
COMPUTATIONAL ASPECTS OF BISHOP’S

CONSTRUCTIVE MATHEMATICS

HELMUT SCHWICHTENBERG

Abstract. We view the Scott-Ershov type structure (Cτ)τ of partial
continuous functionals as an appropriate model for Bishop’s constructive
mathematics. It allows infinite objects as data (i.e., base type objects).
Pointwise equality is defined by induction on types, and an object is
called extensional if it is pointwise equal to itself. A formal theory TCF
describing (Cτ)τ is sketched, with inductive and coinductive predicates
as its main ingredient. Using realizability we define the computational
content of a formal proof M as a term et(M). We prove that et(M)
realizes the end formula of M (soundness theorem), and that et(M) is
extensional. Since et(M) is in TCF’s language we can formally prove
the soundness theorem.

Keywords: Program extraction, realizability, extensionality
2010 Mathematics Subject Classification: 03B35, 03F50, 03B70

Constructive mathematics, as its name says, puts an emphasis on the
constructions involved in mathematical arguments. It therefore is tempting
to have a closer look at these constructions, as advocated in Bishop (1970).
The goal would be to extract them from mathematical proofs. Then one
can view them as programs, obtained not by a programming effort but by
searching for a perspicious mathematical argument, which of course has to
use constructive logic. Clearly this requires formal proofs, but the benefit is
that the program arising from a proof that can be machine checked for its
correctness. In this sense we have a “certified” program.

One can even go a step further and ask for a formal proof that the ex-
tracted program correctly solves the original problem proved constructively.
This can be expressed by the notion of realizability; see Troelstra (1998) for
a survey on this subject. We then need to view the extracted program as a
term in a formal language (an extension of the system T of Gödel (1958)),
and give a formal proof that the term t realizes the formula A, written t r A.
Constructively to state A in a sense means the same as to say that A has
a realizer. This statement A ↔ ∃x(x r A) was called “to assert is to rea-
lize” in Feferman (1979). Here we call it invariance axiom, since it expresses
invariance of A under the realizability interpretation. Using the invariance
axioms one can prove a soundness theorem, saying that for any proof M
of a formula A one can find another proof that the term et(M) extracted
from the proof M is s realizer of A, i.e., et(M) r A. This step can be seen
as a kind of reflection of what was done in the original (realizability-free)
problem area. In this way we obtain a higher degree of reliability of the
extracted term viewed as a program. We not only know that it came from a
formal proof, but can even provide another formal soundness proof stating
that the program satisfies its specification.

1

2 HELMUT SCHWICHTENBERG

In the present paper we describe the main steps to carry this program out.
It involves the setup of an appropriate theoretical framework TCF (theory
of computable functionals). To ensure that TCF is a meaningful theory it
is designed to describe a particular model suitable to deal with computable
higher type objects. For case studies we use the proof assistant Minlog1

designed to support the generation of formal proofs in TCF.

1. Partial continuous functionals

Prior to the setup of a formal theory we define the model our theory is
supposed to describe. It will be a model accomodating higher type objects,
from a constructive point of view. The main idea is to view an object of
an arbitrary type as given by its finite approximations. This approach has
the advantage that the notion of computability of our functional objects is
unproblematic: it means that the set of its finite approximations can be
enumerated by an elementary function.

To allow for applications in exact real arithmetic with real numbers re-
presented as streams of signed digits we admit infinite data already at base
types. A benefit of this approach is that it brings down the type level of other
concepts of constructive analysis, for instance continuity of real functions.

1.1. Information systems. We aim at describing higher type functionals
by their finite approximations. For this purpose we use Dana Scott’s in-
formation systems. The basic idea is to provide an axiomatic setting to
describe approximations of abstract objects (like functions or functionals)
by concrete, finite ones. We take an arbitrary countable set A of “bits of
data” or tokens as a basic notion to be explained axiomatically. In order to
use such data to build approximations of abstract objects, we need a notion
of consistency, which determines when the elements of a finite set of tokens
are consistent with each other. We also need an entailment relation be-
tween consistent finite sets U of data and single tokens a, which intuitively
expresses the fact that the information contained in U is sufficient to com-
pute the bit of information a. The axioms below are a minor modification
of Scott’s (1982), due to Larsen and Winskel (1991).

Definition. An information system is a structure (A,Con,`) where A is an
at most countable non-empty set (the tokens), Con is a set of finite subsets
of A (the consistent sets) and ` is a subset of Con × A (the entailment
relation), which satisfy

U ⊆ V ∈ Con→ U ∈ Con,

{a} ∈ Con,

U ` a→ U ∪ {a} ∈ Con,

a ∈ U ∈ Con→ U ` a,
U ∈ Con→ ∀a∈V (U ` a)→ V ` b→ U ` b.

The elements of Con are called formal neighborhoods. We use U, V,W to
denote finite sets, and write

U ` V for U ∈ Con ∧ ∀a∈V (U ` a),

1http://minlog-system.de.

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 3

a ↑ b for {a, b} ∈ Con (a, b are consistent),

U ↑ V for ∀a∈U,b∈V (a ↑ b).

Definition (Objects). The objects (or ideals) of an information system A =
(A,Con,`) are defined to be those subsets x of A which satisfy

U ⊆ x→ U ∈ Con (x is consistent),

U ` a→ U ⊆ x→ a ∈ x (x is deductively closed).

For example the deductive closure U := { a ∈ A | U ` a } of U ∈ Con is an
object. The set of all objects of A is denoted by |A|.

Example. Every countable set A can be turned into a “flat” information
system by letting the set of tokens be A, Con := {∅} ∪ { {a} | a ∈ A } and
U ` a mean a ∈ U . In this case the objects are just the elements of Con.
For A = N we have the following picture of the Con-sets.

∅
•

•
{0}

�
��
•
{1}

�
����•

{2}
. . .

The main feature of information systems is that they admit the construc-
tion of function spaces.

Definition. Let A = (A,ConA,`A) and B = (B,ConB,`B) be information
systems. Define A→ B = (C,Con,`) by

C := ConA ×B,

{ (Ui, bi) | i ∈ I } ∈ Con := ∀J⊆I
(⋃
j∈J

Uj ∈ ConA → { bj | j ∈ J } ∈ ConB

)
.

For the definition of the entailment relation ` it is helpful to first define the
notion of an application of W := { (Ui, bi) | i ∈ I } ∈ Con to U ∈ ConA:

{ (Ui, bi) | i ∈ I }U := { bi | U `A Ui }.

From the definition of Con we know that this set is in ConB. Now define
W ` (U, b) by WU `B b.

Remark. Clearly application is monotone in the second argument, in the
sense that U `A U ′ implies (WU ′ ⊆ WU , hence also) WU `B WU ′. In
fact, application is also monotone in the first argument, i.e.,

W `W ′ implies WU `B W ′U.

To see this let W = { (Ui, bi) | i ∈ I } and W ′ = { (U ′j , b
′
j) | j ∈ J }. By

definition W ′U = { b′j | U `A U ′j }. Now fix j such that U `A U ′j ; we must

show WU `B b′j . By assumption W ` (U ′j , b
′
j), hence WU ′j `B b′j . Because

of WU ⊇WU ′j the claim follows.

Lemma 1.1. If A and B are information systems, then so is A→ B.

Lemma 1.2. Let A and B be information systems and f : |A| → |B| mono-
tone (i.e., x ⊆ y → f(x) ⊆ f(y)). Then the following are equivalent.

4 HELMUT SCHWICHTENBERG

(a) f satisfies the “principle of finite support” PFS: If b ∈ f(x), then b ∈
f(U) for some U ⊆ x.

(b) f commutes with directed unions: for every directed D ⊆ |A| (i.e., for
any x, y ∈ D there is a z ∈ D such that x, y ⊆ z)

f
(⋃
x∈D

x
)

=
⋃
x∈D

f(x).

Note that in (b) the set { f(x) | x ∈ D } is directed by monotonicity of f ;
hence its union is indeed an object in |B|. Also from PFS and monotonicity
of f it follows that if V ⊆ f(x), then V ⊆ f(U) for some U ⊆ x.

We call a function f : |A| → |B| continuous if it satifies the conditions
in Lemma 1.2. Hence continuous maps f : |A| → |B| are those that can be
completely described from the point of view of finite approximations of the
abstract objects x ∈ |A| and f(x) ∈ |B|: whenever we are given a finite
approximation V to the value f(x), then there is a finite approximation U
to the argument x such that already f(U) contains the information in V ;
note that by monotonicity f(U) ⊆ f(x).

