context-free since mask(m,M) is accepted only if m|M .
The grammar is however unambiguous and the syntactic objects defined
by the grammar correspond bijectively to lambda-expressions inductively
defined in Fig. 2. Thus, the principle of ‘what you see is what you get’
applies to lambda-expressions.

Remark 1. The rules of Fig. 2 do not fit the usual notion of “simultaneous
inductive definition” since L occurs in the type of divisibility, although L is
being defined simultaneously with divisibility. This kind of definition is called
inductive-inductive definition (Forsberg and Setzer [7]). Since divisibility
can also be viewed as a boolean-valued function defined by recursion over L,
Fig. 2 could be reformulated as a simultaneous inductive-recursive definition
(Dybjer [6]).

Further, since the relation m|M is decidable, one can consider a formal-
ization where the constructor mask only takes the first two arguments, and
the third (proof) argument is irrelevant.

Since we don’t use a formal proof tool that supports inductive-inductive
or inductive-recursive definition, we give a conventional definition (section
3.1) of L as a subset (predicate) of a datatype of symbolic expressions.

Notational Convention 2. We use M,N,P as metavariables ranging over
lambda-expressions. We write (M N) and also MN for app(M,N). We
write (m\M) and also m\M for mask(m,M). A lambda-expression of the
form mask(m,M) is called an abstract. We use A,B as metavariables ranging
over abstracts, and write A for the subset of L consisting of all the abstracts.
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x ∈ S
par

2 ∈ S box
S ∈ S T ∈ S
sapp(S, T ) ∈ S

sapp m ∈M S ∈ S
smask(m,S) ∈ S smask

Figure 3: Inductive definition of the datatype S

3.1. The datatype S and embedding of L in S
In the definition of L above, we used an auxiliary divisibility relation |,

defining L and | by simultaneous inductive-inductive definition. This ap-
proach is foundationally nice, since no extra objects are involved in the con-
struction of L from the types M and X. However, in order to formalize our
ideas in a mechanical proof system, we now take another route to define
the domain L. In this approach, we first define a datatype S of symbolic-
expressions, as shown in Fig. 3. We will then realize L within S by defining
a subset L of S which is isomorphic to L

Unlike mask : M×L→ L (Fig. 2) which is partial, smask is a total binary
operation on maps and symbolic-expressions. Every symbolic-expression is
uniquely generated from x ∈ X, 2 and m ∈M by finitely many applications
of sapp and smask.

Notational Convention 3. We use S, T as metavariables ranging over S.
We write (S T) and also ST for sapp(S, T ). We write (m\S) and also m\S
for smask(m,S).

Now we inductively define a relation ML ⊆M× S, written · | ·, and then
a subset L of “well-formed” elements of S, as shown in Fig. 4. We call the
elements of L symbolic lambda-expressions, and use M,N,P as metavariables
ranging over symbolic lambda-expressions. Relations L and ML are not si-
multaneously defined; ML is completely defined on its own, and carries all
the information that is interesting.

• m | S means “S is well-formed and m is a position of unbound boxes
in S”.

• 0 | S means “S is well-formed”.

We show the definition of L in Fig. 4 in order to point out the relationship
with the definition of L.
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0 | x 0 |2 1 |2
m | S n | T
mn | ST

m | T n | T m⊥ n
m | n\T

x ∈ L 2 ∈ L
M ∈ L N ∈ L

MN ∈ L
m ∈M M ∈ L m |M

m\M ∈ L

Figure 4: Definitions of ML ⊆M× S (written · | ·) and L ⊆ S.

Definition 1 (Abstracts in L). A symbolic lambda-expression is called an
abstract if it is of the form m\M . (Recall this implies m|M .) Metavariables
A,B,C range over abstracts, and we write A for the set of abstracts in L.

Definition 2 (Hole Filling and Instantiation). We write Mm[P ] for
fill(M,m,P ), the result of filling the boxes (holes) in M specified by map m
with P . Mm[P ] is defined only if m |M . We write A O P for the result of
instantiating abstract A with P .

fill : L×M× L→ L

21[P ] := P.

20[P ] := 2.

x0[P ] := x.

(M N)(m n)[P ] := (Mm[P ] Nn[P ]) if m |M and n |N.

(n\N)m[P ] := n\(Nm[P ]) if m | (n\N).

O : A× L→ L

(m\M) O P := Mm[P ].

To see why the last equation defining fill is well formed, note that m can
only bind positions where n has 0, so in the right hand side of the equation
n won’t clash with or capture any positions in implanted copies of P .

Hole filling respects the definition of L:

m |M ∧ 0 |N =⇒ 0 |Mm[N ].

Hole filling is a homomorphism, going under a binder without the need to
adjust the abstractor (as needed with nominal logic and raw λ syntax) or the
object being implanted (as needed with de Bruijn index representation).
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3.2. The use of parameters in L

Parameters are necessary to express open terms. In conventional presen-
tations of binding, parameters can become bound, and can be substituted
for [1, 2, 4, 14, 15, 23]. These cited works differ in degree of formality, and in
the mechanism of binding and substitution, but all use names in some way.

We define functions map and skeleton in Defn. 3, showing how parameters
can be used in our representation L. map : X× L→M computes the map of
all the occurrences of a parameter in a symbolic lambda term; skel : X× L→ L
replaces all occurrences of a parameter in a symbolic lambda term with 2.
Together map and skel are used to abstract a parameter from a symbolic
lambda term, and to define substitution for a parameter (Defn. 4). Usage of
map and skel to represent abstracts goes back to [17, 18, 19], but the map
part is greatly simplified in this paper.

Definition 3 (map and skeleton). We write Mx for map(x,M), and Mx

for skel(x,M).

map : X× L→M skel : X× L→ L

yx :=

{
1 if x = y,
0 if x 6= y.

yx :=

{
2 if x = y,
y if x 6= y.

2x := 0. 2x := 2.

(M N)x := (Mx Nx). (M N)x := (Mx Nx).

(m\M)x := Mx. (m\M)x := m\Mx.

It is easy to see that (1) Mx|M
x and that (2) Mx = 0 if and only if Mx = M .

(See also Prop. 4.)

Definition 4 (Lambda-abstraction and Substitution).

lam : X× L→ A subst : L× X× L→ L

lam(x,M) := Mx\M
x. M{x\N} := lam(x,M) ON.

Unlike mask (Figs. 2 and 4), lam is not injective (e.g. lam(x, x) = lam(y, y)),
but we have:

lam(x,M) = lam(x,N) =⇒M = N.

We can prove the following equations about substitution.
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Proposition 1.

y{x\P} =

{
P if x = y,
y if x 6= y.

2{x\P} = 2.

(M N){x\P} = (M{x\P} N{x\P})
(m\M){x\P} = m\(M{x\P}) if m |M .

lam(y,M){x\P} = lam(y,M) if x = y or x ]M .

lam(y,M){x\P} = lam(y,M{x\P}) if x 6= y and y ] P .

lam(y,M) = lam(z,M{x\z}) if z ]M .

To see why the fourth equation is well formed, note that since m |M , if x
occurs in M then the corresponding positions in m must be 0. Thus the right
hand side is well formed and doesn’t capture any positions in P .

The first four equations of Prop. 1 show how to completely evaluate any
L-term containing a substitution. Unlike the last three equations (which are
often used in the standard definition of substitution on λ-terms), the first four
rules have no freshness side condition. Thus, in our system, substitutions can
be eliminated without α-conversion. As an example we mention the usual
substitution lemma.

Lemma 2 (Substitution Lemma). If x 6= y and x ] P , then

M{x\N}{y\P} = M{y\P}{x\N{y\P}}.

Proof. By induction on M ∈ L, using Prop. 1 to compute the substitution
operation without choosing fresh names. The two side conditions of the
proposition are used only in the parameter case, and the interesting case of
abstraction is proved by equational reasoning using the induction hypothesis.

Compare this proof with that given in Urban [23] for informal α-equated
lambda-terms: when M = λz.M ′ we must assume z ] (x, y,N, P ). In the same
paper Urban shows a formal proof of the proposition for nominal lambda
terms that is automated and slick, but still proceeds by choosing a sufficiently
fresh variable in the abstraction case.

We conclude this section by giving a lemma which will be used in the
proof of Thm. 16.
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x ∈ Λ
par

2 ∈ Λ
box

K ∈ Λ L ∈ Λ

app(K,L) ∈ Λ
app K ∈ Λ

lam(x,K) ∈ Λ
lam

Figure 5: Definition of the datatype Λ

Lemma 3. If z 6= x, Pz = 0, Mz = Nz and M z{x\P} = N z, then
M{x\P} = N .

