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Abstract. Higman’s Lemma is a fascinating result in infinite combi-
natorics, with manyfold applications in logic and computer science. It
has been proven several times using different formulations and methods.
The aim of this paper is to look at Higman’s Lemma from a compu-
tational and comparative point of view. We give a proof of Higman’s
Lemma that uses the same combinatorial idea as Nash-Williams’ in-
direct proof using the so-called minimal bad sequence argument, but
which is constructive. For the case of a two letter alphabet such a proof
was given by Coquand. Using more flexible structures, we present a
proof that works for an arbitrary well-quasiordered alphabet. We re-
port on a formalization of this proof in the proof assistant Minlog, and
discuss machine extracted terms (in an extension of Gödel’s system T )
expressing its computational content.
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1. Introduction

Without exaggeration it can be said that Higman’s Lemma [15] is one
of the most often proven theorems in Mathematical Logic and Theoretical
Computer Science. The fascination of this theorem is due to the fact that it
has various formulations and is of interest in different areas such Proof the-
ory, Constructive Mathematics, Reverse Mathematics, and Term rewriting,
as we will briefly discuss further below.

Nash-Williams [19] gave a very concise classical proof using the so-called
minimal bad sequence argument. In the following we briefly recall well-
quasiorderings and sketch Nash-Williams’ proof.

Definition. A binary relation � on a set A is a well-quasiorder (wqo)
if (i) it is transitive and (ii) every infinite sequence in A is “good”, i.e.,
∀(ai)i<ω

∃i,j(i < j ∧ ai � aj).
Let A∗ denote the set of finite sequences (“words”) with elements in A.

We call a word [a1, . . . , an] embeddable (�∗) in [b1, . . . , bm] if there exists a
strictly increasing map f : {1, . . . , n} → {1, . . . ,m} such that ai � bf(i) for
all i ∈ {1, . . . n}.

Now Higman’s Lemma says

If (A,�) is a well-quasiorder, then so is (A∗,�∗).
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Nash-Williams’ proof proceeds as follows. That a bad sequence of words,
i.e., a sequence that is not good, is impossible is basically a consequence of
two facts: (a) for each bad sequence exists a bad sequence with is smaller in
a lexicographical sense, and (b), if there exists a bad sequence, then exists
also a minimal bad sequence with respect to this lexicographical order. We
give the proof in more detail:

(1) In order to show “wqo (A,�) implies wqo (A∗,�∗)” assume for con-
tradiction that there is a bad sequence of words in A∗.

(2) Among all infinite bad sequences of words we choose (using classical
dependent choice) a minimal bad sequence, i.e., a sequence (wi)i<ω,
such that, for all n, w0, . . . , wn starts an infinite bad sequence, but
w0, . . . , wn−1, v, where v is a proper initial segment of wn, does not.

(3) Since for all i wi 6= [], let wi = ai∗vi. By Ramsey’s theorem and the
fact that our alphabet A is a well-quasiorder, there exists an infinite
subsequence aκ0 � aκ1 � · · · of the sequence (ai)i<ω. This also
determines a corresponding sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . . .

(4) The sequence w0, . . . , wκ0−1, vκ0 , vκ1 , . . . must be bad (otherwise also
(wi)i<ω would be good), but this contradicts the minimality in (2).

The computational content of Nash-Williams’ proof was first investigated
by Murthy [17], by applying Friedman’s A-translation in the interactive the-
orem prover NuPRL to the classical proof. Murthy represented functions
as relations to eliminate choice, and used second order classical logic. How-
ever, due to the size of the translated proof and program, the resulting
program could only be run on trivial input. In [29], the second author for-
malized Nash-Williams’ proof in the proof assistant Minlog, by applying a
refined version of the A-translation and, contrary to Murthy, not eliminating
the axiom of classical dependent choice, but rather adding computational
content to it using bar recursion. This resulted in a considerable smaller
extracted program, but still with infeasible run-times due to the eager eva-
luation strategy of Minlog’s term language. Reasonable results have been
only obtained recently thanks to a Minlog extension which translates ex-
tracted terms to Haskell. Other formalizations of the classical proof include
Herbelin’s formalization of Murthy’s A-translated proof in Coq [14] and
Sternagel’s formalization of Nash-Williams’ proof in Isabelle [30] which also
provides a proof of Kruskal’s theorem. However, [30] does not include the
extraction of a program. Recently, Powell [21] applied Gödel’s Dialectica
Interpretation to this proof. The interpretation yields a program, but no
formalization has been provided so far.

In this paper, we aim at a constructive proof (without choice) which has
the same underlying construction as Nash-Williams’ proof but allows us
to directly read off the program. For a {0, 1}-alphabet such a proof was
given by Coquand and Fridlender [6, 7]. Here we provide a proof and a
formalization for full Higman’s Lemma, and also discuss how this proof is
related to other constructive proofs. The paper is organized as follows: We
give a constructive reformulation of Nash-Williams’ proof in Section 2 and
comment on its formalization in Section 3. In Section 4 we spell out the
computational content of some of the proofs. Each time it comes in the
form of a term (in an extension T+ of Gödels T ) machine extracted from
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a formalization of the respective proof. We give an overview on existing
formalizations of the Coquand/Fridlender proof at the end of Section 2 and
add a comparison with other constructive proofs in Section 5.

Acknowledgement. We would like to thank Daniel Fridlender and Iosif Pe-
trakis for helpful contributions and comments.