Clearly the identity and constant functions are continuous, and also the
composition g ◦ f of continuous functions f : |A| → |B| and g : |B| → |C|.

Theorem 1.3. Let A = (A,ConA,`A), B = (B,ConB,`B) be information
systems. Then the objects of A → B are in a natural bijective correspon-
dence with the continuous functions from |A| to |B|, as follows.

(a) With any object x of A → B we can associate a continuous function
|x| : |A| → |B| by

|x|(z) := { b ∈ B | (U, b) ∈ x for some U ⊆ z }.
We call |x|(z) the application of x to z.

(b) Conversely, with any continuous function f : |A| → |B| we can associate

an object f̂ of A→ B by

f̂ := { (U, b) | b ∈ f(U) }.

These assignments are inverse to each other, i.e., f = |f̂ | and x = |̂x|.

1.2. Algebras and types. We now consider concrete information systems,
our basis for continuous functionals. Types will be built from base types by
the formation of function types, τ → σ. As domains for the base types
we choose non-flat free algebras, given by their constructors. The reason for
taking non-flat base domains is that we want the constructors to be injective
and with disjoint ranges. This generally is not the case for flat domains.

Definition (Constructor types and algebra forms). Constructor types κ
have the form

~α→ (ξ)i<n → ξ

with all type variables αi distinct from each other and from ξ. Iterated
arrows are understood as associated to the right. An argument type of a
constructor type is called a parameter argument type if it is different from
ξ, and a recursive argument type otherwise. A constructor type κ is nullary
if it has no recursive argument types. We call

ι := µξ~κ

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 5

with ~κ not empty an algebra form. An algebra form is explicit if it does not
have recursive argument types.

Examples. We list some parameter-free algebra forms, with standard names
for the constructors added to each constructor type.

U := µξ(Dummy: ξ) (unit),

B := µξ(tt : ξ, ff : ξ) (booleans),

N := µξ(0 : ξ,S : ξ → ξ) (natural numbers, unary),

P := µξ(1 : ξ,S0 : ξ → ξ,S1 : ξ → ξ) (positive numbers, binary),

Y := µξ(− : ξ,Branch: ξ → ξ → ξ) (binary trees).

Algebra forms with type parameters are

I(α) := µξ(Id: α→ ξ) (identity),

L(α) := µξ(Nil : ξ,Cons: α→ ξ → ξ) (lists),

S(α) := µξ(SCons: α→ ξ → ξ) (streams),

α× β := µξ(Pair : α→ β → ξ) (product),

α+ β := µξ(InL: α→ ξ, InR: β → ξ) (sum),

uysum(α) := µξ(DummyL: ξ, Inr : α→ ξ) (for U + α),

ysumu(α) := µξ(Inl : α→ ξ,DummyR: ξ) (for α+ U).

The default name for the i-th constructor of an algebra form is Ci.

Definition (Type).

ρ, σ, τ ::= α | ι(~ρ) | τ → σ,

where ι is an algebra form with ~α its parameter type variables, and ι(~ρ) the
result of substituting the (already generated) types ~ρ for ~α. Types of the
form ι(~ρ) are called algebras. An algebra is closed if it has no type variables.
The level of a type is defined by

lv(α) := 0, lv(ι(~ρ)) := max(lv(~ρ)), lv(τ → σ) := max(lv(σ), 1 + lv(τ)).

Base types are types of level 0, and a higher type has level at least 1.

1.3. The model (Cτ)τ . For every closed type τ we define an information
system Cτ = (Cτ ,Conτ ,`τ). The definition is by induction on τ , and in
case of an algebra ι(~ρ) by a side inductive definition.

Definition (Information system of type τ). Case ι(τ). For simplicity as-
sume that there is only one parameter type τ .

(a) Tokens a ∈ Cι(τ) are the type correct constructor expressions CV a∗1 . . . a∗n
where a∗i is an extended token, i.e., a token or the special symbol ∗ which
carries no information, and V is a consistent set of tokens in Cτ .

(b) A finite set U of tokens in Cι(τ) is consistent (i.e., ∈ Conι(τ)) if all its
elements start with the same constructor C, say of arity τ → ι(τ) . . .→
ι(τ) → ι(τ). Let U = {CV1a∗11 . . . a∗1n, . . . , CVma∗m1 . . . a

∗
mn}. Then we

require that (i) V1 ∪ · · · ∪ Vm is consistent (i.e., ∈ Conτ) and (ii) the
sets Ui consisting of all (proper) tokens at the i-th argument position of
some token in U are consistent (i.e., ∈ Conι(τ)).

6 HELMUT SCHWICHTENBERG

(c) {CV1a∗11 . . . a∗1n, . . . , CVma∗m1 . . . a
∗
mn} `ι(τ) CV a∗1 . . . a∗n if and only if (i)

V1 ∪ · · · ∪ Vm `τ V and (ii) for each set Ui as in (b) above we have
Ui `ι(τ) a∗i (where Ui ` ∗ is taken to be true).

Case τ → σ. Tokens, consistency and entailment for Cτ→σ := Cτ → Cσ

are defined as done in Section 1.1 for arbitrary information systems.

Lemma 1.4. Cτ := (Cτ ,Conτ ,`τ) is an information system.

Definition. The objects x ∈ |Cτ | are called partial continuous functionals
of type τ . Since Cτ→σ = Cτ → Cσ, the partial continuous functionals
of type τ → σ correspond to the continuous functions from |Cτ | to |Cσ|.
A partial continuous functional x ∈ |Cτ | is computable if it is recursively
enumerable when viewed as a set of tokens. The Scott-Ershov model C of
partial continuous functionals is defined to be (|Cτ |)τ .

Definition (Cototal and total objects of closed base type). Let ι(~τ) be a
closed base type. Its tokens can be seen as constructor trees with some
recursive argument positions occupied by ∗. An object x is cototal if for
each of its tokens P (∗) with a distinguished occurrence of ∗ there is another

token of the form P (C~∅~∗) in x. Finite cototal objects are called total .

1.4. Cototality and bisimilarity. For closed ground types equality of
cototal objects can be characterized by bisimilarity . As an example we
consider the algebra Y of binary trees. We define bisimilarity ≈Y as the
largest relation on CY satisfying the closure axiom ≈−Y :

∀x,x′(x ≈ x′ → (x ≡ − ∧ x′ ≡ −) ∨
∃x1,x2,x′1,x′2(x1 ≈ x′1 ∧ x2 ≈ x′2 ∧ x ≡ Cx1x2 ∧ x′ ≡ Cx′1x′2))

with C for the Branch constructor. Being the “largest” relation means that
any other relation (“competitor”) X satisfying the same closure property is
below ≈Y, i.e., we require the greatest-fixed-point property ≈+

Y :

∀x,x′(Xxx′ → (x ≡ − ∧ x′ ≡ −) ∨
∃x1,x2,x′1,x′2((x1 ≈ x′1 ∨Xx1x′1) ∧ (x2 ≈ x′2 ∨Xx2x′2) ∧

x ≡ Cx1x2 ∧ x′ ≡ Cx′1x′2)))→
X ⊆ ≈.

Lemma 1.5 (Bisimilarity). x ≈Y x
′ implies x ≡ x′, for x, x′ ∈ CY.

Proof. Let a range over tokens for Y, and define the height |a∗| of an ex-
tended token a∗ by |∗| := 0, |−| := 1, |Ca∗1a∗2| := 1 + max(|a∗1|, |a∗2|). By
induction on the height |a∗| of extended tokens a∗ we prove that for all ob-
jects x, x′ and extended tokens a∗ ∈ x we have a∗ ∈ x′. It suffices to consider
the case Ca∗1a∗2. From x ≈Y x

′ we obtain by the closure axiom x1, x2, x
′
1, x
′
2

with
x1 ≈ x′1 ∧ x2 ≈ x′2 ∧ x ≡ Cx1x2 ∧ x′ ≡ Cx′1x′2.

Then a∗i ∈ xi (for i = 1, 2), and by IH a∗i ∈ x′i. Thus Ca∗1a∗2 ∈ x′. �

From Lemma 1.5 we obtain the following characterization of ≈Y on CY.
We define coTY as the largest subset of CY satisfying the closure axiom coT−Y :

∀x(x ∈ coT → x ≡ − ∨ ∃x1,x2(x1 ∈ coT ∧ x2 ∈ coT ∧ x ≡ Cx1x2)).