Proof. By induction on M .

4. The datatype Λ of raw λ-terms

We define the set Λ of raw λ-terms as a datatype constructed by the rules
in Fig. 5. We can also define Λ as the language characterized by the following
context-free grammar.

K,L ∈ Λ ::= x | 2 | app(K,L) | lam(x,K).

x ∈ X.

Notational Convention 4. We use J,K, L as metavariables ranging over
raw λ-terms. We write (K L) and also KL for app(K,L).

As observed by Pitts and Gabbay [8, 14], the notion of equivariance plays
a key role in studying the datatype Λ, as well as L and D. We quickly review
the notion here. Let GX be the group of finite permutations on X. Suppose
that GX acts on two sets U and V and let f : U → V . The map is said to
be an equivariant map if f commutes with all π ∈ GX and u ∈ U , namely,
f(uπ) = f(u)π where we write (−)π for the action of π on (−). We will
also write x // y for the permutation which (only) swaps x and y. We can
naturally define the group action of GX on all the objects we introduce in this
paper including, in particular, objects in Λ, L and D. Then all the functions,
relations and properties we introduce have the equivariance properties. The
essential reason why we have the properties is because we define functions
etc. relying only on the fact that the equality relation on X is decidable and
that X contains infinitely many parameters. For example, the constructors
app and lam for the datatype Λ are equivariant maps.
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Definition 5 (Free parameters). We define the set FP(K) of free param-
eters in K as follows.

FP(x) := {x}.
FP(2) := {}.

FP(KL) := FP(K) ∪ FP(L).

FP(lam(x,K)) := FP(K) \ {x}.

Notice that x ]K implies x /∈ FP(K) but the converse is not true in general.

4.1. map/skeleton functions on Λ

Definition 6 (map and skeleton). We define two functions map and skel,
reminiscent of Defn. 3. We write Kx for map(x,K), and Kx for skel(x,K).

map : X× Λ→M skel : X× Λ→ Λ

yx :=

{
1 if x = y,
0 if x 6= y.

yx :=

{
2 if x = y,
y if x 6= y.

2x := 0. 2x := 2.

(K L)x := (Kx Lx). (K L)x := (Kx Lx).

lam(y,K)x :=

{
0 if x = y,
Kx if x 6= y.

lam(y,K)x :=

{
lam(y,K) if x = y,
lam(y,Kx) if x 6= y.

We can characterize the relation x ∈ FP(K) using map and skeleton.

Proposition 4 (Freshness). x 6∈ FP(K) ⇐⇒ Kx = 0 ⇐⇒ Kx = K.

Lemma 5 (Simple properties of map and skel).

1. (Kx)y = (Ky)x.

2. If x 6= y then (Kx)y = Ky.

3. (Kx)x = Kx and (Kx)x = 0.

4.2. α-equivalence

Definition 7 (α-equivalence). We define the α-equivalence relation, =α,
using the map/skeleton functions (Defn. 6) as shown in Fig. 6.
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x=α x 2 =α 2

K =α K
′ L=α L

′

(K L) =α (K
′ L′)

Kx = Ly Kx =α L
y

lam(x,K) =α lam(y, L)

Figure 6: Definition of the α-equivalence relation

It is easy to see that =α is a decidable equivalence relation. It is interesting
that we can decide α-equivalence of raw syntax without any renaming. For
example, we can show that lam(x, lam(y, yx))=α lam(y, lam(x, xy)) as follows.

01 = 01

10 = 10

2 =α 2 2 =α 2

22 =α 22

lam(y, y2) =α lam(x, x2)

lam(x, lam(y, yx)) =α lam(y, lam(x, xy))

Of course a similar end can be accomplished by translation to de Bruijn
nameless representation, but the point here is that we can do this staying
in the raw lambda-terms (by adding a special constant 2 to the set of raw
lambda-terms).

The following lemma establishes the congruence of =α, i.e. the construc-
tors app and lam are well-defined on =α-equivalence classes.

Lemma 6.

1. K =α L =⇒ Kz =α L
z and Kz = Lz.

2. K =α L =⇒ lam(z,K) =α lam(z, L).

Proof. Show 1 by induction on the derivation of K=αL; 2 follows from 1.

In the rest of this subsection we outline a proof that =α is equivalent
to a standard definition of α-equivalence. The reader may be interested in
papers giving other relations deciding α-equivalence without renaming [11,
13, 21, 10]. The discussion of α-equivalence in section 3 of [10] is especially
interesting, and is the only previous proof we know of correctness of such an
algorithm.
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The following relation ∼ is introduced in Gabbay and Pitts [8]:

x∼ x 2∼2

K ∼K ′ L∼ L′

(K L)∼ (K ′ L′)

Kx//z ∼ Ly//z z ] {x, y,K, L}
lam(x,K)∼ lam(y, L)

Proposition 2.2 in [8] proves that ∼ coincides with a standard definition
of α-equivalence; here we show that =α coincides with ∼. Our proof is
formalized in Isabelle/HOL. Although the algorithm of Fig. 6 does not use
fresh variables, our proof of correctness does.

Lemma 7.

1. If z ]K and y 6∈ {x, z} then (Kx//z)y = (Ky)x//z.

2. If z ]K and y 6∈ {x, z} then (Kx//z)y = (Kx)y.

3. If z ]K then (Kx//z)z = (Kx)x//z and (Kx//z)z = Kx.

4. If z ]K then (Kx//z)x = Kx//z and (Kx//z)x = 0.

Lemma 8. If z ] {x, y,K, L} then Kx//z =αL
y//z =⇒ Kx=αL

y and Kx = Ly.

Proof. See appendix.

Proposition 9. K ∼ L =⇒ K =α L.

Lemma 10. If z ] {x, y,K, L} then Kx∼Ly and Kx = Ly =⇒ Kx//z ∼Ly//z.

Proof. See appendix.

Proposition 11. K =α L =⇒ K ∼ L.

4.3. Substitution

It is well-known that a choice function on names is required to define the
substitution operation canonically on raw λ-terms, due to the possibility of
parameter capture. Here, we define substitution up to α-equivalence, not as
an operation but as a 4-ary relation.

Definition 8 (Substitution). We define Subst ⊆ Λ×X×Λ×Λ as shown
in Fig. 7. We write K{x\J} → L for (J, x,K, L) ∈ Subst.
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x{x\J} → J

x 6= y

y{x\J} → y 2{x\J} → 2

K{x\J} → L K ′{x\J} → L′

(K K ′){x\J} → (L L′)

z 6∈ {x} ∪ FP(J) K{x\J} → L

lam(z,K){x\J} → lam(z, L)

K =α K
′ J =α J

′ K ′{x\J ′} → L′ L′ =α L

K{x\J} → L

Figure 7: Definition of the substitution relation

We wish to show that the substitution relation enjoys the expected prop-
erties (Prop. 14 and Thm. 16). In the proofs below we will sometimes induct
on the size of a derivation D whose conclusion is a judgment asserting that
a substitution relation holds, and we will write |D| for the size of the deriva-
tion. We will also use induction on the size of a raw lambda-term K (a
lambda-expression M), and we will write |K| (|M |) for the size of K (M ,
respectively).

We first prepare the following two lemmata.

Lemma 12. y 6∈ FP(K) =⇒ ∃L . lam(x,K) =α lam(y, L) and |K| = |L|.

Proof. See appendix.

Lemma 13. If z 6∈ {x} ∪ FP(J) and D proves K{x\J} → L, then (1)
Kz = Lz and (2) we can construct a derivation D′ such that |D′| = |D| and
D′ proves Kz{x\J} → Lz.

Proof. By induction on D using Prop. 4 in the base case.

Proposition 14 (Properties of Substitution).

1. (Existence) ∃L . K{x\J} → L.

2. (Uniqueness)

(K{x\J} → L ∧ J =α J
′ ∧K =α K

′ ∧K ′{x\J ′} → L′) =⇒ L=α L
′.
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3. (Congruence)

(K{x\J} → L ∧ J =α J
′ ∧K =α K

′ ∧ L=α L
′) =⇒ K ′{x\J ′} → L′.