2. A constructive reformulation of Nash-Williams’ proof

The objective of this section is to present a constructive proof of Higman’s
Lemma that uses the same combinatorial idea as Nash-Williams’ classical
proof and generalizes the proof by Coquand and Fridlender. Such a proof
(without formalization) has been given in [27]. However, if one is interested
in the computational content one has to reformulate this proof and to change
it at various places to make the computational content visible (see also the
remark at the end of this section). We use an inductive characterization of a
binary relation satisfying condition (ii) in the definition of a well-quasiorder;
such relations have been called “almost full” in [33]. Our characterization
is via a “bar” predicate which comes in two variants, one for the alphabet
and one for words, see below for a definition. Thus, the statement we are
going to prove is

BarA�[ ]→ BarW�[ ].

Throughout the whole paper we assume � to be a binary relation on a set
A which is decidable in the sense that it is given by a binary total function
into the booleans; transitivity will not be needed. It suffices to let A be the
set of natural numbers. Most of our notions will depend on the �-relation.
However, we usually suppress this dependence, since � will be kept fixed
most of the time.

Notation. We use

a, b, . . . for letters, i.e., elements of a A,
as, bs, . . . for finite sequences of letters, i.e., elements of A∗,
v, w, . . . for words, i.e., elements of A∗,
vs,ws, . . . for finite sequences of words, i.e., elements of A∗∗.

Definition (Higman embedding, inductive). The embedding relation �∗ on
A∗ is defined inductively by the following axioms (written as rules):

[ ] �∗ [ ]

v �∗ w
v �∗ a∗w

a � b v �∗ w
a∗v �∗ b∗w

where ∗ denotes the cons operation on lists.

Definition. GoodA as expresses that a finite sequence as of letters is good;
note that finite sequences grow to the left, i.e., a finite sequence is good if
there are two elements such that the one to the left is larger than or equal
to w.r.t. � to the one on the right. A sequence is called bad if it is not good.
Furthermore, we use

Ge∃(a, as) := ∃i<|as|a � (as)i,

Ge∀(a, as) := ∀i<|as|a � (as)i,

Ge∃∀(a,ws) := ∃i<|ws|∀j<|(ws)i|a � (ws)i,j .
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A finite sequence as = [an−1, .., a0] is decreasing if aj � ai whenever j ≥ i.
Further, BSeq as determines the “first” bad subsequence occurring in as:

BSeq [ ] := [ ]

BSeq(a∗as) :=

{
a∗BSeq as if ¬Ge∃(a, as),

BSeq as otherwise.

Definition. We inductively define a set BarA ⊆ A∗ by the following rules:

GoodA as

BarA as

∀a BarA a∗as

BarA as
.

BarWws is defined similarly, using the corresponding GoodWws. How-
ever, since GoodW is a predicate on words, it refers to the embedding rela-
tion �∗ on A∗ rather than � directly.

As in the end we are interested in getting a program that for any se-
quence of words yields witnesses that this sequence is good we also prove
the following.

Proposition (BarWToGoodInit). BarW[] implies that every infinite se-
quence of words has a good initial segment.

Proof. Let f be a variable of type nat=>list nat. We show, more generally,

∀ws,f,n(BarWws → Rev(f̄n) = ws → ∃mGoodW(Rev(f̄m)))

by induction on BarW. The proposition then follows with ws = [].
1. GoodWws. Assume that there are an infinite sequence f and a number

n such that Rev(f̄n) = ws (i.e., [f(n− 1), . . . , f0] = ws). Since ws is good,
we can take m to be n.

2. Using the induction hypothesis

∀w,f,n(Rev(f̄n) = w∗ws → ∃mGoodW(Rev(f̄m)))

with fn, f and n+ 1, we only have to prove Rev(f̄(n+ 1)) = fn∗ws, which
follows from Rev(f̄n) = ws. �

Note that the reverse direction expresses a form of bar induction. How-
ever, for the proof below the present direction suffices.

In the following we want to first highlight the idea behind the constructive
proof. This is best done by showing how the steps (1)-(4) in the proof of
Nash-Williams given in the introduction are dealt with in the inductive
proof.

(1) Prove inductively “BarA [ ]→ BarW[]”.
(2) The minimality argument will be replaced by structural induction

on words.
(3) Given a sequence ws = [wn, . . . , w0] s.t. wi = ai∗vi, we are inter-

ested in all decreasing subsequences [aκl , . . . , aκ0 ] of maximal length
and their corresponding sequences vκl , . . . , vκ0 , wκ0−1, . . . , w0. The
sequences [aκl , . . . , aκ0 ] form a forest. In the proof these sequences
will be computed by the procedure Forest which takes ws as input
and yields a forest labeled by pairs inA∗∗×A∗. In the produced forest
the right-hand components of each node form such a descending sub-
sequence [aκi , . . . , aκ0 ] and the corresponding left-hand component
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consists of the sequence [vκi , . . . , vκ0 , wκ0−1, . . . , w0]. If we extend
the sequence ws to the left by a word a∗v, then in the existing forest
either new nodes, possibly at several places, are inserted, or a new
singleton tree with root node 〈v∗ws, [a]〉 is added. Now the informal
idea of the inductive proof is: if in Forestws new nodes cannot be
inserted infinitely often (without ending up with a good left-hand
component in a node) and if also new trees cannot be added in-
finitely often, then ws can not be extended badly infinitely often.
Formally, this will be captured by the statement:

∀ws(BarW(BSeq(Heads ws))→ BarF(Forestws)→ BarWws).

(4) The first part of item (4) corresponds to GoodWForestToGoodW.

Definition. For a finite sequence ws of words let Heads ws denote the finite
sequence consisting of the starting letters of the non-empty words. We call
a finite sequence ws of words admissible (Adm ws) if each word in ws is
non-empty.