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 7

Again we require the greatest-fixed-point property coT+
Y :

∀x(x ∈ X → (x ≡ −) ∨
∃x1,x2(x1 ∈ coT ∪X ∧ x2 ∈ coT ∪X ∧ x ≡ Cx1x2))→

X ⊆ coT.

For objects x, x′ ∈ CY we show

Lemma 1.6 (Characterization of ≈Y).

x ≈Y x
′ ↔ x, x′ ∈ coTY ∧ x ≡ x′, for x, x′ ∈ CY.

Proof. “→”. By Lemma 1.5 it remains to prove x ≈Y x′ → x ∈ coTY. To
this end we apply coT+

Y with competitor X := {x | ∃x′(x ≈Y x
′) }. It suffices

to prove the premise. Fix x, x′ with x ≈Y x
′. The goal is

(x ≡ −) ∨
∃x1,x2((x1 ∈ coT ∨ ∃x′1(x1 ≈ x′1)) ∧ (x2 ∈ coT ∨ ∃x′2(x2 ≈ x′2)) ∧ x ≡ Cx1x2).

By the closure property ≈−Y we have

(x ≡ −∧x′ ≡ −)∨∃x1,x2,x′1,x′2(x1 ≈ x′1∧x2 ≈ x′2∧x ≡ Cx1x2∧x′ ≡ Cx′1x′2)).

In the first case we have x ≡ − and are done. In the second case we have
x1, x2, x

′
1, x
′
2 with x1 ≈ x′1, x2 ≈ x′2 and x ≡ Cx1x2, and are done as well.

“←”. We prove x ∈ coTY → x ≡ x′ → x ≈Y x
′ by the greatest-fixed-point

property ≈+
Y with competitor X := {x, x′ | x ∈ coTY ∧ x ≡ x′ }. It suffices

to prove the premise. Fix x, x′ with x ∈ coTY ∧ x ≡ x′. The goal is

(x ≡ − ∧ x′ ≡ −) ∨ ∃x1,x2,x′1,x′2((x1 ≈ x′1 ∨ (x1 ∈ coTY ∧ x1 ≡ x′1)) ∧
(x2 ≈ x′2 ∨ (x2 ∈ coTY ∧ x2 ≡ x′2)) ∧
x ≡ Cx1x2 ∧ x′ ≡ Cx′1x′2)).

By the closure property coT−Y applied to x ∈ coTY we have

(x ≡ −) ∨ ∃x1,x2(x1 ∈ coTY ∧ x2 ∈ coT ∧ x ≡ Cx1x2).
In the first case we have x ≡ − and are done, since x ≡ x′. In the second
case we have x1, x2 ∈ coTY with x ≡ Cx1x2. Then we are done as well with
x′1 := x1 and x′2 := x2, since again x ≡ x′. �

1.5. Constructors as continuous functions. Let ι be an algebra. Every
constructor C generates the following object in the function space determined
by the type of the constructor:

rC := { (~U, C ~a∗) | ~U ` ~a∗ }.

Here (~U, a) abbreviates (U1, (U2, . . . (Un, a) . . .)).
According to the general definition of a continuous function associated to

an object in a function space the continuous map |rC | satisfies

|rC |(~x) = { C ~a∗ | ∃~U⊆~x(~U ` ~a∗) }.

(For N we have |rS |({0}) = {S0,S∗} and |rS |({S0,S∗}) = {SS0,SS∗,S∗}.)
An immediate consequence is that the (continuous maps corresponding to)
constructors are injective and their ranges are disjoint, which is what we

8 HELMUT SCHWICHTENBERG

wanted to achieve by associating non-flat rather than flat information sys-
tems with algebras.

Lemma 1.7 (Constructors are injective and have disjoint ranges). Let ι be
an algebra and C be a constructor of ι. Then

|rC |(~x) ⊆ |rC |(~y)↔ ~x ⊆ ~y.
If C1, C2 are distinct constructors of ι, then |rC1 |(~x) 6= |rC2 |(~y), since the two
objects are non-empty and disjoint.

Proof. Immediate from the definitions. �

Remark. Notice that neither property holds for flat information systems,
since for them, by monotonicity, constructors need to be strict (i.e., if one
argument is the empty object, then the value is as well). But then we have

|rC |(∅, y) = ∅ = |rC |(x, ∅), |rC1 |(∅) = ∅ = |rC2 |(∅)
where in the first case we have one binary and, in the second, two unary
constructors.

2. A term language for computable functionals

We set up a system T+ of typed terms, as an extension of Gödel’s T
(1958). Every closed term of type τ denotes an object of this type in the
model C, i.e., a partial continuous functional. This is in contrast to Martin-
Löf style type theories like Coq’s calculus of inductive constructions, where
terms must be total. Dropping this restriction has the advantage that non-
terminating operators like corecursion can directly be represented as con-
stants. We will define constants by equations, in a pattern-matching style.

2.1. Constants, terms and computation rules. For every algebra ι =
µξ((ρiν(ξ))ν<ni → ξ)i<k we have constants

Cι,i (ρiν(ι))ν<ni → ι i-th constructor

Rαι ι→ ((ρiν(ι× α))ν<ni → α)i<k → α recursion

Dι coι→
∑

i<k

∏
ν<ni

ρiν(coι) destructor
coRαι α→ (α→

∑
i<k

∏
ν<ni

ρiν(coι+ α))→ coι corecursion.

It is convenient to write the type of the recursion operator RτN in the form
N→ τ → (N→ τ → τ)→ τ . The first argument is the recursion argument,
the second one gives the base value, and the third gives the step function,
mapping the recursion argument and the previous value to the next value.
The destructor Dι disassembles a constructor-built object into its parts. The
corecursion operator coRτι is used to construct a map from τ to coι.

From the constants above, typed variables and possibly other typed con-
stants Dτ we define terms by abstraction and application:

M,N ::= xτ | Cι,i | Rι | Dι | coRι | Dτ | (λxτMσ)τ→σ | (M τ→σN τ)σ.

For each term we want to define its denotation in the model C. To this
end we use defining equations. Each constant C comes with a system of
computation rules consisting of finitely many equations

(1) C ~Pi(~yi) = Mi (i = 1, . . . , n where n ≥ 0)

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 9

with free variables of ~Pi(~yi) and Mi among ~yi, where the arguments on the
left hand side must be “constructor patterns”, i.e., lists of applicative terms
built from constructors and distinct variables. To ensure consistency of the

defining equations, we require that for i 6= j ~Pi and ~Pj have disjoint free

variables, and either ~Pi and ~Pj are non-unifiable (i.e., there is no substitution

which identifies them), or else for the “most general unifier” ϑ of ~Pi and ~Pj
we have Miϑ = Mjϑ. Notice that the substitution ϑ assigns to the variables

~yi in Mi constructor patterns ~Rk(~z) (k = i, j). A further requirement on a

system of computation rules C ~Pi(~yi) = Mi is that the lengths of all ~Pi(~yi)
are the same; this number is called the arity of C, denoted by ar(C). A
substitution instance of a left hand side of (1) is called a C-redex .

The computation rules for the constants Cι,i, Rι, Dι and coRι are fixed,
as follows. For the constructors no computation rules are necessary, since
the model C is built from them. For the recursion operator let

α0 → . . .→ αm−1 → (ξ)i<n → ξ

be the type of the i-th constructor Ci of ι and consider a term Ci~x of type
ι. We write ~xP = xP0 , . . . , x

P
m−1 for the parameter arguments xα0

0 , . . . , x
αm−1

m−1
and ~xR = xR0 , . . . , x

R
n−1 for the recursive arguments xιm, . . . , x

ι
m+n−1. Writ-

ing R for Rτι we take as its computation rules

R(Ci~x)~f = fi~x(RxR0 ~f) . . . (RxRn−1 ~f).

In particular RτN is defined by the computation rules

RτN0af = a, RτN(Sn)af = fn(RτNnaf).

For example, RN
Nnmλn,l(Sl) defines addition m+ n by recursion on n. The

computation rules for the destructor Dι are

Dι(Ci~x) = 〈~x 〉.

To deal with corecursion we introduce some notation. For f : ρ → τ and
g : σ → τ we denote λx(Rτρ+σxfg) of type ρ+ σ → τ by [f, g], and similary
for ternary sumtypes etc. The identity functions id below is of type ι → ι
with ι the respective algebra. The (single) computation rule for coRτι is

coRτι xf = [g0, . . . , gk−1](fx)

where gi of type
∏
ν<ni

ρiν(ι+ τ)→ ι is defined as

gi := λ~x(Ci(Nν)ν<ni) with xν : ρiν(ι+ τ),

Nν :=

{
xν if ρiν(ξ) is a parameter arg. type,

[idι→ι, λx(coRτι xf)]xι+τν) otherwise.