Proof. In this proof, we call the last rule of Fig. 7 α-cut-rule.
Proof of 1. By induction on |K|. The crucial case is lam-case: Given

lam(z,K), the goal is to find L such that lam(z,K){x\J} → L.
We can take z′ such that z′ 6∈ FP(K) and z′ 6∈ {x} ∪ FP(J). By

Lemma 12, there exists K ′ such that lam(z,K) =α lam(z′, K ′) and |K| =
|K ′|. By IH, there exists L′ such that K ′{x\J} → L′. Therefore, we have
lam(z′, K ′){x\J} → lam(z′, L′). By α-cut-rule, we have lam(z,K){x\J} →
lam(z′, L′).

Proof of 2. We prove this case by inspecting the two derivations D which
proves the judgment K{x\J} → L and D′ which proves K ′{x\J ′} → L′. So
we use double induction on |D| and |D′|.

We classify the cases by the last rules of the derivations D and D′. (1)
One or both of the last rules are α-cut-rules: This case is reduced to other
cases by considering the premise of the α-cut-rule.
(2) Both of the rules are lam-rules: Let

z 6∈ {x} ∪ FP(J) K{x\J} → L

lam(z,K){x\J} → lam(z, L)

z′ 6∈ {x} ∪ FP(J ′) K ′{x\J ′} → L′

lam(z′, K ′){x\J ′} → lam(z′, L′)

be the last rules of each derivation. Since lam(z,K) =α lam(z′, K ′), we have
Kz =α K

′z′ and Kz = K ′
z′ . By the premise of each rule and Lemma 13, we

have Kz{x\J} → Lz, Kz = Lz, K
′z′{x\J ′} → L′z′ , and K ′

z′ = L′
z′ . Since

Kz =αK
′z′ , we have Lz =αL

′z′ by IH. We also have Lz = L′
z′ from Kz = K ′

z′ ,
Kz = Lz, and K ′

z′ = L′
z′ . Therefore, we have lam(z, L) =α lam(z′, L′).

(3) Other cases: Easy.
Proof of 3. Clear from α-cut-rule.

4.4. Interpretation of raw λ-terms in L

Definition 9 (Denotation). We define a function [[·]] : Λ → L as follows.
(Recall lam from Defn. 4.)

[[x]] := x.

[[2]] := 2.

[[(K L)]] := ([[K]] [[L]]).

[[lam(x,K)]] := lam(x, [[K]]).
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We say that [[K]] is the denotation of K in L; i.e. a raw λ-term K is a name
denoting the λ-term [[K]]. Thus, our view is that elements of L correspond
bijectively to ideal λ-terms, while, for example, lam(x, x) and lam(y, y) are
two different names of the same λ-term, 1\2.

The Theorem 16 below shows that L adequately represents the structure
of Λ modulo α-equivalence. In particular, the third claim of the theorem
shows that the substitution relation in Λ is represented by the substitution
operation in L. We first prepare the following lemma.

Lemma 15 (Preservation of map and commutation of skel by/with [[−]]).

1. [[K]]x = Kx.

2. [[K]]x = [[Kx]].

Proof. By induction on K.

Theorem 16 (Properties of Denotation).

1. M ∈ L =⇒ ∃K ∈ Λ . [[K]] = M .

2. K =α L ⇐⇒ [[K]] = [[L]].

3. K{x\J} → L ⇐⇒ [[K]]{x\[[J ]]} = [[L]].

Proof. Proof of 1. By induction on |M |. Consider the case where M = n\N .
Choose a z such that z 6∈ FP(N) and fill N with z at n. Since Nn[z] is of the
same size as N , we have IH for it, namely, we have K such that [[K]] = Nn[z].
Then we have [[lam(z,K)]] = [[K]]z\[[K]]z = n\N = M .

Proof of 2. By induction on |K|. We use IH and Lemma 15 in the case
where K = lam(x,K ′) and L = lam(y, L′) for both directions.

Proof of 3. (=⇒) By induction on |D| where D proves K{x\J} → L. We
consider the case where D is of the form:

z 6∈ {x} ∪ FP(J) D′

lam(z,K){x\J} → lam(z, L)

and D′ proves K{x\J} → L. Then, by Lemma 13, we have (1) Kz = Lz
and (2) D′′ such that |D′′| = |D′| and D′′ proves Kz{x\J} → Lz. Since
|D′′| = |D′| < |D|, we have IH for D′′, namely, [[Kz]]{x\[[J ]]} = [[Lz]]. Now,
our goal in this case is: [[lam(z,K)]]{x\[[J ]]} = [[lam(z, L)]]. We can achieve
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the goal as follows.

[[lam(z,K)]]{x\[[J ]]} = ([[K]]z\[[K]]z){x\[[J ]]} by Defn. 9

= Kz\([[Kz]]{x\[[J ]]}) by Prop. 1 and Lemma 15

= Lz\[[Lz]] by (1) and IH

= [[L]]z\[[L]]z by Lemma 15

= [[lam(z, L)]] by Defn. 9.

(⇐=) By induction on |K|. The interesting case is whereK = lam(y1, K1).
In this case L must be of the form lam(z1, L1), and we have

[[lam(y1, K1)]]{x\[[J ]]} = [[lam(z1, L1)]]

by assumption. Choose a parameter z such that z 6∈ {x} ∪ FP(JK1L1).
Then, by Lemma 12, we can find K2 and L2 such that |K1| = |K2|,

(1) lam(y1, K1) =α lam(z,K2) and (2) lam(z1, L1) =α lam(z, L2).

Then, using (1) and (2), the assumption can be rewritten to

[[lam(z,K2)]]{x\[[J ]]} = [[lam(z, L2)]].

By simplifying this, we have

(K2)z\([[(K2)
z]]{x\[[J ]]}) = (L2)z\[[(L2)

z]].

Hence, [[(K2)
z]]{x\[[J ]]} = [[(L2)

z]]. From this, by Lemma 3, we have

[[K2]]{x\[[J ]]} = [[L2]].

Then, since |K2| < |lam(z,K2)| = |lam(y1, K1)|, by IH, we have a derivation
D which proves K2{x\J} → L2. Using D, we can construct the following
derivation which achieves our goal in this case.

lam(x1, K1) =α lam(z,K2) J =α J D1 lam(z, L2) =α lam(y1, L1)

lam(x1, K1){x\J} → lam(y1, L1) ,

where D1 is:
z 6∈ {x} ∪ FP(J) D

lam(z,K2){x\J} → lam(z, L2).

It is to be noted that we proved Thm. 16 without using Prop. 14, and that
we can use this theorem to give an alternative proof of Prop. 14. In fact, it
is easy to see that Prop. 14 follows from Thm. 16.
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4.5. Formalized correctness of the representation L w.r.t. nominal Isabelle
Thm. 16 can be read as the correctness of L if you believe that Λ, =α and

Subst are a correct representation of raw λ syntax and α-equivalence. Now
we outline a direct proof that L is in substitution preserving isomorphism
with the nominal representation of λ-terms in Urban’s nominal package for
isabelle/HOL [23]. We have formalized this proof in isabelle/HOL.

Consider a proof of the first claim in Thm. 16. We define an inverse of
denote:

b·c : L→ Λ

bxc := x

b2c := 2

b(M1 M2)c := (bM1c bM2c)
bm\Mc := lam(x, bMm[x]c) if x ]M.

In last rule, to get a name for m\M , we fill hole m in M with a fresh pa-
rameter x, recursively compute a name for that term (which is smaller than
m\M), then abstract x in the raw language. These equations define a func-
tion only if there is a canonical way to choose x ]M . (Which is slightly more
than we originally assumed about X.) Even if we satisfy that requirement
(e.g. take X to be totally ordered), b·c is only a right inverse of [[·]], since [[·]]
is not injective due to α-variance in Λ.

However, if we switch our view from raw lambda terms to nominal lambda
terms, then we can prove that b·c is a well defined function with the given
equations, that it is a two-sided inverse to [[·]], and that this bijection preserves
substitution (recall Defns. 2 and 4):

[[K{x\J}]] = fill([[K]]x, [[K]]x, [[J ]]) = lam(x, [[K]]) O [[J ]] = [[K]]{x\[[J ]]}. (1)

We prove equation (1) by induction on K. In the abstraction case where
K = λy.K ′ we must assume y ] (x, J).

5. The datatype D of de Bruijn expressions

In this section we introduce the datatype D of de Bruijn expressions.
Since we wish to relate D with L, we will construct a larger domain SD of
symbolic expressions which contains both L and D naturally, and study the
structure of SD.