Notation. We use t for elements in T (A∗∗×A∗), i.e., trees labeled by pairs
in A∗∗×A∗, and ts, ss for elements in (T (A∗∗×A∗))∗, i.e., forests. The tree
with root 〈ws, as〉 and list of subtrees ts is written 〈ws, as〉ts. We use the
destructors Left and Right for pairs and the destructors Root and Subtrees
for trees. For better readability we set:

Newtree 〈ws, as〉 := 〈ws, as〉[ ],
Roots [tn−1, . . . , t0] := [Root tn−1, . . . ,Root t0],

Lefts [〈vsn−1, asn−1〉, . . . , 〈vs0, as0〉] := [vsn−1, . . . , vs0],

Rights [〈vsn−1, asn−1〉, . . . , 〈vs0, as0〉] := [asn−1, . . . , as0].

Definition. Let ws ∈ A∗∗ be a sequence of words. Then Forest ws ∈
(T (A∗∗ ×A∗))∗ is recursively defined by

Forest [ ] := [ ],

Forest [ ]∗ws := Forest ws,

Forest(a∗v)∗ws :={
InsertF(Forest ws, v, a) if Ge∃(a,BSeq(Heads ws)),

Newtree 〈v∗ws, [a]〉∗(Forest ws) otherwise

where

InsertF(ts, v, a) := map

λt
 if Ge∀(a,Right (Root t))

InsertT(t, v, a)
t

 ts

and

InsertT(〈vs, as ′〉ts, v, a) :={
〈vs, as ′〉InsertF(ts, v, a) if Ge∃∀(a,Rights(Roots ts))

〈vs, as ′〉(Newtree 〈v∗vs, a∗as ′〉∗ts) otherwise.
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Example. Take as (almost full) relation the natural numbers with ≤. For
better readability we use underlining rather than parentheses to indicate
a list. We will only use one-digit numbers, hence every digit stands for a
natural number. Then Forest[28, 421, 69, 35] is

([8, 421, 69, 35],2)

([21, 5],43) ([9, 5],63)

([5],3)

and Forest[52, 28, 421, 69, 35] is

([2, 8, 421, 69, 35],52)

([8, 421, 69, 35],2)

([2, 21, 5],543)

([21, 5],43) ([9, 5],63)

([5],3)

If we “project” each node to its right-hand-side we obtain

2
43 63

3 and 52
2

543
43 63

3

The leaves of e.g. the final tree are the maximal decreasing subsequences of
the heads [52463] of [52, 28, 421, 69, 35]. Recall that the left-hand-side of each
leaf consists of the sequence [vκi , . . . , vκ0 , wκ0−1, . . . , w0], and its right-hand-
side is the maximal descending subsequence [aκi , . . . , aκ0 ] of [an, . . . , a0]. In
the example the leaf ([2, 8, 421, 69, 35, ], 52, ) has exactly this form: 52 is a
maximal descending subsequence of 52463,, and we have [52, 28, 421, 69, 35] =
[(5 ∗ 2), (2 ∗ 8), 421, 69, 35].

Definition. Let t ∈ T (A∗∗ ×A∗). Then t is a tree with a good leaf (GLT t)
if there is a leaf with a good left side. We inductively define the predicate
BarF ⊆ (T (A∗∗ ×A∗))∗ by the rules

GLT(ts)i
BarFts

∀a,v(Ge∃∀(a,Rights(Roots ts))→ BarF(InsertF(ts, v, a)))

BarFts

Lemma (GoodWProjForestToGoodW, BSeqHeadsEqRhtsRootsForest).

(a) ∀ws,i(i < Lh ws → GLT(Forestws)i → GoodWws).
(b) ∀ws(Adm ws → BSeq(Heads ws) = Heads(Rights(Roots (Forestws)))).

Proof. Both parts follow from the construction of Forest; the proof of (a) is
rather laborious and involves a number of auxiliary notions. However, since
we are mainly interested in computational content and this lemma has none,
we do not give details. �

Lemma (BarFNil, BarFAppd).

(a) BarF[ ].
(b) ∀t,ts(BarF[t]→ BarFts → BarFt∗ts).

Proof. (a) BarF[ ] follows from the second rule of the definition of BarF,
using ex-falso-quodlibet.

(b) This assertion holds since InsertF is defined by a map operation. In
more detail, using # for the concatenation of two lists, we prove

∀ts(BarFts → ∀ss(BarFss → BarFts#ss))
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by induction on BarFts. The base case is straightforward as GLT(ts)i implies
GLT(ts#ss)i. In the step case we have

ih1 : ∀v,a(Ge∃∀(a,Rights(Roots ts))→
∀ss(BarFss → BarF(InsertF(ts, v, a)#ss)))

and need to prove ∀ss(BarFss → BarFts#ss). Fix ss ∈ A∗ and use induction
on BarFss. The base case again is easy since GLT(ss)i implies that there is
j such that GLT(ts#ss)j . In the step case we have

ih2 : ∀v,a(Ge∃∀(a,Rights(Roots ss))→ BarFts#InsertF(ss, v, a))

as well as its “strengthening”

ih2a : ∀v,a(Ge∃∀(a,Rights(Roots ss))→ BarF(InsertF(ss, v, a))).

To show BarFts#ss, assume v, a with Ge∃∀(a,Rights(Roots ts#ss)) and
show BarF(InsertF(ts#ss, v, a)).

Case 1. ¬Ge∃∀(a,Rights(Roots ts)), i.e., new nodes are only added to ss;
ts remains unchanged. Then BarFts#ss ′ follows by ih2.

Case 2. Ge∃∀(a,Rights(Roots ts))). First assume that new nodes are
added to both ts and ss, i.e., Ge∃∀(a,Rights(Roots ss)). In this case we use
with v, a and InsertF(ss, v, i). We still need to show BarF(InsertF(ss, v, a)),
which holds because of ih2a.