Remark. It can be difficult to read the computation rules for corecursion
operators. However, it helps if we know some properties of the “step” func-
tion f . For instance we have

coRτNxf =

0 if fx = DummyLU+(N+τ)

Sn if fx = Inr(InLN→N+τn)

S(coRτNx′f) if fx = Inr(InRτ→N+τx′)

10 HELMUT SCHWICHTENBERG

coRτS(ρ)xf =

{
a :: u if fx = 〈a, InLS(ρ)→S(ρ)+τu〉
a :: coRτS(ρ)x

′f if fx = 〈a, InRτ→S(ρ)+τx′〉.

2.2. Denotational semantics. We set up a connection between the term
system T+ and the model C. The main point is to clarify how the computa-
tion rules define an object z in a function space. The idea is to inductively
define the set of tokens (U, a) that make up z. It is convenient to define the
value [[λ~xM]], where M is a term with free variables among ~x. Since this

value is a token set, we can define inductively the relation (~U, a) ∈ [[λ~xM]].

For a constructor pattern ~P (~x) and a list ~V of the same length and types

as ~x we define a list ~P (~V) of formal neighborhoods of the same length and

types as ~P (~x), by induction on ~P (~x). x(V) is the singleton list V , and for

〈〉 take the empty list. (~P ,Q)(~V , ~w) is covered by induction, and

(C ~P)(~V) := { C~a | ai ∈ Pi(~Vi) if Pi(~Vi) 6= ∅, and ai = ∗ otherwise }.

We use the following notation. (~U, a) means (U1, (U2, . . . (Un, a)) . . .), and

(~U, V) ⊆ [[λ~xM]] means (~U, a) ∈ [[λ~xM]] for all (finitely many) a ∈ V .

Definition (Inductive, of (~U, a) ∈ [[λ~xM]]).

Ui ` a
(~U, a) ∈ [[λ~xxi]]

(V),
(~U, V, a) ∈ [[λ~xM]] (~U, V) ⊆ [[λ~xN]]

(~U, a) ∈ [[λ~x(MN)]]
(A).

For every constructor C and defined constant D we have

~V ` ~a
(~U, ~V , C~a) ∈ [[λ~xC]]

(C),
(~U, ~V , a) ∈ [[λ~x,~yM]] ~W ` ~P (~V)

(~U, ~W, a) ∈ [[λ~xD]]
(D)

with one such rule (D) for every computation rule D~P (~y) = M .

This “denotational semantics” has good properties (see Schwichtenberg
and Wainer (2012, pp.279–287)): [[λ~xM]] is an object in the model, and the
definition above of the denotation of a term is reasonable in the sense that
it is not changed by an application of the standard (β- and η-) conversions
or a computation rule.

3. A theory of computable functionals

After getting clear about the objects we intend to reason about, we now
set up a theory to prove their properties. The main concepts are those of
inductively and coinductively defined predicates. They can be declared to
be either computationally relevant (c.r.) or else non-computational (n.c.).

3.1. Formulas and their computational content. Assume an infinite
supply of predicate variables, each of its own arity (a list of types). We
distinguish two sorts of predicate variables, “computationally relevant” ones
Xc and “non-computational” ones Xnc, and use X for both.

Definition (Clauses and predicate forms). Clauses K have the form

∀~x(Ỹ c → Z̃nc → (∀~yi(W̃
nc
i → X̄i))i<n → X̄)

with all predicate variables Y c
i , Znc

i , W nc
i occurring exactly once and distinct

from each other and from X. By X̄ we denote the result of applying the

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 11

predicate variable X to a list of terms of fitting types, and by X̃ lists of
those. Iterated implications are understood as associated to the right. A
premise of a clause is called a parameter premise if X does not occur in
it, and a recursive premise otherwise. A clause K is nullary if it has no

recursive premises. We call Ic := µXc ~K and Inc := µXnc ~K with ~K not
empty predicate forms (and use I for both), and similarly with coI for I and
ν for µ.

Definition (Algebra form of a predicate form). From every clause K we
obtain a constructor type by (i) omitting quantifiers, (ii) dropping all n.c.
predicates and from the c.r. predicates their arguments, and (iii) replacing
the remaining predicate variables by type variables. That is, from the clause

∀~x(Ỹ c → Z̃nc → (∀~yi(W̃
nc
i → X̄i))i<n → X̄)

we obtain the constructor type ~α→ (ξ)i<n → ξ. With every predicate form

Ic := (µ/ν)Xc ~K we canonically associate the algebra form ιIc := µξ~κ.

Definition (Predicates and formulas).

P,Q ::= X | { ~x | A } | I(~ρ, ~P) | coI(~ρ, ~P) (predicates),

A,B ::= P~t | A→ B | ∀xA (formulas)

with I/coI a predicate form. (I/coI)(~ρ, ~P) is the result of substituting the

types ~ρ and the (already generated) predicates ~P for its type and predicate
variables. To take care of the difference between Xc and Xnc we define the
final predicate of a predicate or formula by

fp(X) := X,

fp({ ~x | A }) := fp(A),

fp((I/coI)(~ρ, ~P)) := I/coI,

fp(P~t) := fp(P),

fp(A→ B) := fp(B),

fp(∀xA) := fp(A).

We call a predicate or formula C non-computational (n.c., or Harrop) if
its final predicate fp(C) is of the form Xnc or Inc, else computationally

relevant (c.r.). All predicate substitutions involved in (I/coI)(~ρ, ~P) must
substitute c.r. predicates for c.r. predicate variables and n.c. predicates for
n.c. predicate variables. Such predicate substitutions are called sharp.

Predicates of the form I(~ρ, ~P) are called inductive, and predicates of the

form coI(~ρ, ~P) coinductive.
The terms ~t are those introduced in Section 2.1, i.e., typed terms built

from typed variables and constants by abstraction and application, and (im-
portantly) those with a common reduct are identified.

A predicate of the form { ~x | C } is called a comprehension term. We
identify { ~x | C(~x) }~t with C(~t). For a predicate C of arity (ρ, ~σ) we write
Ct for { ~y | Ct~y }.

Definition (Type τ(C) and cotype ϕ(C) of a c.r. predicate or formula C).
Assume a global injective assignment of type variables ξ to c.r. predicate

12 HELMUT SCHWICHTENBERG

variables X.

τ(X) := ξ,

τ({ ~x | A }) := τ(A),

τ((I/coI)(~τ , ~P)) := ιI(τ(~P c)),

τ(P~t) := τ(P),

τ(A→ B) :=

{
τ(A)→ τ(B) (A c.r.)

τ(B) (A n.c.)

τ(∀xA) := τ(A)

where ~P c are the c.r. predicates among ~P and ιI is the algebra associ-
ated with the predicate I/coI. Cotypes are like types, but with algebra
occurrences ιI marked as coιI if they arise from a coinductive predicate:

ϕ(coI(~τ , ~P)) := coιI(ϕ(~P c)).

Examples. 1. The even numbers are inductively defined by

Even := µXc(0 ∈ Xc,∀n(n ∈ Xc → S(Sn) ∈ Xc)).

The constructor types of τ(Even) are ξ and ξ → ξ, hence τ(Even) = N.
2. Leibniz equality ≡ is inductively defined by EqD := µXnc(∀xXncxx).
3. The missing logical connectives ∨, ∧, ∃ are nullary inductive predicates

with parameters. For instance, disjunction is a special case of union

CupY,Z := µXc(∀~x(Y ~x→ Xc~x), ∀~x(Z~x→ Xc~x)).

Since Y,Z can be chosen as either c.r. or n.c. we obtain the variants

CupDY c,Zc := µXc(∀~x(Y c~x→ Xc~x), ∀~x(Zc~x→ Xc~x)),

CupLY c,Znc := µXc(∀~x(Y c~x→ Xc~x), ∀~x(Znc~x→ Xc~x)),

CupRY nc,Zc := µXc(∀~x(Y nc~x→ Xc~x), ∀~x(Zc~x→ Xc~x)),

CupUY nc,Znc := µXc(∀~x(Y nc~x→ Xc~x), ∀~x(Znc~x→ Xc~x)),

CupNcY,Z := µXnc(∀~x(Y ~x→ Xnc~x), ∀~x(Z~x→ Xnc~x)).