We have formally checked all the lemmata, propositions and theorems in
this section in Minlog.
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x ∈ SD
par

2 ∈ SD box
i ∈ SD idx

X ∈ SD Y ∈ SD
XY ∈ SD sdapp m ∈M X ∈ SD

m\X ∈ SD sdmask
X ∈ SD

[X] ∈ SD sdbind

Figure 8: Definition of the datatype SD

5.1. The datatype SD and its subset LD

The datatype SD is defined inductively as shown in Fig. 8. We call an
element in SD an SD-expression.

Notational Convention 5. We use X, Y, Z as metavariables ranging over
SD-expressions. We write (X Y ) and also XY for sdapp(X, Y ). We will
write m\X for sdmask(m,X), and write [X] for sdbind(X).

We define the mask degree md(X), the bind degree bd(X), and the ab-
straction degree ad(X) of an SD-expression:

Definition 10 (Mask degree, bind degree, abstraction degree).

md : SD→ I bd : SD→ I
md(X) := 0 if X ∈ X ∪ {2} ∪ I bd(X) := 0 if X ∈ X ∪ {2} ∪ I

md(XY ) := md(X) + md(Y ) bd(XY ) := bd(X) + bd(Y )

md(m\X) := md(X) + 1 bd(m\X) := bd(X).

md([X]) := md(X) bd([X]) := bd(X) + 1.

ad(X) := md(X) + bd(X)

We also define the set FI(X) of free indices in X as follows.

FI(X) := {} if X ∈ X or X = 2.

FI(i) := {i}.
FI(XY ) := FI(X) ∪ FI(Y ).

FI(m\X) := FI(X).

FI([X]) := {i− 1 | i ∈ FI(X) and i > 0}.
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An SD-expression is index closed if FI(X) = {}.

Example 1. The abstracts constructor sdbind abstracts an index i occurring
in its argument X by counting the number k of sdbound abstracts having the
occurrence of i in its scope. (We do not count the sdmasked abstracts.) Then
the occurrence of i becomes bound if k = i+1. For example, the S combinator
lam(x, lam(y, lam(z, (xz yz)))), is represented by [[[(20 10)]]]. Using the
sdmask constructor, S is represented by (10 00)\(00 10)\(01 01)\(22 22).
Both of these representations are LD-expressions since they are both index
closed. We will see that we can toggle between these representations by the
toggle function we introduce in Definition 13.

We next define the subsets LDi (i ∈ I) of SD inductively as in Fig. 9. It is
easy to see that if X ∈ LDi and j ∈ FI(X), then j < i, and that if X ∈ LDi

and i < j, then X ∈ LDj. We also note that Li ( LDi and Di ( LDi.
We call an element in LDi an LDi-expression. Note that we first define

the divisibility relation between maps and SD-expressions. We then define
the subset LD of SD by putting LD := LD0. Note that if X ∈ LD, then X is
index-closed. We call an element of LD an LD-expression.

We single out some meaningful subsets of SD as follows.

Li := {X ∈ LDi | bd(X) = 0} (i ∈ I)
L := L0

D := {X ∈ SD | md(X) = 0}
Di := {X ∈ LDi | md(X) = 0} (i ∈ I)
D := D0

Here, we have the following inclusion relations.

L = L0 ( L1 ( L2 · · ·
D = D0 ( D1 ( D2 · · · ( D

We can easily see that the set L is isomorphic to the structure of the symbolic
lambda-expressions we introduced in §3.1, since an element in L is index
closed and it is constructed without using the bind function. (Note that by
identifying these isomorphic sets, by abuse of the language, we are using the
same notation L for these sets.) For this reason, we will call an element
of L a lambda-expression. Similarly, the set D becomes isomorphic to the
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X ∈ X ∪ {2} ∪ I
0 |X 1 |2

m |X n | Y
mn |XY

m |X n |X m⊥ n
m | n\X

m |X
m | [X]

x ∈ LDi

par
2 ∈ LDi

box
j < i

j ∈ LDi
idx

X ∈ LDi Y ∈ LDi

XY ∈ LDi

app

m ∈M X ∈ LDi m |X
m\X ∈ LDi

mask
X ∈ LDi+1

[X] ∈ LDi
bind

Figure 9: Definitions of the divisibility relation and LD

structure of the locally nameless λ-terms studied in, e.g., Aydemir et al. [1],
since an element in D is index closed and it is constructed without using the
mask function. (Strictly speaking, terms in [1] do not have 2, but this is not
essential.) For this reason, we will call an element of D a locally nameless de
Bruijn-expression. On the other hand, an element in D is not index closed
in general, so we will call it a de Bruijn-expression.

Remark 2. We will be only interested in the set LD and will work in it
from now on. We remark that we had to define an infinite family of sets LDi

(i ∈ I) to define LD = LD0 because of the rule bind. By the same token, even
though we are only interested in LD, when we prove properties of X ∈ LD,
we usually have to generalize the properties and prove them for arbitrary
X ∈ LDi (i ∈ I).

In general, the mask degree and the bind degree of an LD-expression
X can be both positive, and this means that X has characteristics of both
lambda-expression and de Bruijn-expression.

Suggested by this observation, we introduce a basic toggle function (Defn. 13)
which toggles the states of all the abstraction nodes X ∈ SD. Namely if a
node in X is a masking node then it will be changed to a binding node and
vice versa.

23



We also define the following three auxiliary functions

Out : I×M× SD→ SD,
Map : I× SD→M, and

Skel : I× SD→ SD

on the way. We will see that Out and Map/Skel are inverses to each other
(Prop. 18.8–14).

Definition 11 (Out function). We define Out inductively as follows. We
write X i

m for Outi(m,X). Out is a partial function, since X i
m is defined only

if m|X. X i
m changes every 2 in X hit by m into i+(its binding height in X).

X i
0 := X if X ∈ X ∪ {2}.

ji0 :=

{
j if j < i,
j + 1 otherwise.

2i
1 := i.

(X Y )imn := (X i
m Y i

n).

(n\X)im := n\(X i
m).

[X]im := [X i+1
m ].

Definition 12 (Map and Skeleton). We define Map and Skel inductively
as follows. We write Xi for Mapi(X), and X i for Skeli(X). Every index
i+ (its binding height in X) is changed into 1 by Xi and into 2 by X i.

Xi := 0 if X ∈ X ∪ {2} X i := X if X ∈ X ∪ {2}

ji :=

{
1 if j = i,
0 otherwise.

ji :=


j if j < i,
2 if j = i,
j − 1 if j > i.

(X Y )i := (Xi Yi) (X Y )i := (X i Y i)

(m\X)i := Xi (m\X)i := m\X i

[X]i := Xi+1 [X]i := [X i+1]

The following Lemma on Map can be easily shown.

Lemma 17 (Simple properties of Map).
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1. X ∈ LDi, 1 |X =⇒ Xj = 0.
2. X ∈ LDi,m |X =⇒ Xj ⊥m.

We will use the following properties of Out, Map and Skel to establish
the key properties of the toggle function. Prop. 18.13 and Prop. 18.14 show
that Out and Skel are inverses to each other.

Proposition 18 (Properties of Out, Map and Skel).

1. X ∈ LDi, j ≤ i,m |X,n |X,m⊥ n =⇒ m |Xj
n.

2. X ∈ LDi, j ≤ i,m |X =⇒ Xj
m ∈ LDi+1.

3. m |X =⇒ Xj ⊥m.
4. m |X =⇒ m |Xj.
5. X ∈ LDi+1, j ≤ i =⇒ Xj ∈ LDi.
6. X ∈ LDi =⇒ Xj |X

j.
7. X ∈ LDi,m |X,n |X,m⊥ n, k ≤ j =⇒ (Xj

n)km = (Xk
m)j+1

n .
8. X ∈ LDi,m |X, k ≤ j =⇒ (Xk

m)j+1 = Xj.
9. X ∈ LDi,m |X, k ≤ j =⇒ (Xj+1

m )k = Xk.
10. X ∈ LDi,m |X, k ≤ j =⇒ (Xj+1

m )k = (Xk)jm.
11. X ∈ LDi,m |X, k ≤ j =⇒ (Xk

m)j+1 = (Xj)km.
12. X ∈ LDi,m |X, j ≤ i =⇒ (Xj

m)j = m.
13. X ∈ LDi,m |X, j ≤ i =⇒ (Xj

m)j = X.
14. X ∈ LDi+1, j ≤ i =⇒ (Xj)j(Xj)

= X.

15. X ∈ LDi, i ≤ j =⇒ Xj = X.
16. X ∈ LDi, k ≤ j =⇒ (Xk)j = Xj+1.
17. X ∈ LDi, k ≤ j =⇒ (Xj+1)k = Xk.
18. X ∈ LDi, k ≤ j =⇒ (Xj+1)k = (Xk)j.
19. m |X =⇒ bd(Xj

m) = bd(X) and md(Xj
m) = md(X).