Now assume ¬Ge∃∀(a,Rights(Roots ss)), i.e., new nodes are only added
to ts. In this case we apply ih1 with v, a and ss where we use ih2a and the
definition of BarF to obtain BarFss. �

The next lemma tells us that a forest consisting of only one tree, in which
we continue to insert new nodes by InsertF operations, eventually becomes
good.

Lemma (BarFNew). Assume BarA [ ]. Then

∀ws0(BarWws0 → ∀as0BarF[Newtree 〈ws0, as0〉]).

Proof. Ind1(BarW). 1.1. GoodWws0. Then GLT(Newtree 〈ws0, as0〉), i.e.,
BarF[Newtree 〈ws0, as0〉]. 1.2. Assume

ih1 : ∀w,asBarF[Newtree 〈w∗ws0, as〉].
Let as0 ∈ A. Instead of proving BarF[Newtree 〈ws0, as0〉] we show more
generally that this assertion holds for all t with Root t = 〈ws0, as0〉 and (a)
Subtrees t in BarF, and (b) Heads(Rights(Roots(Subtrees t))) in BarA. We
do this by main induction on (b) and side induction on (a), i.e., we prove

∀as(BarA as → ¬GoodA as →
∀ts(BarFts → as = Heads(Rights(Roots ts))→ BarF[〈ws0, as0〉ts])).

Ind2(BarA). 2.1. GoodA as. Then the conclusion follows immediately by
ex-falso-quodlibet with the premise ¬GoodAas. 2.2. BarA as is obtained by
the second rule. We assume as and

ih2 : ∀a,ts(BarFts → a∗as = Heads(Rights(Roots ts))→ BarF[〈ws0, as0〉ts]),

and have to show

∀ts(BarFts → as = Heads(Rights(Roots ts))→ BarF[〈ws0, as0〉ts]).
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Ind3(BarF). 3.1. Fix (ts)i such that GLT(ts)i. By the first clause of BarF,
for any t such that Subtrees t = ts, GLT(ts)i implies BarF[t]. 3.2. Fix ts
with as = Heads(Rights(Roots ts)) and assume the induction hypothesis

ih3 : ∀v,a(Ge∃(a,Heads(Rights(Roots ts)))→
as = Heads(Rights(Roots(InsertF(ts, v, a))))→
BarF[〈ws0, as0〉InsertF(ts, v, a)])

together with its strengthening

ih3a : ∀v,a(Ge∃(a,Heads(Rights(Roots ts)))→ BarF(InsertF(ts, v, a))).

To show BarF[〈ws0, as0〉ts] we use the second clause, i.e., prove

∀v,a(Ge∃(a,Head[as0])→ BarF(InsertF([〈ws0, as0〉ts], v, a))).

We fix v and a with Ge∃(a, as0) and prove the statement by case distinction
on how a relates to as, i.e., whether nodes in the existing subtrees ts need
to be inserted, or whether a new subtree has to be added.

Case 1. Ge∃(a, as). In this case we have

as = Heads(Rights(Roots ts)) = Heads(Rights(Roots(InsertF(ts, v, a))))

and by applying ih3 we obtain BarF[〈ws0, as0〉InsertF(ts, v, a)].
Case 2. ¬Ge∃(a, as). In this case we need to show

BarF[〈ws0, as0〉Newtree 〈w∗ws0, a∗as0〉∗ts]

which can be obtained by applying ih2 to a and Newtree 〈w∗ws0, a∗as0〉∗ts
provided we can show

BarF(Newtree 〈w∗ws0, a∗as0〉∗ts).

This follows from BarFts and BarF[Newtree 〈w∗ws0, a∗as0〉] via BarFAppd.
The former holds by ih3a, the latter follows by ih1.

Now, the proof of the general assertion is completed. Since BarA [ ] by
assumption and BarF[ ] by BarFNil, we may in the assertion put as = [ ]
and ts = [] and end up with BarWws → BarF[Newtree 〈ws0, as0〉]. �

Theorem (Higman). BarA [ ]→ BarW[].

Proof. Assume BarA[ ]. We show more generally

∀as(BarA as →
∀ts(BarFts →
∀ws(Adm ws → BSeq(Heads ws) = as → Forestws = ts → BarWws))).

Ind1(BarA). 1.1. GoodAas. Then, the result follows by ex-falso-quodlibet
since for any ws, BSeq(Heads ws) is bad.

1.2. Let as ∈ A∗ and assume

ih1 : ∀a,ts(BarFts →
∀ws(Adm ws → BSeq(Heads ws) = a∗as → Forestws=ts → BarWws)).

Ind2(BarF). 2.1. GLT(ts)i. Then, by GoodWProjForestToGoodW, for
any ws such that Forestws = ts we obtain GoodWws and hence BarWws.
2.2. Fix ts and assume

ih2 : ∀v,a(Ge∃(a,Heads(Rights(Roots ts)))→
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∀ws(Adm ws → BSeq(Heads ws) = as → Forestws=InsertF(ts, v, a)→
BarWws))

as well as the strengthening of the induction hypothesis

ih2a : ∀v,a(Ge∃(a,Heads(Rights(Roots ts)))→ BarF(InsertF(ts, v, a))).

Assume that we have ws such that BSeq(Heads ws) = as and Forestws =
ts. In order to prove BarWws, we fix a word w and show BarWw∗ws by
induction on the structure of w:

Ind3(w). 3.1. BarW[]∗ws holds since the empty word is embeddable
in any word. 3.2. Assume that we have a word of form a∗w. We show
BarW(a∗w)∗ws by case analysis on whether or not Ge∃(a, as).

Case 1. Ge∃(a, as). In this case, we have

BSeq(Heads((a∗w)∗ws)) = as,

Forest((a∗w)∗ws) = InsertF(ts, w, a).