(D, L, R, U for “double”, “left”, “right” and “uniform”). Then by definition

τ(CupD) = µξ(β0 → ξ, β1 → ξ) = β0 + β1,

τ(CupL) = µξ(β → ξ, ξ) = β + U,
τ(CupR) = µξ(ξ, β → ξ) = U + β,

τ(CupU) = µξ(ξ, ξ) = B.

In case of nullary predicates we write A∨dB for CupD{|A},{|B}, and similarly

for ∨l, ∨r, ∨u, ∨nc. Since the “decoration” is determined by the c.r./n.c. sta-
tus of the two parameter predicates we can leave it out in ∨d,∨l,∨r,∨u and
write ∨. However in the final nc-variant we suppress even the information
which clause has been used, and hence must keep the notation ∨nc.

3.2. Axioms of TCF. The essential axioms of TCF are introduction and
elimination axioms for (co)inductively defined predicates. To grasp the ge-
neral form of these axioms it is convenient to write a clause

∀~x(Ỹ c → Z̃nc → (∀~yi(W̃
nc
i → X̄i))i<n → X̄) as ∀~x((Aν(X))ν<n → X~t).

Definition. For an inductive predicate µX(∀~xi((Aiν(X))ν<ni → X~ti))i<k =:
I we have k introduction axioms I+i (i < k) and one elimination axiom I−:

I+i : ∀~xi((Aiν(I))ν<ni → I~ti),(2)

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 13

I− : (∀~xi((Aiν(I ∩X))ν<ni → X~ti))i<k → I ⊆ X(3)

(3) expresses that every competitor X satisfying the same clauses contains
I. We take all substitution instances of I+i , I− (w.r.t. substitutions for type
and predicate variables) as axioms.

In (3) a “strengthened” form of the “step formula” has been used, namely
∀~xi(Aiν(I ∩ X))ν<ni → X~ti rather than ∀~xi(Aiν(X))ν<ni → X~ti. In appli-
cations this simplifies the proof of the “step”, since we have an additional
I-hypothesis available.

To understand the axioms for coinductive predicates note that the con-
junction of the k clauses (2) of an inductive predicate I is equivalent to

∀~x(
∨∨
i<k

∃~xi(
∧∧
ν<ni

Aiν(I) ∧ ~x ≡ ~ti)→ I~x).

Definition. For an inductive predicate µX(∀~xi((Aiν(X))ν<ni → X~ti))i<k =:
I we define its closure axiom coI− and its greatest-fixed-point axiom coI+:

coI− : ∀~x(coI~x→
∨∨
i<k

∃~xi(
∧∧
ν<ni

Aiν(coI) ∧ ~x ≡ ~ti))(4)

coI+ : ∀~x(X~x→
∨∨
i<k

∃~xi(
∧∧
ν<ni

Aiν(coI ∪X) ∧ ~x ≡ ~ti))→ X ⊆ coI.(5)

(5) expresses that every competitor X satisfying the closure axiom is con-
tained in coI. We take all substitution instances of coI−, coI+ (w.r.t. type
and predicate variables) as axioms.

Here again we have used a strengthened form of the step formula, with
Aiν(coI ∪ X) rather than Aiν(X). In applications of (5) this simplifies the
proof of the step, since its conclusion is weaker.

Example. The conjunction of the two clauses of Even is equivalent to

∀n(n ≡ 0 ∨ ∃n′(n′ ∈ Even ∧ n ≡ S(Sn′))→ n ∈ Even).

Hence the closure and greatest-fixed-point axioms for its dual coEven are

∀n(n ∈ coEven→ n ≡ 0 ∨ ∃n′(n′ ∈ coEven ∧ n ≡ S(Sn′))),
∀n(Xn→ n ≡ 0 ∨ ∃n′(n′ ∈ (coEven ∪X) ∧ n ≡ S(Sn′)))→ X ⊆ coEven.

For n.c. inductive or coinductive predicates the axioms are formed as in
the c.r. case, using ∨nc for the closure axiom of coInc. But there is an impor-
tant restriction: for Inc with more than one clause the elimination axiom
(Inc)− can only be used with a non-computational competitor predicate.
This is needed in the proof of the soundness theorem below. However, this
restriction does not apply to Inc defined by one clause only. Important exam-
ples of such one-clause-nc inductive predicates are Leibniz equality and the
non-computational variants of the existential quantifier and of conjunction.

Lemma 3.1. I ⊆ coI, Inc ⊆ coInc and also I ⊆ Inc, coI ⊆ coInc.

From the definition of Leibniz equality we can deduce the property Leibniz
used as a definition.

Lemma 3.2 (Compatibility of EqD). ∀x,y(x ≡ y → A(x)→ A(y)).

Proof. By the elimination axiom with X := {x, y | A(x)→ A(y) }. �

14 HELMUT SCHWICHTENBERG

Using compatibility of ≡ one easily proves symmetry and transitivity.
Define falsity by F := (ff ≡ tt). Then we can prove “Ex-falso-quodlibet”:

Theorem 3.3. For every formula A we can derive F → A from assump-
tions EfY : ∀~x(F→ Y ~x) for predicate variables Y strictly positive in A, and
EfI : ∀~x(F→ I~x) for inductive predicates I without a nullary clause.

Proof. We first show EfEqD : F → xρ ≡ yρ. By the introduction axiom we
have RρBffxy ≡ R

ρ
Bffxy. Then from ff ≡ tt we get RρBttxy ≡ R

ρ
Bffxy by

compatibility. Now RρBttxy converts to x and RρBffxy converts to y. Hence
xρ ≡ yρ, since we identify terms with a common reduct.

The claim can now be proved by induction on A. Case I~s. If I has no
nullary clause take EfI . Otherwise let Ki be the nullary clause, with final
conclusion I~t. By induction hypothesis from F we can derive all parameter
premises. Hence I~t. From F we also obtain si ≡ ti, by the remark above.
Hence I~s by compatibility. Case coI~s. Use Lemma 3.1. The cases Y ~s,
A→ B and ∀xA are obvious. �

A crucial use of the equality predicate EqD is that it allows us to lift
a boolean term tB to a formula, using atom(tB) := (tB ≡ tt). This opens
up a convenient way to deal with equality on algebras. The computation
rules ensure that, for instance, the boolean term St =N Ss, or more precisely
=N(St,Ss), is identified with t =N s. We can now turn this boolean term into
the formula (St =N Ss) ≡ tt, which again is abbreviated by St =N Ss, but
this time with the understanding that it is a formula. Then (importantly)
the two formulas St =N Ss and t =N s are identified because the latter is a
reduct of the first. Consequently there is no need to prove the implication
St =N Ss→ t =N s explicitly.

3.3. Equality and extensionality. We first consider closed base types and
take the algebra Y of binary trees as an example. Totality TY is inductively
defined by the axioms

(TY)+0 : − ∈ TY, (TY)+1 : ∀t1,t2(t1, t2 ∈ TY → Ct1t2 ∈ TY),

T−Y : − ∈ X → ∀t1,t2(t1, t2 ∈ TY ∩X → Ct1t2 ∈ X)→ TY ⊆ X.
and cototality coTY coinductively by
coT−Y : ∀t(t ∈ coTY → (t≡−) ∨ ∃t1,t2(t1, t2 ∈ coTY ∧ t≡Ct1t2))
coT+

Y : ∀t(t ∈ X → (t≡−) ∨ ∃t1,t2(t1, t2 ∈ coTY ∪X ∧ t≡Ct1t2))→ X ⊆ coTY.

As candidates for equality we define binary versions of TY and coTY, called
similarity ∼Y and bisimilarity ≈Y, for instance by

− ∼Y −, ∀t1,t′1(t1 ∼Y t
′
1 → ∀t2,t′2(t2 ∼Y t

′
2 → Ct1t2 ∼Y Ct′1t′2)).

We aim at using ∼Y and ≈Y for a characterization of equality at TY and
coTY. This is useful because it gives us a tool (induction, coinduction) to
prove equalities t ≡ t′, which otherwise would be difficult. We will need
another axiom, the Bisimilarity Axiom, which is justified by the fact that it
holds in our intended model (cf. Lemma 1.5).

Axiom (Bisimilarity). ∀t,t′(t ≈Y t
′ → t ≡ t′).

Lemma 3.4 (Characterization of equality at TY and coTY).

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 15

(a) ∀t,t′(t ∼Y t
′ ↔ t, t′ ∈ TY ∧ t ≡ t′).

(b) ∀t,t′(t ≈Y t
′ ↔ t, t′ ∈ coTY ∧ t ≡ t′).