20. bd(Xj) = bd(X) and md(Xj) = md(X).

Proof. See appendix.

Definition 13 (Toggle function). We define toggle : SD → SD induc-
tively as follows. It is a partial function since it uses the Out function. We
write 〈X〉 for toggle(X).

〈X〉 := X if X ∈ X ∪ {2} ∪ I.
〈XY 〉 := 〈X〉〈Y 〉.
〈m\X〉 := [〈X〉0m].
〈[X]〉 := 〈X〉0\〈X〉0.
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Although toggle is a partial function on SD, its restriction to LDi (i ∈ I)
is total as we see now. As toggle changes a masking node to a binding and
vice versa (using Out and Skel which are inverses to each other) and leaves
an application node and an atomic node unchanged, it is intuitively clear
that we have 〈〈X〉〉 = X. However its proof is subtle because we have to
manipulate de Bruijn indices carefully while computing 〈X〉.

Proposition 19 (Properties of the toggle function).

1. X ∈ LDi =⇒ 〈X〉 ∈ LDi.

2. X ∈ LDi,m |X =⇒ m | 〈X〉.
3. X ∈ LDi =⇒ bd(〈X〉) = md(X).

4. X ∈ LDi =⇒ md(〈X〉) = bd(X).

5. X ∈ LDi =⇒ ad(〈X〉) = ad(X).

6. X ∈ LDi,m |X =⇒ 〈Xj
m〉 = 〈X〉jm.

7. X ∈ LDi =⇒ 〈X〉j = Xj.

8. X ∈ LDi =⇒ 〈Xj〉 = 〈X〉j.
9. X ∈ LDi =⇒ 〈〈X〉〉 = X.

Proof. See appendix.

Example 2. We illustrate some instances of Prop. 19. Consider the raw
lambda term K = λx. (λy. yx)x. K can be represented in LD by the four
expressions as shown in the table below.

X md bd L? D? 〈X〉x 〈X〉y 〈X〉
Xa = (01 1)\(10\(2 2) 2) 2 0 yes no Xb Xc Xd

Xb = [(10\(2 0) 0)] 1 1 no no Xa Xd Xc

Xc = (01 1)\([02] 2) 1 1 no no Xd Xa Xb

Xd = [([01] 0)] 0 2 no yes Xc Xb Xa

In K, the outer abstaction is done by abstracting the parameter x and the
inner by abstracting y. In LD two abstraction functions mask and bind are
available, and we can freely choose any of these when we make abstracts.
So we have four different ways of representing K in LD. The md and bd
columns show the number of times these functions are used to construct the
four representations.

In general, if a raw lamda term L has k abstracts in it, it can be repre-
sented in LD in 2k ways. Of these only one belongs to L and another one
belongs to D as can be seen in the columns ‘L?’ and ‘D?’.
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Figure 10: Representations of λx. (λy. yx)x in LD and in Quine-Bourbaki notation

The toggle function 〈X〉 is global in the sense that it toggles all the k
abstraction nodes in L in one shot. It is also possible to define local toggle
functions which toggle only a specified abstraction node in L. In the table
above, we showed the effects of these local toggle functions 〈X〉x (toggles the
node which corresponds to the binding node x in K) and 〈X〉y (toggles the
y node) as well as the global toggle function 〈X〉. Since each local toggle
affects only one binding node, in case of K, the global toggle can be realized
by composing the two local toggle functions in any order. Namely, we have

〈X〉 = 〈〈X〉x〉y = 〈〈X〉y〉x

as can be seen in the rightmost three columns.
We show graphical representations of these expressions in Fig. 10. In the

center of the figure we put the picture of the representation of K which is
obtained by the method first introduced by Quine [16] and later by Bour-
baki [3]. The central picture is obtained from K by replacing the binding
occurrences of parameters with white circles and the bound occurrences with
black circles and at the same time connecting the corresponding bind/bound
circles by the three lines shown in the figure. Quine calls these lines bonds.
It is intuitively clear that this method always gives a correct canonical rep-
resentation of any raw lambda term. But, the problem with this approach is
the difficulty of giving a formal inductive definition of the representations.
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The four pictures surrounding the central picture are graphical represen-
tations of the four expressions shown in the table. In these pictures, unlike
bonds in the Quine-Bourbaki notation, each bond has a direction either from
a binding node to a bound node (left to right) or from a bound node to a
binding node (right to left). The direction of a bond shows which of mask or
bind is used to construct the abstract which correspond to the binding node
of the bond. Note that each black circle corresponds to a box in case of mask
and to an index in case of bind. The figure also shows the commutation of
the two local toggle functions 〈X〉x and 〈X〉y.

5.2. Bijective correspondence between L and D

In this subsection, we will show that there is a natural bijective corre-
spondence between L and D which respects substitution.

We can obtain the following theorem as a corollary to Prop. 18.{3, 4, 9}.

Theorem 20 (Bijections between Li and Di).

1. toggle restricted to Li is a bijection from Li to Di.

2. toggle restricted to Di is a bijection from Di to Li.

By this theorem we see that L and D are bijectively related by the toggle
function. We will now see moreover that L and D respect the substitution op-
eration with each other. In order to show this, we first define the substitution
function on SD as follows.

Definition 14 (Substitution on SD).

y{x\X} :=

{
X if x = y,
y if x 6= y.

2{x\X} := 2.

(Y Z){x\X} := (Y {x\X} Z{x\X}).
(m\Y ){x\X} := m\(Y {x\X}).

i{x\X} := i.

[Y ]{x\X} := [Y {x\X}].

Remark 3. In section 3 we defined substitution (Defn. 4) in terms of the
instantiation operation which, in turn, is defined in terms of the hole filling
operation. Here, we define substitution directly by structural recursion. We
take this approach since (1) substitution defined here restricted to L is the
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same as substitution defined in Defn. 4 thanks to the first four equations
of Prop. 1 and (2) substitution defined here restricted to D is the same as
substitution defined in Figure 2 of Aydemir et al. [1].

Lemma 21 (Properties of substitution).

1. X ∈ LD, Y ∈ LDi,m | Y =⇒ Y {x\X}km = Y k
m{x\X}.

2. X ∈ LD, Y ∈ LDi+1, k ≤ i =⇒ Y {x\X}k = Yk.

3. X ∈ LD, Y ∈ LDi+1, k ≤ i =⇒ Y {x\X}k = Y k{x\X}.

Proof. By induction on Y . We will deal only with interesting cases.
Proof of 1. The case where Y = n\Z. We show the conclusion by

assuming that Y ∈ LDi and m | Y . In this case we have n\Z ∈ LDi, namely,
Z ∈ LDi and n | Z. Also, since m | Y , we have m | Z and n ⊥ m. We
have to show (n\Z){x\X}km = (n\Z)km{x\X}, or equivalently, Z{x\X}km =
Zk
m{x\X}. We can show this by IH.

Proof of 2 and proof of 3 are easy.

Using the above lemma, we can prove the following proposition.

Proposition 22 (Toggle preserves substitution).

X ∈ LD, Y ∈ LDi =⇒ 〈Y {x\X}〉 = 〈Y 〉{x\〈X〉}.

Proof. Induction on Y .

• The case where Y is n\Z. In this case we have n\Z ∈ LDi, namely,
Z ∈ LDi and n|Z. We have to show 〈(n\Z){x\X}〉 = 〈n\Z〉{x\〈X〉},
or equivalently, 〈Z{x\X}〉0n = 〈Z〉0n{x\〈X〉}. We can show this as
follows.

〈Z{x\X}〉0n = 〈Z〉{x\〈X〉}0n by IH

= 〈Z〉0n{x\〈X〉} by Lemma 21.1, Prop. 19.{1,2}

• The case where Y is [Z]. We have to show 〈[Z]{x\X}〉 = 〈[Z]〉{x\〈X〉},
or equivalently,

(1) 〈Z{x\X}〉0 = 〈Z〉0 and (2) 〈Z{x\X}〉0 = 〈Z〉0{x\〈X〉}.
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We have (1) as follows.

〈Z{x\X}〉0 = 〈Z〉{x\〈X〉}0 by IH

= 〈Z〉0 by Lemma. 21.2

We have (2) as follows.

〈Z{x\X}〉0 = 〈Z〉{x\〈X〉}0 by IH

= 〈Z〉0{x\〈X〉} by Lemma. 21.3

As a special case of this proposition, we have the following theorem.