By BSeqHeadsEqRhtsRootsForest and the definition of Forest(a∗w)∗ws, we
know that at least one node has been inserted into Forestws. In this situ-
ation, we may apply ih2 (to InsertF(ts, w, a) and (a∗w)∗ws) and conclude
BarW(a∗w)∗ws.

Case 2. ¬Ge∃(a, as). Then we have

BSeq(Heads((a∗w)∗ws)) = a∗as,

Forest(a∗w)∗ws) = Newtree 〈w∗ws, [a]〉∗ts.
By ih2a and ih3, we have BarFts and BarWw∗ws. Hence, by BarFNew
applied to w∗ws and [a], we obtain BarF[Newtree 〈w∗ws, [a]〉]. By BarFAppd
we may conclude

BarF[Newtree 〈w∗ws, [a]〉∗ts].

Now we are able to apply ih1 (to a, Newtree 〈w∗ws, [a]〉∗ts and (a∗w)∗ws)
and end up with BarW(a∗w)∗ws. This completes the proof of the general
assertion.

Now, by putting as = [ ], ts = [ ] and ws = [ ] and the fact that BarF[ ]
always holds (by BarFNil) we obtain BarA [ ]→ BarW[]. �

Remark. In order to make the computational content behind the induc-
tive proof visible, it is essential to use a “positive” formulation of a well-
quasiorder, that is, a definition using two rules, as was pointed out, e.g.,
in [10]. Having a proof of BarWws implies that the proof yields the infor-
mation whether BarWws was obtained by the first rule or by the second.
In the first case the result can be read off, in the second we continue with
looking at a proof of BarWw ∗ ws . If we used a definition consisting of only
one rule, i.e., an acc�-notion as in [27], BarWws would correspond to

¬∃i(i < Lh ws → (ws)i embeds into ws)→ BarWw∗ws

where the test whether or not the premise holds results in a brute-force
search; it is not given by the proof itself.

In the next section we discuss a formalization of this proof. For the special
case of {0,1} there are formalizations in Agda (Fridlender), Minlog (Seisen-
berger), Isabelle (Berghofer, [3]) and Coq (Berghofer). The formalization
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of the general case is much more elaborate. Such a formalization has been
given in Coq, by Delobel1. However, its computational content has not
been extracted and investigated. It would suffer from the point made in the
previous remark, and its usage of the Set/Prop distinction (see footnote 2)
in Coq. Here we want to demonstrate how to get hold of the computa-
tional content of a (non-trivial) proof by means of an extracted term, and
that this term clearly represents the computationally relevant aspects of the
underlying proof.

3. Formalization

Why should we formalize the rather clear proof given in the previous sec-
tion? There is of course the obvious reason that we want to be sure that
it is correct. However, in addition we might want to get hold of its compu-
tational content. We will present this content in the form of an “extracted
term”, in (an extension T+ of) Gödel’s T . This term can be applied to
another term representing an infinite sequence of words, and then evaluated
(i.e., normalized). The normal form is a numeral determining a good finite
initial segment of the input sequence.

When formalizing we of course need a theory (or formal system) where this
is done. Now what features of such a theory are essential for our task? First
of all, we have to get clear about (i) what “computational content” is, and (ii)
where it arises. We use the Kleene-Kreisel concept of modified realizability
for the former. In fact, we will have a formula expressing “the term t is a
realizer for the formula A” inside our formal system. For the latter, we take
it that computational content only arises from inductive predicates; prime
examples are the Bar predicates introduced in the previous section. But
then a particular aspect becomes prominent: we need “non computational”
(n.c.) universal quantification [1] written ∀nc to correctly express the type
of a computational problem of the form

∀ncas (BarA as → A).

Its intended computational content is a function f mapping a witness that
as is in BarA into a realizer of A. It is important that f does not get as as
an argument2.

On the more technical side, we use TCF [26], a form of HAω extended
by inductively defined predicates and n.c. logical connectives. TCF has the
(Scott-Ershov) partial continuous functions as its intended model.

It is also mandatory to use a proof assistant to help with the task of for-
malization. We use Minlog3 [2], which is designed to support these features.

Space does not permit to present the full formalization4 of the constructive
proof above of Higman’s Lemma. We restrict ourselves to comment on some
essential aspects.

1http://coq.inria.fr/V8.2pl1/contribs/HigmanS.html
2A similar phenomenon is addressed in Coq [5] by the so-called Set/Prop distinction.

However, enriching the logic by n.c. universal quantification (and similarly n.c. implication)
seems to be more flexible.

3See http://www.minlog-system.de
4See git/minlog/examples/bar/higman.scm
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Most important are of course the basic definitions of the data structures
(free algebras) and predicates involved. Their formal definitions are very
close to the informal ones above and do not need to be spelled out. However,
already at this level computational content crops up: an inductive predicate
may or may not have computational content. Examples for the former are
the Bar predicates, and for the latter the GoodA predicate. It is convenient
to define the GoodA predicate inductively, but – since it is decidable – we
can also view it as a (primitive) recursive boolean valued function.

The first point in the proof above where we have to be careful with n.c.
quantification is the inductive definition of BarA, with clauses

InitBarA : ∀nc�,as(GoodA�as → BarA�as),

GenBarA : ∀nc�,as(∀aBarA�a ∗ as → BarA�as).

The (free) algebra of witnesses for this inductive predicate is called treeA.
In the clause GenBarA the generation tree of BarA�as should have infinitely
many predecessors indexed by a, hence we need ∀a. However, the outside
quantifier is ∀nc�,as , since we do not want to let the argument as be involved
in the computational content of BarA�as. Hence treeA has constructors

CInitBarA : treeA,

CGenBarA : (nat⇒ treeA)⇒ treeA.