Proof. (b). The proof of Lemma 1.6 has been given in enough detail to make
its formalization immediate. We need coT±Y and ≈±Y .

(a). Similar to (b), using T±Y , ∼±Y instead. For the proof of t ∼Y t
′ → t ≡ t′

use (b) and ∼Y ⊆ ≈Y. �

Hence ∼Y is a partial equivalence relation on CY with domain TY, and
similar for ≈Y and coTY.

At higher types we use pointwise equality of Gandy (1953, 1956) and
Takeuti (1953). This notion is somewhat delicate in our setting, since we
allow infinite base type objects.

Definition. For every algebra form ι with type parameters ~α we define two
predicate forms ∼ι, ≈ι (called relative similarity and relative bisimilarity)

with type parameters ~α and predicate parameters ~Y (where Yi has arity
(αi, αi)) as follows. Let ~α → (ξ)i<n → ξ be a constructor type. Take

(µ/ν)Z(~K), where the clause for the constructor type above is

Y1u1u
′
1 → · · · → Ynunu

′
n → Zv1v

′
1 → · · · → Zvmv

′
m → Z(C~u~v, C~u ′~v)

with C the corresponding constructor of ι. (Absolute) similarity / bisimi-
larity predicates arise from the relative ones by substituting a similarity /
bisimilarity predicate for Y .

Definition (Cotype of a c.r. predicate or formula C). Cotypes ϕ(C) are
like types τ(C), but with algebra occurrences ιI marked as coιI if they arise

from a coinductive predicate: ϕ(coI(~τ , ~P)) := coιI(ϕ(~P c)).

Definition (Pointwise equality
.
=ϕ w.r.t. a cotype ϕ).

(x
.
=α y) := Y xy with Y uniquely assigned to α,

(x
.
=ι(~ϕ) y) := (x ∼ y) with ∼ := ∼ι(

.
=~ϕ),

(x
.
=coι(~ϕ) y) := (x ≈ y) with ≈ := ≈ι(

.
=~ϕ),

(f
.
=ϕ→ψ g) := ∀x,y(x

.
=ϕ y → fx

.
=ψ gy).

Extensionality Extϕ w.r.t. a cotype ϕ arises as a special case

(x ∈ Extϕ) := (x
.
=ϕ x).

Of course extensionality is a desirable property, but in our model it does
not hold generally. Here is an example of a functional F which is non-
extensional w.r.t. (N → N) → N. Define f, g of type N → N by the com-
putation rules fn = 0 and g0 = 0, g(Sn) = gn. Then f⊥N = 0 because of
the computation rules for f . For g⊥N no computation rule fits, but by the

inductive definition of (~U, a) ∈ [[λ~xM]] (see Section 2) [[g⊥N]] is the empty
object [[⊥N]]. Hence f

.
= g, i.e., ∀n,m(n

.
=N m → fn

.
=N gm), since n

.
=N m

implies n ∈ TN and n ≡ m. Therefore F defined by Fh = h⊥N maps the
pointwise equal f, g to different values.

By Lemma 3.4 we know the equivalence of ExtY and TY (and of Ext(coY)
and coTY); this also holds for arbitrary closed base cotypes. This equivalence
can be extended to closed cotypes of level 1:

16 HELMUT SCHWICHTENBERG

Lemma 3.5. The predicates Extϕ and Tϕ are equivalent for closed cotypes
of level ≤1.

Proof. For closed base cotypes this has been proved in Lemma 3.4 (for the
special case of the algebra Y). In case of level 1 we use induction on the
height of the cotype. Let ϕ→ ψ be a closed cotype of level 1. The following
are equivalent.

f ∈ Extϕ→ψ

f
.
=ϕ→ψ f

∀x,y(x
.
=ϕ y → fx

.
=ψ fy)

∀x∈Tϕ(fx
.
=ψ fx) by Lemma 3.4, since lv(ϕ) = 0

∀x∈Tϕ(fx ∈ Extψ).

By induction hypothesis the final formula is equivalent to f ∈ Tϕ→ψ. �

Lemma 3.6. For every closed cotype ϕ the relation
.
=ϕ is a partial equiva-

lence relation with domain Extϕ.

Proof. By induction on the height |ϕ| of ϕ. Case ι(~ϕ)/coι(~ϕ). For ∼Y and
≈Y this was proved in Lemma 3.4. In the general case use the induction
hypothesis and the inductive / coinductive definition of ∼ι / ≈ι.

Case ϕ → ψ. We first prove symmetry of
.
=ϕ→ψ. Let f

.
=ϕ→ψ g. The

goal is g
.
=ϕ→ψ f . Assume x

.
=ϕ y. The goal now is gx

.
=ψ fy. From x

.
=ϕ y

we obtain y
.
=ϕ x by symmetry of

.
=ϕ, hence fy

.
=ψ gx from f

.
=ϕ→ψ g,

hence gx
.
=ψ fy by symmetry of

.
=ψ.

We finally prove transitivity of
.
=ϕ→ψ. Let f

.
=ϕ→ψ g and g

.
=ϕ→ψ h.

The goal is f
.
=ϕ→ψ h. Assume x

.
=ϕ y. The goal now is fx

.
=ψ hy. From

x
.
=ϕ y we obtain y

.
=ϕ x by symmetry of

.
=ϕ, hence x

.
=ϕ x by transitivity

of
.
=ϕ. Then fx

.
=ψ gx follows from f

.
=ϕ→ψ g. We also have gx

.
=ψ hy

from g
.
=ϕ→ψ h. Using transitivity of

.
=ψ we obtain fx

.
=ψ hy. �

4. Computational content of proofs

We define what it means for a term t to “realize” a c.r. formula A. From
a proof M of A we extract a term et(M) and (formally) prove that it is a
realizer of A. In this proof we need “invariance axioms” stating that every
c.r. formula not involving realizability is invariant under realizability.

4.1. Realizability. Assume that we have a global assignment giving for
every c.r. predicate variable X of arity ~ρ an n.c. predicate variable Xr of
arity (~ρ, ξ) where ξ is the type variable associated with X. We will also
introduce Ir/coIr for (co)inductive predicates I/coI. A formula or predicate
C is called r-free if it does not contain any of these Xr, Ir or coIr. A
derivation M is called r-free if it contains r-free formulas only.

Definition (Cr for r-free predicates and formulas C). For every r-free pre-
dicate or formula C we define a predicate or formula Cr. For n.c. C let
Cr := C. In case C is c.r. Cr is an n.c. predicate of arity (~σ, τ(C)) with ~σ
the arity of C. We often write z r C for Crz in case C is a c.r. formula. For
c.r. predicates X let Xr be the n.c. predicate variable provided, and

{ ~x | A }r := { ~x, z | z r A }.

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 17

Now consider a c.r. (co)inductive predicate

I/coI := (µ/ν)X((Ki(X))i<k

with associated algebra form ιI = µξ(κi(ξ))i<k where κi(ξ) := τ(Ki(X)).
The i-th constructor of ιI is Ci : κi(ιI). Let s be a variable of type τ(I) and
ϑ the substitution ξ 7→ τ(I), Xr 7→ { ~x, s | Y ~xs }. We define n.c. predicates
Ir and coIr by

Ir/coIr := (µ/ν)Y ((Ci r Ki(X))ϑ)i<k.

The substitution ϑ is necessary since the arity of Y (and hence of Ir/coIr)
must be (~ρ, τ(I)) and not (~ρ, ξ). For c.r. formulas let

z r P~t := P r~tz,

z r (A→ B) :=

{
∀w(w r A→ zw r B) if A is c.r.

A→ z r B if A is n.c.

z r ∀xA := ∀x(z r A).

As an example for the construction of Ir consider the predicate Even,
defined by µX(K0(X),K1(X)) with K0(X) := (0 ∈ X) and K1(X) :=
∀n(n ∈ X → S(Sn) ∈ X). The associated algebra form is µξ(κ0(ξ), κ1(ξ))
with κ0(ξ) := ξ and κ1(ξ) := ξ → ξ, i.e., the algebra N with constructors
C0 := 0 and C1 := S. Let ϑ be the substitution ξ 7→ N, Xr 7→ {n,m | Y nm }.
Since S r K1(X) is ∀n,m(Xrnm→ Xr(S(Sn),Sm)) we obtain

Ir := µY (Y 00,∀n,m(Y nm→ Y (S(Sn),Sm)).

Lemma 4.1. For closed base types ι the following are equivalent.