Theorem 23 (Toggle preserves substitution on D and L).

1. X ∈ D, Y ∈ D =⇒ 〈Y {x\X}〉 = 〈Y 〉{x\〈X〉} ∈ L.

2. X ∈ L, Y ∈ L =⇒ 〈Y {x\X}〉 = 〈Y 〉{x\〈X〉} ∈ D.

Combining Thm. 23.1 with Thm. 20.2 we see that L correctly represents
D respecting substitution.

5.3. Commutation of toggle and β-conversion

Apart from substitution for parameters in L and in D we can also consider
the respective β-conversion rules, βL and βD. It turns out that toggle com-
mutes with β-conversion on either side. First we need to define instantiation
on SD, to be able to even formulate βD.

Definition 15 (Instantiation on SD).

XOjY := X for X = x or X = 2.

(X1 X2)OjY := (X1OjY X2OjY ).

(m\X)OjY := XOjY.

iOjY :=


i if i < j

Y if i = j

i− 1 if i > j.

[X]OjY := [XOj+1Y ].

Clearly we need an index shift here when we move under a bind. We defined
this operation on the entire SD structure, but will only use it on the D-part.

We first show that commutation holds when we start with a βD-redex.
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(〈X〉0\〈X〉0)〈Y 〉 [X]Y

〈X〉0〈X〉0 [〈Y 〉] = 〈XO0Y 〉 XO0Y

βL

toggle

βD

toggle

For the proof we need an iteration ItSkel of the skeleton function

ItSkel0(X) := X,

ItSkeli+1(X) := ItSkeli(X
i)

and a lemma

〈ItSkelj(XOjY )〉 = 〈ItSkelj+1(X)〉Xj
[〈Y 〉],

assuming md(X) = md(Y ) = 0 and that Y ∈ LD.
Next we show that toggle and β commute when we start with a βL-redex,

i.e., from (m\X)Y . We need to assume X, Y ∈ LD with bd(X) = bd(Y ) = 0,
and m |X.

(m\X)Y [〈X〉0m]〈Y 〉

Xm[Y ] 〈Xm[Y ]〉 = 〈X〉0mO0〈Y 〉

βL

toggle

toggle

βD

This will follow from the previous commutative diagram when we instantiate
it with X 7→ 〈X〉0m and Y 7→ 〈Y 〉. Hence we have

〈〈X〉0m〉0〈〈X〉0m〉0 [〈〈Y 〉〉] = 〈〈X〉0mO0〈Y 〉〉

Now 〈〈X〉0m〉0 is the same as 〈X〉 by Lemma 18.13, since X ∈ LD and m |X
by assumption. Also 〈〈X〉0m〉0 is the same as m by Lemma 18.12, for the
same reasons. Finally 〈〈Y 〉〉 is the same as Y by Lemma 19.9. Therefore we
have

〈X〉m[Y ] = 〈〈X〉0mO0〈Y 〉〉.
One application of toggle gives the claim.
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AM →βη A OM
β

(01\M2)→βη M
η

M →βη M
′

MN →βη M
′N

appl
N →βη N

′

MN →βη MN ′ appr

M →βη N

lam(x,M)→βη lam(x,N)
ξ

Figure 11: Definition of the βη-reduction rules

6. The Lβη calculus

In this section we develop the λβη calculus, Lβη, within L. The Lβη-
reduction rules are shown in Fig. 11. Using the isomorphism between L and
nominal lambda calculus in Isabelle/HOL outlined in Sect. 4.5, it is easy to
show that our Lβη-reduction agrees with reduction defined on nominal terms.

An interesting thing about these rules is the name-free presentation of
rules β and η. The informal η-rule

x 6∈ FP(M)

λx. (M x)→βη M
η

requires the freshness side condition x 6∈ FP(M). This is not a question of α-
equivalence, and even canonical representations, such as de Bruijn nameless
terms and Sato canonical terms [15] require this side condition in the η-rule.
We avoid the side condition in the map representation since we have

lam(x,Mx) = 01\M2 if x 6∈ FP(M).

Note that in the informal η-rule, parameter x only occurs bound: the η-
rule is about abstracts, and has nothing to do with parameters. Our rule,
parametric in M but not mentioning a name, captures this observation.

In the informal β-rule [2]

(λx.M)K→βη M{x\K}
β
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schematic parameter x is bound on the left hand side, and free on the right
hand side of the rule. Thus, this rule must be read up to α-equivalence, and
we must choose a concrete α-representative of λx.M to apply it. With the
map representation we are able to write rule β in name-free form as shown
in Fig. 11.

6.1. A fly in the ointment

It is only luck that we can write rule β in name-free form (because the
left hand and right hand sides of the rule work on the same abstraction, A
in Fig. 11). Many rules that we want to write are not obviously expressible
in name-free form, e.g. rule ξ in Fig. 11. (We do not exclude that new ideas
may solve this problem.) This raises two questions: why are some rules not
expressible in name-free form? And why does it matter?

6.1.1. Why don’t we write rule ξ in name-free form?

Perhaps you conjecture that the following could be used for rule ξ:

M →βη N

m\M →βη m\N
. (2)

Unfortunately not, as the following instance of this putative rule ξ shows:

((1\2) 2)→βη 2

(0 1)\((1\2) 2)→βη (0 1)\2
.

In the conclusion of this “rule”, (0 1)\2 is not even a well-formed L-term.
(The correct RHS is 1\2.)

For named λ-terms the operation of substitution leaves the free names
(the indicators of positions which may still be bound) unchanged. Similarly
with de Bruijn nameless terms, substitution leaves the free indexes (as viewed
from outside the term) unchanged. However with the L representation, the
indicators of positions which may still be bound do not occur in the terms
themselves; they are the maps that divide the term (maps dividing the base
term, combined in a complicated but functional way with the maps dividing
the term being implanted). Further since the shapes of terms change under
substitution, it is clear that the set of indicators of positions which may still
be bound is not preserved by substitution. Thus it is impossible to have the
same map abstracted on both sides of the conclusion of a correct ξ rule, as
in equation (2). The excursion through names in rule ξ of Fig. 11 serves to
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compute the appropriate maps indicating the positions to be bound in the
conclusion of the rule. (Recall from Defn. 4 that lam is a defined function
that computes an L-term.) If one wants a ξ rule with a name-free conclusion
it is the following:

x ] (M,N) Mm[x]→βη Nn[x]

m\M →βη n\N
. (3)

Similar to rule ξ of Fig. 11, this rule mentions a free parameter in the premise.
This rule is also reminiscent of the representations discussed in [12, 1, 20].

It is not only rule ξ that poses this problem for the map representation.
For another naturally occurring example that appears to require use of pa-
rameters, consider rule β of Tait/Martin-Löf parallel reduction.

6.1.2. Why does it matter that rule ξ uses names?

One of the goals of our map representation is to avoid the need to reason
by equivariance and permutation of names that seems necessary in represen-
tations using names [12, 1, 20, 23]. In Lemma 2 we showed that the usual
substitution lemma of λ-calculus can be proved in our notation by term in-
duction, without the usual α-converting to fresh names. Analogously for
→βη, try to prove

M1→βη M2 =⇒ M1{x\N}→βη M2{x\N}

by rule induction on M1→βη M2. In the case for rule ξ, where M1 = λy. P
you will need to α-convert M1 so that y ] (x,N), allowing the substitution to
go under the binder so the induction hypothesis can be used.

The problem with rule ξ is that there are (infinitely) many instances of
the rule with the same conclusion. E.g. the two instances

(1\2)x→βη x

lam(x, (1\2)x)→βη lam(x, x)

(1\2)y→βη y

lam(y, (1\2)y)→βη lam(y, y)

have equal conclusions but distinct premises. When we say “by rule induc-
tion on M1→βη M2” we are destructing a hypothetical derivation, and this
derivation contains some α-variant of λy. P in the conclusion of (hypothetical
uses of) rule ξ and an instance of P with free y in the premise. But we don’t
know (and cannot specify) which α-variant of λy. P occurs; it is not visible
in the judgement M1→βηM2 whose derivation we are destructing. The usual
solution is to reason locally by equivariance, or to package such reasoning in
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a derivable induction rule [12, 1, 20, 23]. If we could write rule ξ in name-free
form, we could avoid this digression in reasoning.