A similar (but slightly more involved) comment applies to the inductive
definition of BarF. For readability we omit the dependency on � here. The
clauses are

InitBarF : ∀ncts,i(i < Lh ts → GLT (ts)i → BarFts),

and GenBarF :

∀ncts (∀tas,a,v(tas = ProjF ts → Ge∃∀(a,Roots tas)→
BarF(InsertF(ts, v, a))→

BarFts).

We need the concept of the “A-projection” of a tree t, where each rhs of
a label in t is projected out. Here only the A-projection of ts (but not ts)
is used computationally. More precisely, the predecessors of BarFts are all
InsertF(ts, v, a) for v, a with Ge∃∀(a,Rights(Roots ts)). To decide the latter,
we need (computationally) Rights(Roots ts), i.e., the A-projection of ts.

The (free) algebra of witnesses for the inductive predicate BarF is called
treeF; its constructors are

CInitBarF : treeF,

CGenBarF : (list lntree nat⇒ nat⇒ list nat⇒ treeF)⇒ treeF.

4. Extraction

We now spell out the computational content of some of the proofs above.
Each time it comes in the form of a term (in T+) machine extracted from a
formalization of the respective proof.

When reading the extracted terms please note that lambda abstraction
is displayed via square brackets; so [n]n+m means λnn + m. Our notation
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〈ws, as〉ts for the tree with root 〈ws, as〉 and list of subtrees ts is displayed as
(ws pair as)%ts. Also types are implicit in variable names; for example,
n, a both range over natural numbers. One can also use the display string
for a type as a variable name of this type; for example, treeW is a name for
a variable of type treeW.

4.1. BarWToGoodInit. We use typed variable names

f: nat=>list nat

gw: nat=>list nat

hwfa: list nat=>(nat=>list nat)=>nat=>nat

The term extracted from the proof of the proposition BarWToGoodInit is

[treeW]

(Rec treeW=>(nat=>list nat)=>nat=>nat)treeW([f,a]a)

([gw,hwfa,f,a]hwfa(f a)f(Succ a))

It takes some effort to understand such an extracted term. The recursion
operator on treeW with value type alpha has type

treeW=>alpha=>((list nat=>treeW)=>(list nat=>alpha)=>alpha)

=>alpha

Let Leaf: treeW and Branch: (list nat=>treeW)=>treeW be the con-
structors of treeW. Then Φ := (Rec treeW=>alpha) is given by the recur-
sion equations

Φ(Leaf) := G,

Φ(Branch(g)) := H(g, λvΦ(g(v))).

Here the value type alpha is (nat=>list nat)=>nat=>nat, and

G := λf,aa,

H(gw, hwfa) := λf,ahwfa(f(a), f, a+ 1).

4.2. BarFNil, BarFAppd. For BarFNil we have the simple extracted term

CGenBarF([tas,a,v]CInitBarF)

For BarFAppd we use the variable names

g: list lntree nat=>nat=>list nat=>treeF

htat: list lntree nat=>nat=>list nat=>treeF=>nat=>treeF

hat: list lntree nat=>nat=>list nat=>nat=>treeF

Then the extracted term is

[wqo,treeF]

(Rec treeF=>treeF=>nat=>treeF)treeF([treeF0,a]CInitBarF)

([g,htat,treeF0]

(Rec treeF=>nat=>treeF)treeF0([a]CInitBarF)

([g0,hat,a]

CGenBarF

([tas,a0,v]

[if (LargerARExAll wqo a0 Roots((Lh tas--a)init tas))

(htat((Lh tas--a)init tas)a0 v

[if (LargerARExAll wqo a0 Roots((Lh tas--a)rest tas))

(g0((Lh tas--a)rest tas)a0 v)

(CGenBarF g0)]
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a)

(hat((Lh tas--a)rest tas)a0 v a)])))

The recursion operator on treeF with value type alpha has type

treeF=>alpha=>

((list lntree nat=>nat=>list nat=>treeF)=>

(list lntree nat=>nat=>list nat=>alpha)=>alpha)=>alpha

LargerARExAl wqo a ws means ∃i<|ws|∀j<|(ws)i|a � (ws)i,j . treeF has con-
structors CInitBarF: treeF and CGenBarF: (list nat=>treeF)=>treeF.
Then Φ := (Rec treeF=>alpha) is given by the recursion equations

Φ(CInitBarF) := G,

Φ(CGenBarF(g)) := H(g, λvΦ(g(v))).

The value type of the first recursion is treeF=>nat=>treeF, and

G := λtreeF,aCInitBarF,

H(g, htat) := λtreeF0K(g, htat, treeF0)

with K(g, htat, treeF0) given by

(Rec treeF=>nat=>treeF)treeF0([a]CInitBarF)

([g0,hat,a]

CGenBarF

([tas,a0,v]

[if (LargerARExAll wqo a0 Roots((Lh tas--a)init tas))

(htat((Lh tas--a)init tas)a0 v

[if (LargerARExAll wqo a0 Roots((Lh tas--a)rest tas))

(g0((Lh tas--a)rest tas)a0 v)

(CGenBarF g0)]

a)

(hat((Lh tas--a)rest tas)a0 v a)]))

The inner recursion is on treeF again, with value type nat=>treeF, and

G1 := λaCInitBarF,

H1(g0, hat) := λaCGenBarF . . .