(a) T r
ι xy,

(b) x ∼nc
ι y,

(c) x ∈ T nc
ι ∧ x ≡ y.

Proof. (a) ↔ (b). Both T r
ι xy and x ∼nc

ι y satify the same clauses. Use the
respective elimination axiom in each of the two directions.

(b) ↔ (c). Use Lemma 3.4. �

Lemma 4.2. For closed base types ι the following are equivalent.

(a) coT r
ι xy,

(b) x ≈nc
ι y,

(c) x ∈ coT nc
ι ∧ x ≡ y.

Proof. As an example we give the proof for N. Since we have n.c. goals only,
decorations are omitted. For (a) → (b) apply ≈−N with coT r

N for X.

≈−N : ∀n,m(Xnm→ (n ≡ 0 ∧m ≡ 0) ∨
∃n′,m′((n′ ≈N m

′ ∨Xn′m′) ∧ n ≡ Sn′ ∧m ≡ Sm′))→ X ⊆ ≈N.

It suffices to prove the premise. Assume coT r
Nnm; the goal is

C := coT r
N00 ∨ ∃n′,m′((n′ ≈N m

′ ∨ coT r
Nn
′m′) ∧ n ≡ Sn′ ∧m ≡ Sm′).

By the closure axiom (coT r
N)− we have

(n ≡ 0 ∧m ≡ 0) ∨ ∃n′,m′(coT r
Nn
′m′ ∧ n ≡ Sn′ ∧m ≡ Sm′).

We argue by cases (i.e., use ∨−).

18 HELMUT SCHWICHTENBERG

Case 1. n ≡ 0 ∧m ≡ 0. Go for the l.h.s. of the disjunction C and show
coT r

N00. But this follows from the greatest-fixed-point axiom for coT r
N with

competitor predicate {n,m | n ≡ 0 ∧m ≡ 0 }.
Case 2. ∃n′,m′(coT r

Nn
′m′ ∧ n ≡ Sn′ ∧m ≡ Sm′). Go for the r.h.s. of C.

(b)→ (a). Recall coTN := νX(0 ∈ X, ∀n∈X(Sn ∈ X)), hence by definition
coT r

N := νXr(Xr00, ∀n,m(Xrnm→ Xr(Sn)(Sm))).

To show m ≈N n→ coT r
Nmn, apply (coT r

N)+ with ≈N for X; recall (coT r
N)+:

∀n,m(Xnm→ X00 ∨ ∃n′,m′(n′,m′ ∈ (coT r
N ∪X) ∧ n ≡ Sn′ ∧m ≡ Sm′))→

X ⊆ coT r
N.

It suffices to prove the premise. Assume n ≈N m; the goal is

C := (0 ≈N 0) ∨ ∃n′,m′((n′,m′ ∈ (coT r
N ∪ ≈N) ∧ n ≡ Sn′ ∧m ≡ Sm′)).

By the closure axiom (≈N)− we have

n ≈N m→ (n ≡ 0 ∧m ≡ 0) ∨ ∃n′,m′(n′ ≈N m
′ ∧ n ≡ Sn′ ∧m ≡ Sm′).

We argue by cases (i.e., use ∨−).
Case 1. n ≡ 0 ∧m ≡ 0. Go for the l.h.s. of the disjunction C and show

0 ≈N 0. But this follows from n ≈N m.
Case 2. ∃n′,m′(n′ ≈N m

′ ∧ n ≡ Sn′ ∧m ≡ Sm′). Go for the r.h.s. of C.
(b) ↔ (c). Use the Bisimilarity Axiom and Lemma 3.4. �

Lemma 4.3 (Realizers for ∃). z r ∃xA↔ ∃x(z r A) for A c.r.

Proof. Recall ExY := µX(∀x(x ∈ Y → X)). Then

Exr
Y r := µXr(∀x,z(Y rxz → Xrz)).

Now substituting Y r by {x, z | z r A } in the introduction axiom gives

(Exr
{x,z|zrA})

+
0 : ∀x,z(z r A→ z r ∃xA)

Conversely, the elimination axiom (Exr
Y r)− is

∀z(z ∈ Exr
Y r → ∀x,z(Y rxz → z ∈ X)→ z ∈ X).

which is equivalent to

∀z(z ∈ Exr
Y r → ∀z(∃xY rxz → z ∈ X)→ z ∈ X).

Substituting X by { z | ∃x(Y rxz) } makes the middle part provable. Thus
with {x, z | z r A } for Y r we obtain ∀z(z r ∃xA → ∃x(z r A)) from
(Exr

{x,z|zrA})
−. �

Lemma 4.4 (Realizers for ∧). z r (A ∧B) is equivalent to

z ≡ 〈lft(z), rht(z)〉 ∧ (lft(z) r A) ∧ (rht(z) r B) for A c.r. and B c.r.

(z r A) ∧B for A c.r. and B n.c.

A ∧ (z r B) for A n.c. and B c.r.

Proof. Case A,B c.r. Recall AndDXc,Y c := µZc(X
c → Y c → Zc). Then

AndDr
Xr,Y r := µZr(∀x(x ∈ Xr → ∀y(y ∈ Y r → 〈x, y〉 ∈ Zr))).

Substituting Xr by {x | x r A } and Y r by { y | y r B } gives

(AndDr
{x|xrA},{y|yrB})

+
0 : ∀x((x r A)→ ∀y(y r B → 〈x, y〉 r (A ∧B))).

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 19

This suffices for “←”. Conversely, the elimination axiom (AndDr
Xr,Y r)− is

∀x(x ∈ Xr → ∀y(y ∈ Y r → 〈x, y〉 ∈ Z))→ AndDr
Xr,Y r ⊆ Z.

Substitute Z by { z | z ≡ 〈lft(z), rht(z)〉 ∧ (lft(z) r A)∧ (rht(z) r B) }. With
{x | x r A } for Xr and { y | y r B } for Y r the premise is provable. Hence

∀z(z r (A ∧B)→ z ≡ 〈lft(z), rht(z)〉 ∧ (lft(z) r A) ∧ (rht(z) r B)).

Case A c.r., B n.c. Recall AndLXc,Y nc := µZc(X
c → Y nc → Zc). Then

AndLr
Xr,Y nc := µZr(∀z(z r X → Y nc → z ∈ Zr)).

Substituting Xr by { z | z r A } and Y nc by B gives

(AndLr
{z|zrA},B)+0 : ∀z((z r A)→ B → z r (A ∧B)).

This suffices for “←”. Conversely, the elimination axiom (AndLr
X,Y nc)− is

∀z(z r X → Y nc → z ∈ Z)→ AndLr
X,Y nc ⊆ Z.

Substitute Z by { z | (z r A) ∧B }. Then with { z | z r A } for X and B for
Y nc the premise is provable and we obtain

∀z(z r (A ∧B)→ (z r A) ∧B). �

Recall that for the sum type ρ+σ we had the constructors (InLρσ)ρ→ρ+σ

and (InRρσ)σ→ρ+σ. In the special situation that one of the two parameter
types is the unit type U it is common to view the sum type U+σ as a unary
algebra form, with constructors DummyL of type U + σ and Inr of type
σ → U + σ. Similarly ρ+ U is viewed as a unary algebra, with constructors
Inl of type ρ→ ρ+ U and DummyR of type ρ+ U.

Lemma 4.5 (Realizers for ∨). z r (A ∨B) is equivalent to

∃x(x r A ∧ z ≡ InL(x)) ∨nc ∃y(y r B ∧ z ≡ InR(y)) for A,B c.r.

∃x(x r A ∧ z ≡ Inl(x)) ∨nc (B ∧ z ≡ DummyR) for A c.r. and B n.c.

(A ∧ z ≡ DummyL) ∨nc ∃y(y r B ∧ z ≡ Inr(y)) for A n.c. and B c.r.

(A ∧ z ≡ tt) ∨nc (B ∧ z ≡ ff) for A,B n.c.

Proof. As an example consider the case A n.c., B c.r. Recall OrRXnc,Y c :=
µZ(Xnc → Z, Y c → Z). Then

OrRr
Xnc,Y r := µZr(Xnc → DummyL ∈ Zr,∀y(y r Y → Inr(y) ∈ Zr)).

Substituting Xnc by A and Y r by { y | y r B } gives

(OrRr
A,{y|yrB})

+
0 : A→ DummyL r (A ∨B),

(OrRr
A,{y|yrB})

+
1 : ∀y(y r B → Inr(y) r (A ∨B)).