So is there a name free rule ξ for our L representation (and similarly, name
free definitions for other relations on L, such as Tait/Martin-Löf parallel
reduction)? We conjecture this is possible, and leave it for future work.
Just as the name-free notion of hole filling led to a proof of the substitution
lemma without choosing fresh names (Lemma 2), we hope that a name-
free definition of β-reduction would lead to proofs by rule induction and
equational reasoning only.

7. Conclusion

We have presented a canonical, name-free representation of lambda terms
and proved it to be an adequate representation with respect to both the
nominal logic representation and pure de Bruijn representation. These proofs
are formalized in Isabelle/HOL and Minlog respectively. We have used our
representation as a lens to examine both raw lambda syntax and the well-
known de Bruijn nameless representation of binding.

Among the technical results of our work is a proof of the substitution
lemma of lambda calculus (Lemma 2) that proceeds by induction and pure
equational reasoning, without any renaming. We have also given a definition
of α-equivalence for raw λ syntax that can be decided without any renaming.

We present a definition of βη-reduction for our representation (not quite
name free), and discuss how it might be made name free by future work, and
what that might buy.
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Appendix A. Proofs

Appendix A.1. Proofs in section 4

Proof of Lemma 8. By induction on the size of K and L, followed by case
analysis on the derivation of Kx//z =α L

y//z. Consider the case that the
last rule of the derivation is the lam-rule (other cases are easy); so let
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lam(z1, K)x//z =α lam(z2, L)y//z be the conclusion of the last rule. We have
2× 2 cases: (x = z1 or x 6= z1) and (y = z2 or y 6= z2).

In the case x 6= z1 and y 6= z2, the last rule has the following form.

(Kx//z)z1 = (Ly//z)z2 (Kx//z)z1 =α (Ly//z)z2

lam(z1, K
x//z) =α lam(z2, L

y//z)

By the second premise and Lemma 7.1, we have (Kz1)x//z =α (Lz2)y//z. By
IH, we have (Kz1)x =α (Lz2)y and (Kz1)x = (Lz2)y. So, by Lemma 5.1, we
have (Kx)z1 =α (Ly)z2 . On the other hand, we have (Kx)z1 = (Ly)z2 by the
first premise and Lemma 7.2. Therefore, we have lam(z1, K

x) =α lam(z2, L
y),

that is, lam(z1, K)x =α lam(z2, L)y. We also have lam(z1, K)x = lam(z2, L)y
by (Kz1)x = (Lz2)y and Lemma 5.2.

In the case x = z1 and y 6= z2, the last rule has the following form.

(Kx//z)z = (Ly//z)z2 (Kx//z)z =α (Ly//z)z2

lam(z,Kx//z) =α lam(z2, L
y//z)

By the second premise and Lemma 7.{1,3}, we have (Kx)x//z =α (Lz2)y//z. By
IH, we have (Kx)x =α (Lz2)y and (Kx)x = (Lz2)y. So, by Lemma 5.{1,3},
we have Kx =α (Ly)z2 . On the other hand, we have Kx = (Ly)z2 by the first
premise and Lemma 7.{2,3}. Therefore, we have lam(x,K) =α lam(z2, L

y),
that is, lam(x,K)x=α lam(z2, L)y. We also have lam(x,K)x = 0 = lam(z2, L)y
by (Kx)x = (Lz2)y and Lemma 5.{2,3}.

Other cases are similar.

Proof of Lemma 10. By induction on the size of K and L, followed by case
analysis on the derivation of Kx ∼ Ly.
(1) par-rule: Let Kx∼Ly be the conclusion of the rule. In this case, we have
Kx = Ly = z′ for some parameter z′. Then, we have K = z′, L = z′, x 6= z′,
and y 6= z′. We also have z 6= x and z 6= y, so we have Kx//z ∼ z′ ∼ Ly//z.
(2) box-rule: Let Kx∼Ly be the conclusion of the rule. In this case, we have
Kx = Ly = 2. Then, we have (K = x or K = 2) and (L = y or L = 2).
Since Kx = Ly, we have (K = x and L = y) or (K = 2 and L = 2). In both
cases, we have Kx//z ∼ Ly//z.
(3) app-rule: Easy.
(4) lam-rule: Let lam(z1, K)x∼ lam(z2, L)y be the conclusion of the rule. We
have 2× 2 cases: (x = z1 or x 6= z1) and (y = z2 or y 6= z2).
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In the case x 6= z1 and y 6= z2, the last rule has the following form.

(Kx)z1//z
′
∼ (Ly)z2//z

′
z′ 6∈ {z1, z2} ∪ P(Kx) ∪ P(Ly)

lam(z1, K
x)∼ lam(z2, L

y)

By equivariance of ∼, we can take z′ so that z′ satisfies z′ 6∈ {z, x, y} and the
above condition since parameters are infinite. By the premise and Lemma 7.1,
we have (Kz1//z′)x ∼ (Lz2//z

′
)y. On the other hand, we have Kx = Ly from

lam(z1, K)x = lam(z2, L)y, so we have (Kz1//z′)x = (Lz2//z
′
)y by Lemma 5.2

and 7.2. Therefore, by IH, we have (Kz1//z′)
x//z ∼ (Lz2//z

′
)
y//z

. So, by the

property of swap, we have (Kx//z)
z1//z′ ∼ (Ly//z)

z2//z′
. Therefore, we have

lam(z1, K
x//z)∼ lam(z2, L

y//z), that is, lam(z1, K)x//z ∼ lam(z2, L)y//z.
In the case x = z1 and y 6= z2, the last rule has the following form.

Kx//z′ ∼ (Ly)z2//z
′
z′ 6∈ {x, z2} ∪ P(K) ∪ P(Ly)

lam(x,K)∼ lam(z2, L
y)

By equivariance of ∼, we can take z′ so that z′ satisfies z′ 6∈ {z, y} and the
above condition since parameters are infinite. By the premise and Lemma 7.{1,4},
we have (Kx//z′)x ∼ (Lz2//z

′
)y. On the other hand, we have 0 = Ly from

lam(x,K)x = lam(z2, L)y, so we have (Kx//z′)x = 0 = (Lz2//z
′
)y by Lemma 5.2

and 7.{2,4}. Therefore, by IH, we have (Kx//z′)
x//z ∼ (Lz2//z

′
)
y//z

. So, by

the property of swap, we have (Kx//z)
z//z′ ∼ (Ly//z)

z2//z′
. Therefore, we have

lam(z,Kx//z)∼ lam(z2, L
y//z), that is, lam(x,K)x//z ∼ lam(z2, L)y//z.

Other cases are similar.

Proof of Lemma 12. By induction on |K|. The crucial case is lam-case:
Given lam(z,K) and y 6∈ FP(lam(z,K)), the goal is to find L0 such that
lam(x, lam(z,K)) =α lam(y, L0). We have two cases.
(1) y 6= z: In this case, we have y 6∈ FP(K). By IH, there exists L such
that lam(x,K) =α lam(y, L), that is, Kx =α L

y and Kx = Ly. We have two
subcases.

(1.1) x 6= z: By Lemma 6.2, we have lam(z,Kx) =α lam(z, Ly). So, we
have lam(z,K)x = lam(z,Kx) =α lam(z, Ly) = lam(z, L)y and lam(z,K)x =
Kx = Ly = lam(z, L)y. Therefore, lam(x, lam(z,K)) =α lam(y, lam(z, L)).

(1.2) x = z: We have lam(x,K)x = lam(x,K) =α lam(y, L) = lam(y, L)y

and lam(x,K)x = 0 = lam(y, L)y. Therefore, lam(x, lam(z,K))=αlam(y, lam(y, L)).
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(2) y = z: We can take z′ such that z′ 6∈ FP(K) ∪ {x, y}. By IH, there
exists K ′ such that lam(z,K) =α lam(z′, K ′). Then, |K| = |K ′| and we
have y 6∈ FP(K ′) from FP(K) − {z} = FP(K ′) − {z′}. Therefore, by
IH, there exists L such that lam(x,K ′) =α lam(y, L). Similarly to (1.1),
we have lam(x, lam(z′, K ′)) =α lam(y, lam(z′, L)). Since lam(x, lam(z,K)) =α

lam(x, lam(z′, K ′)) by Lemma 6.2, we have lam(x, lam(z,K))=αlam(y, lam(z′, L)).

Appendix A.2. Proofs in section 5

Proof of Proposition 18. By induction on X. We discuss only interesting
cases, and omit easy proofs of 1, 3, 4 and 7 –20.