4.3. BarFNew. With the variable names

gw: list nat=>treeW hw: list nat=>list nat=>treeF

ga: nat=>treeA hatt: nat=>treeF=>treeF

we extract

[wqo,treeA,treeW]

(Rec treeW=>list nat=>treeF)treeW([v]CInitBarF)

([gw,hw,v]

(Rec treeA=>treeF=>treeF)treeA([treeF]CInitBarF)

([ga,hatt,treeF]

(Rec treeF=>treeF)treeF CInitBarF

([g,g0]

CGenBarF

([tas,a,v0]

[if (LargerARExAll wqo a Roots Subtrees Head tas)

(g0 Subtrees Head tas a v0)



14 SCHWICHTENBERG, SEISENBERGER AND WIESNET

(hatt a

(cBarFAppd wqo(hw v0(a::v))

(CGenBarF g)Lh Subtrees Head tas))])))

(CGenBarF([tas,a,v0]CInitBarF)))

This time we have three nested recursions: an outer one on treeW with value
type list nat=>treeF, then on treeA with value type treeF=>treeF, and
innermost on treeF with value type treeF. This corresponds to the three
elimination axioms used in the proof. Notice that the computational content
cBarFAppd of the theorem BarFAppd appears as a constant inside the term.

4.4. Higman.

[wqo,treeA]

(Rec treeA=>treeF=>list list nat=>list lntree list nat=>treeW)

treeA

([treeF,ws,tas]CInitBarW)

([ga,ha,treeF]

(Rec treeF=>list list nat=>list lntree list nat=>treeW)treeF

([ws,tas]CInitBarW)

([g,h,ws,tas]

CGenBarW

([v](Rec list nat=>treeW)v(CGenBarW([v0]CInitBarW))

([a,v0,treeW]

[if (LargerAR wqo a(BSeq wqo Heads ws))

(h tas a v0((a::v0)::ws)(InsertAF wqo tas a))

(ha a (cBarFAppd wqo(cBarFNew wqo treeA treeW a:)

(CGenBarF g)Lh tas)

((a::v0)::ws)

((a: %(Nil lntree list nat))::tas))]))))

(CGenBarF([tas,a,v]CInitBarF))

(Nil list nat)

(Nil lntree list nat)

4.5. Experiments. To run the extracted terms we need to “animate” the
theorems involved. This means that the constant denoting their computa-
tional content (e.g., cBarFAppd for the theorem BarFAppd) unfolds into the
term extracted from the proof of the theorem. Then for an arbitrary infinite
sequence extending e.g. the example in Section 2 we obtain the expected
good initial segment.

In more detail, we first have to animate the computationally relevant
propositions in the proof given above of Higman’s Lemma. Then we need
to prove and animate lemmas relating to the particular relation NatLe:

BarNatLeAppdOne : ∀i,m,as(i+ Lh(as) = m+ 1→ BarA≤(as#[m])),

BarANilNatLe : BarA≤[],

HigmanNatLe : BarW≤[].

Using these we can prove the final proposition

GoodWInitNatLe : ∀f∃nGoodW≤(Rev(f̄n)).



HIGMAN’S LEMMA AND ITS COMPUTATIONAL CONTENT 15

Let neterm be the result of normalizing the term extracted from this proof.
Next we provide an infinite sequence (extending the example in Section 2),
e.g. in the form of a program constant:

(add-program-constant "Seq" (py "nat=>list nat"))

(add-computation-rules

"Seq 0" "5::2:"

"Seq 1" "2::8:"

"Seq 2" "4::2::1:"

"Seq 3" "6::9:"

"Seq 4" "3::5:"

"Seq(Succ(Succ(Succ(Succ(Succ n)))))" "0:")

Finally we run the our normalized extracted term by evaluating

(pp (nt (mk-term-in-app-form neterm (pt "Seq"))))

(Here nt means “normalize term” and pt means “parse term”). The result
is 4, the length of a good initial segment of our infinite sequence.

5. Related work: Other proofs of Higman’s Lemma

As mentioned at the beginning of Section 2, our constructive proof of
Higman’s Lemma does not need transitivity; it works for arbitrary almost
full relations. However, in the following discussion we disregard this fine
point and assume that the underlying relation is a well-quasiorder. This
will make it easier to compare different proofs in the literature.

There are quite a number of constructive proofs of Higman’s Lemma,
thus the natural question arises: are they all different? The number of
proofs is due to the fact that researchers from different areas, algebra, proof
theory, constructive mathematics, term rewriting, to name a few, became
interested in Higman’s Lemma. In addition, there are various formulations
of a well-quasiorder which include different proof principles. These are for
instance proofs using ordinal notation systems and transfinite induction as
used in [24, 25] or inductively defined predicates and structural induction
as used in [18, 23, 9]. Below we argue that these proofs are the same from
a computational point of view.

The proof theoretic strength of Higman’s Lemma is that of Peano Arith-
metic, i.e. ε0, as was shown in [11] using the constructive proof of [25].
Speaking in terms of Reverse Mathematics, Higman’s Lemma can be proven
in the theory ACA0. In term rewriting theory, Higman’s Lemma and its
generalization to trees, Kruskal’s Theorem, are used to prove termination
of string rewriting systems and term rewriting systems respectively. The
orders whose termination is covered by these two theorems are called sim-
plification orders. They form an important class since the criterion of being
a simplification order can be checked syntactically. A constructive proof,
e.g., as given in [4], moreover yields a bound for the longest possible bad
sequence. In the case of Higman’s Lemma the reduction length, expressed in
terms of the Hardy hierarchy, Hα, assuming a finite alphabet A, is as follows.
If we have a bad sequence (ti)i<n, fulfilling the condition |ti| ≤ |t0|+ k × i,
where k is a constant and |t| denotes the size of t, then the length n of the
sequence is bound by Φ(|t0|) where Φ is an elementary function in H

ωω|A|
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[4, 31]. This bound is optimal since there are term rewriting systems which
“reach” these bounds [32].

5.1. Equivalent formulations of a well-quasiorder. We define the max-
imal ordertype of a well-quasiorder (A,�) as the supremum of the ordertypes
of all extensions of (A,�) to a linear order. Equivalently, in a more con-
structive manner, the maximal ordertype can be defined by the height of
the tree of all bad sequences (Bad�) with elements in A. A reification of a
quasi order (A,�) into a wellordering (σ,<) is a map

r : Bad� → σ,

such that for all a∗as ∈ Bad� we have r(a∗as) < r(as). On the set Bad�
of bad sequences in A we define a relation �A by as ′ �A as iff as ′ = a∗as
for some a ∈ A. The accessible part of the relation �A⊆ Bad� × Bad� is
inductively given by the rule

∀as′(as ′ �A as → acc�Aas ′)

acc�Aas

It is obvious that the following are equivalent for a quasiorder (A,�):

(i) (A,�) is a well-quasiorder (i.e., Wqo(A,�)).
(ii) (A,�) has a maximal ordertype.

(iii) There is a reification of (A,�) into a wellorder.
(iv) (Bad�,�A) is wellfounded, i.e., acc�A [ ].
(v) BarA�[].

5.2. A generic proof of Higman’s Lemma. In the following we sketch
a generic proof of

Wqo(A,�)→Wqo(A∗,�∗).
which differs from the proof presented in the earlier sections. We start by
choosing a characterization of a well-quasiorder, either using ordinal nota-
tions ((ii) or (iii)) or inductive definitions ((iv) or (v)). (Note that in the
latter case we need to generalize the statement; for instance, in (iv) we prove
more generally acc�Aas → acc�(Aas )∗

[] and use this proof with as = [], and

in the proof below instead of A[a] we use everywhere Aa∗as , etc.). Here we
define Aas as the set of all elements that extend as badly, i.e. ∀ias i 6� a.
Similarly, we define A[a] to be the set of all elements b such that a 6�A b.
Assume that for our choice of characterization we are able to prove (with
the obivous extension of � to ∪ and ×):

(a) ∀a Wqo(A[a],�)→Wqo(A,�),

(b) A ⊆ B →Wqo(A,�)→Wqo(B,�),

(c) Wqo(A) ∧Wqo(B)→Wqo(A ∪B),

(d) Wqo(A) ∧Wqo(B)→Wqo(A×B).

Assume Wqo(�). We proceed to prove Higman’s Lemma by using either
structural induction or transfinite induction, depending on our choice. From
the induction hypothesis we get

Wqo(A[a])→Wqo(A[a]
∗).(1)
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By (a) it suffices to prove ∀vWqo(A∗[v]). Let v = [a1, . . . , an]. The main

combinatorial idea is now contained in the the following statement

(2) (A)∗[[a1,...,an]] ⊆
⋃
{(A[a1])

∗ ×A× (A[a2])
∗ × · · · ×A× (A[al])

∗ | l < n}

which holds by a simple combinatorial argument. Using (b) we are done
once we have shown

Wqo(
⋃
{(A[a1])

∗ ×A× (A[a2])
∗ × · · · ×A× (A[al])

∗ | l < n}).

But this follows immediately from (c), (d) and (1).

Remark. Instantiated versions of this proof, using characterizations (ii), (iii),
(iv) or (v) of a well-quasiorder, can be found in the following articles: (ii) is
used by de Jongh and Parikh [8] and Schmidt [24]. (iii) is used in the proof
by Schütte and Simpson [25] (and Hasegawa [13]) (and is the characteriza-
tion which is most promising in terms of generalizations beyond Kruskal’s
Theorem). (iv) has been used by Fridlender [9], using an acc notation. His
proof is a reformulation of the proof by Richman and Stolzenberg [23]. To a
less formal extent this characterization is also used in [18], where also struc-
tural induction and a similar construction describing the space to which a
sequence can be extended badly are used. Characterization (v): the proof
in [9] can be easily reformulated using (v). Fridlender [10] gives a variant
where he does not need the decidability of �A. His proof is a type theoretic
version of an intuitionistic proof by Veldman, later published in [34].

Finally, the proof of [18] forms the basis of the formalization and proof
of Higman’s Lemma in [16], in ACL2. Their work however starts with a
program solving the problem, and then proving its properties rather than
extracting the program from the proof.

Remark. Higman’s Lemma extends naturally to Kruskal’s Theorem, the cor-
responding statement for trees. Constructive proofs of Kruskal’s Theorem
have been given by Schmidt [24] using characterization (ii), by Rathjen and
Weiermann [22] and Hasegawa [13] using (iii), and in [28] using (iv). Finally,
also Goubault-Larrecq’s proof [12] which generalizes the proof in [18] falls
under this category.

It remains to compare how the computational content behind this generic
proof of Higman Lemma is related to the constructive proof given in this
paper. Although we have not yet formalized the proof above, it is quite
obvious that the construction, in particular equation (2) differs from the
construction in our proof, and therefore would result in a different algorithm.

6. Conclusion and further work

We presented and formalized a constructive proof of Higman’s Lemma
that contains the same combinatorial idea as Nash-Williams’ indirect proof,
and extracted and discussed its inherent program in detail. We also argued
that a number of constructive proofs of Higman’s Lemma are based on a
combinatorial idea different from ours. It is still open to make that claim
formal, i.e. to formalize the proof presented in the previous section, and com-
pare the resulting program with our extracted program. Similarly, there are
a number of formalizations of Nash-Williams’ classical proof as mentioned
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in the introduction. It would be worthwile to confirm that they, in principle,
lead to the same algorithm, which also corresponds to the algorithm in our
extracted program.

Equally interesting is the question which of the discussed proofs are most
suitable for applications such as termination of string- and term rewriting
systems, see e.g. [35, 12, 30] for recent discussions on applications to termi-
nation proofs. A particularly promising application has been given in [20].
It will be worth checking how our alternative proof of Higman’s Lemma and
its extracted program can be utilized with regard to these applications or
further generalizations.
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