Proof of 2. The case where X is n\Y . We have Y ∈ LDi by assumption
X ∈ LDi. We also have m|Y , n|Y , and m⊥n since m|n\Y . By IH, we have
Y j
m ∈ LDi+1. We also have n | Y j

m by 1. Therefore, we have n\Y j
m ∈ LDi+1,

that is, (n\Y )jm ∈ LDi+1.

Proof of 5.

• The case X is n\Y . By computing (n\Y )j, our goal becomes to show

(1) Y j ∈ LDi and (2) n | Y j.

We can show (1) by IH, and (2) by Prop. 18.4.

• The case X is k. By computing kj, our goal becomes to show

k ∈ LDi if k < j,

2 ∈ LDi if k = j

and

k − 1 ∈ LDi if j < k

from the assumptions k < i+ 1 and j < i+ 1; which is easily achieved.

Proof of 6.

• The case X is n\Y ∈ LDi, that is, Y ∈ LDi and n | Y . We have to
show that (n\Y )j | (n\Y )

j, namely, Yj | n\Y
j, which is equivalent to

(1) Yj | Y
j, (2) m | Y j and (3) Y j ⊥ n.

We have (1) by IH. (2) follows from Prop. 18.4. (3) follows from
Lemma 17.2.
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• The case X is k, where we have to show kj | k
j. By computing kj and

kj, the goal becomes

0 | k if k < j,

1 |2 if k = j

and

0 | k − 1 if k > j,

which is easily achieved.

Proof of Proposition 19. By induction on X. We give outline of proofs of
interesting cases here.

Proof of 1 and 2. We prove them simultaneously by showing that:

X ∈ LDi =⇒ 〈X〉 ∈ LDi and ∀m. (m |X =⇒ m | 〈X〉).

• The case where X = n\Y ∈ LDi. In this case we have n | Y , Y ∈ LDi

and, by IH, 〈Y 〉 ∈ LDi and ∀m. (m | Y =⇒ m | 〈Y 〉), in particular,
n | 〈Y 〉. We have to show 〈n\Y 〉 ∈ LDi and ∀m. (m | n\Y =⇒ m |

〈n\Y 〉), which are equivalent to:

(1) 〈Y 〉0n ∈ LDi+1 and (2) ∀m. (m | Y, n | Y,m⊥ n =⇒ m | 〈Y 〉0n).

We can obtain (1) by applying Prop. 18.2, and (2) by applying Prop.
18.1. Note that the proof of (1) shows the necessity of proving Prop.
19.1 and Prop. 19.2 simultaneously.

• The case where X = [Y ] ∈ LDi. In this case we have Y ∈ LDi+1 and,
by IH, 〈Y 〉 ∈ LDi+1 and ∀m. (m | Y =⇒ m | 〈Y 〉), We have to show
〈[Y ]〉 ∈ LDi and ∀m. (m | [Y ] =⇒ m | 〈[Y ]〉), which are equivalent
to:

(1) 〈Y 〉0 ∈ LDi,

(2) 〈Y 〉0 | 〈Y 〉0

and

(3) ∀m. (m | Y =⇒ m | 〈Y 〉0 and 〈Y 〉0 | 〈Y 〉0 and m⊥ 〈Y 〉0).

We have (1) by Prop. 18.5, (2) by Prop. 18.6 and (3) by Prop. 18.4,
Prop. 18.6 and Prop. 18.2.
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Proof of 3.

• The case where X = n\Y ∈ LDi. In this case we have Y ∈ LDi,
n | Y and, by IH, bd(〈Y 〉) = md(Y ). We have to show bd(〈n\Y 〉) =
md(n\Y ), which is equivalent to

bd(〈Y 〉0n) = md(Y ).

We have this by Prop. 18.19, Prop. 19.2 and IH.

• The case where X = [Y ] ∈ LDi. In this case we have Y ∈ LDi+1 and,
by IH, bd(〈Y 〉) = md(Y ). We have to show bd(〈[Y ]〉) = md([Y ]).
which is equivalent to

bd(〈Y 〉0) = md(Y ).

We have this by Prop. 18.20 and IH.

Proof of 4 is similar to that of 3.
Proof of 5 can be obtained by using Prop. 19.3 and Prop. 19.4.
Proof of 6.

• The case where X = n\Y ∈ LDi. In this case we have Y ∈ LDi, m | Y ,
n | Y , m⊥ n. We have to show 〈m\Y j

n 〉 = 〈m\Y 〉jn, or equivalently,

〈Y j
m〉0n = (〈Y 〉0n)j+1

m .

We have this as follows.

〈Y j
m〉0n = (〈Y 〉jm)0n by IH

= (〈Y 〉0n)j+1
m by Prop. 18.7, using Prop. 19.{1, 2}.

• The case where X = [Y ] ∈ LDi and m | [Y ]. In this case, we have
Y ∈ LDi+1 and also m| 〈[Y ]〉 by Prop. 19.2, and hence have 〈Y 〉0⊥m
by Prop. 18.3. We have to show 〈[Y ]jm〉 = 〈[Y ]〉jm, which is equivalent
to

(1) 〈Y j+1
m 〉0 = 〈Y 〉0 and (2) 〈Y j+1

m 〉0 = (〈Y 〉0)jm.

We have (1) by Prop. 18.8 using Prop. 19.{1, 2}. We have (2) by
Prop. 18.10 using Prop. 19.{1, 2}.
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Proof of 7.

• The case where X = n\Y ∈ LDi. In this case we have Y ∈ LDi and
n | Y . We have to show 〈n\Y 〉j = n\Yj, or equivalently,

(〈Y 〉0n)j+1 = Yj.

We have this as follows.

(〈Y 〉0n)j+1 = 〈Y 〉j by Prop. 18.8 using Prop. 19.{1, 2}
= Yj by IH.

• The case where X = [Y ] ∈ LDi. In this case, we have Y ∈ LDi+1. We
have to show 〈[Y ]〉j = [Y ]j, or equivalently,

〈Y 〉0j = Yj+1.

We have this as follows.

〈Y 〉0j = 〈Y 〉j+1 by Prop. 18.16 using Prop. 19.1.

= Yj+1. by IH.

Proof of 8.

• The case where X = n\Y ∈ LDi. In this case we have Y ∈ LDi and
n | Y . We have to show 〈(n\Y )j〉 = 〈n\Y 〉j, or equivalently,

〈Y j〉0n = (〈Y 〉0n)j+1.

We have this as follows.

〈Y j〉0n = (〈Y 〉j)0n by IH

= (〈Y 〉0n)j+1 by Prop. 18.11 using Prop. 19.{1, 2}.

• The case where X = [Y ] ∈ LDi. In this case, we have Y ∈ LDi+1. We
have to show 〈[Y ]j〉 = 〈[Y ]〉j, or equivalently,

(1) 〈Y j+1〉0 = 〈Y 〉0 and (2) 〈Y j+1〉0 = (〈Y 〉0)j.
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We have (1) as follows.

〈Y j+1〉0 = (〈Y 〉j+1)0 by IH

= 〈Y 〉0 by Prop. 18.17 using Prop. 19.1.

We have (2) as follows.

〈Y j+1〉0 = (〈Y 〉j+1)0 by IH

= (〈Y 〉0)j by Prop. 18.18 using Prop. 19.1.

Proof of 9.

• The case where X = n\Y ∈ LDi. In this case we have Y ∈ LDi and
n | Y . We have to show 〈〈n\Y 〉〉 = n\Y , or equivalently,

(1) 〈〈Y 〉0n〉0 = n and (2) 〈〈Y 〉0n〉0 = Y.

We have (1) as follows.

〈〈Y 〉0n〉0 = (〈〈Y 〉〉0n)0 by Prop. 18.6 using Prop. 19.{1, 2}
= (Y 0

n )0 by IH

= n by Prop. 18.12

We have (2) as follows.

〈〈Y 〉0n〉0 = (〈〈Y 〉〉0n)0 by Prop. 18.6 using Prop. 19.{1, 2}
= (Y 0

n )0 by IH

= Y by Prop. 18.13.

• The case where X = [Y ] ∈ LDi. In this case, we have Y ∈ LDi+1. We
have to show 〈〈[Y ]〉〉 = [Y ], or equivalently

〈〈Y 〉0〉0〈Y 〉0 = Y.

We have this as follows

〈〈Y 〉0〉0〈Y 〉0 = 〈〈Y 〉0〉0Y0 by Prop. 18.7

= (〈〈Y 〉〉0)0Y0 by Prop. 18.8 using Prop. 19.1

= (Y 0)0Y0 by IH

= Y by Prop. 18.14.
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