This suffices for “←”: if A ∧ z ≡ DummyL, then from (OrRr
A,{y|yrB})

+
0 we

obtain z r (A ∨ B), and if we have y with y r B and z ≡ Inr(y), then from
(OrRr

A,{y|yrB})
+
1 we again obtain z r (A ∨B).

Conversely, the elimination axiom (OrRr
Xnc,Y r)− is

(Xnc → DummyL ∈ Z)→ ∀y(y r Y → Inr(y) ∈ Z)→ OrRr
Xnc,Y r ⊆ Z.

20 HELMUT SCHWICHTENBERG

Substitute Z by { z | (A∧ z ≡ DummyL)∨nc ∃y(y r B ∧ z ≡ Inr(y)) }. Then
with A for Xnc and { y | y r B } for Y r the premises are provable. Hence

∀z(z r (A ∨B)→ (A ∧ z ≡ DummyL) ∨nc ∃y(y r B ∧ z ≡ Inr(y))). �

4.2. Extracted terms. Let M be a proof in TCF of a c.r. formula A.
Assume M is an r-free proof, i.e., M contains no realizability predicates Ir

or coIr. We define its extracted term et(M), of type τ(A), with the aim to
express M ’s computational content.

Let M be a proof in TCF of a c.r. formula A. Assume M is an r-free
proof, i.e., M contains no realizability predicates Ir or coIr. We define its
extracted term et(M), of type τ(A), with the aim to express M ’s compu-
tational content. It will be a term built up from variables, constructors,
recursion operators, destructors and corecursion operators by λ-abstraction
and application.

Definition (Extracted term). For an r-free proof M of a c.r. formula A we
define its extracted term et(M) by

et(uA) := zτ(A)u (z
τ(A)
u uniquely associated to uA),

et((λuAM
B)A→B) :=

{
λzuet(M) if A is c.r.

et(M) if A is n.c.

et((MA→BNA)B) :=

{
et(M)et(N) if A is c.r.

et(M) if A is n.c.

et((λxM
A)∀xA) := et(M),

et((M∀xA(x)t)A(t)) := et(M).

It remains to define extracted terms for the axioms. Consider a (c.r.) in-
ductively defined predicate I. For its introduction and elimination axioms
define et(I+i) := Ci and et(I−) := R, where both the constructor Ci and
the recursion operator R refer to the algebra ιI associated with I. For
the closure and greatest-fixed-point axioms of coI define et(coI−) := D and
et(coI+i) := coR, where both the destructor D and the corecursion operator
coR refer to the cotype coιI where ιI is the algebra associated with I. For
the elimination axiom (Inc)− of a one-clause-nc inductive predicate with a
c.r. competitor predicate the extracted term is the identity.

One can see easily that the identity realizes the elimination axiom (Inc)−

of a one-clause-nc inductive predicate with a c.r. competitor predicate. More
work is needed to show that the extracted term of I±, coI± realizes the
respective axiom. We prove this for a special case only, the algebras of
lists and streams of “signed digits”. Such objects are of interest for the
representation of (dyadic) rational numbers and of real numbers.

Let ∼D be the similarity relation for the three-element algebra D of signed
digits 1, 0, −1 (written 1̄), defined by the three clauses s ∼D s for s a signed
digit. We will work with lists L(D) of signed digits and streams S(D) of
signed digits, abbreviated L and S. The similarity relation ∼L has clauses

[] ∼L [], ∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → s1 :: `1 ∼L s2 :: `2)

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 21

and the elimination axiom ∼−L :

X[][]→ ∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → X`1`2 → X(s1 :: `1, s2 :: `2))→
∼L ⊆ X.
For the first two claims we only consider the inductive predicate ∼L.

Lemma 4.6. The constructors of L realize the clauses of ∼L.

Proof. We only consider the second constructor ::. We must show that ::
realizes the following formula C equivalent to (∼L)+1 :

∀s1,s2(s1 ∼D s2 → ∀`1,`2(`1 ∼L `2 → s1 :: `1 ∼L s2 :: `2))

i.e., :: r C. Pick s1, s2. The goal then is

:: r (s1 ∼D s2 → ∀`1,`2(`1 ∼L `2 → s1 :: `1 ∼L s2 :: `2)).

Pick s with ∼r
D(s1, s2, s). The goal then is

:: s r ∀`1,`2(`1 ∼L `2 → s1 :: `1 ∼L s2 :: `2).

Pick `1, `2, ` with ∼r
L(`1, `2, `). The goal then is

(s :: `) r (s1 :: `1 ∼L s2 :: `2), i.e., ∼r
L (s1 :: `1, s2 :: `2, s :: `)).

But this follows from what we have by the second clause of ∼r
L:

∀s1,s2,s,`1,`2,`(∼r
D(s1, s2, s)→ ∼r

L(`1, `2, `)→ ∼r
L(s1 :: `1, s2 :: `2, s :: `)). �

Lemma 4.7. The recursion operator RαL realizes ∼−L .

Proof. We equivalently rewrite ∼−L as C :=

∀`1,`2(`1 ∼L `2 → X[][]→ ∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → X`1`2 →
X(s1 :: `1, s2 :: `2))→ X`1`2)

to make its type the same as the one for RαL:

L→ α→ (D→ L→ α→ α)→ α.

We must show RαL r C. Pick `1, `2, `, x with ∼r
L(`1, `2, `) and Xr[][]x. The

goal then is

RαL`x r (∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → X`1`2 → X(s1 :: `1, s2 :: `2))→
X`1`2).

Assume f r ∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → X`1`2 → X(s1 :: `1, s2 ::
`2)), which implies ∀s1,s2,s,`1,`2,`,y(∼D(s1, s2, s)→ ∼L(`1, `2, `)→ Xr`1`2y →
Xr(s1 :: `1, s2 :: `2, fs`y)). Our goal is

Xr(`1, `2,RαL`xf) =: Q`1`2`.

To this end we use the elimination axiom for ∼r
L:

∀`1,`2,`(∼r
L(`1, `2, `)→ Q[][][]→ ∀s1,s2,s,`1,`2,`(∼r

D(s1, s2, s)→ ∼r
L(`1, `2, `)→

Q`1`2`→ Q(s1 :: `1, s2 :: `2, s :: `))→ Q`1`2`).

It suffices to prove the premises Q[][][] and ∀s1,s2,s,`1,`2,`(∼r
D(s1, s2, s) →

∼r
L(`1, `2, `) → Q`1`2` → Q(s1 :: `1, s2 :: `2, s :: `)). By a computation

rule for RαL the former is Xr[][]x, which we have. For the latter assume s1,
s2, s, `1, `2, ` and its premises. We show Q(s1 :: `1, s2 :: `2, s :: `), i.e.,

Xr(s1 :: `1, s2 :: `2,RαL(s :: `)xf).

22 HELMUT SCHWICHTENBERG

By the computation rules for RαL this is the same as

Xr(s1 :: `1, s2 :: `2, fs`(RαL`xf)).

But with y := RαL`xf this follows from what we have. �

The bisimilarity relation ≈S is defined by the closure axiom

≈−S : ∀u1,u2(u1 ≈S u2 →
∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ u′1 ≈S u

′
2 ∧ u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2))

and the greatest-fixed-point axiom ≈+
S :

∀u1,u2(Xu1u2 → ∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ (u′1 ≈S u
′
2 ∨Xu′1u′2) ∧

u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2))→
X ⊆ ≈S.

For the final two claims we only consider the coinductive predicate ≈S.

Lemma 4.8. The destructor DS realizes the closure axiom ≈−S .

Proof. Recall ≈−S : ∀u1,u2(u1 ≈S u2 → ∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ u′1 ≈S u
′
2 ∧ u1 ≡

s1 :: u′1 ∧ u2 ≡ s2 :: u′2)) with cotype coS→ D× coS. The goal is DS r ≈−S :

∀u1,u2,u(≈r
S(u1, u2, u)→ DSu r ∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ u′1 ≈S u

′
2 ∧

u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2)).

Assume ≈r
S(u1, u2, u). We need to prove

∃s1,s2,u′1,u′2(DSu r (s1 ∼D s2 ∧ u′1 ≈S u
′
2) ∧ u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2).

By (≈r
S)− from ≈r

S(u1, u2, u) we obtain s1, s2, s, u
′
1, u

′
2, u

′ such that

∼r
D(s1, s2, s) ∧ ≈r

S(u′1, u
′
2, u
′) ∧ u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2) ∧ u ≡ s :: u′.

Take s1, s2, u
′
1, u

′
2. It remains to show DSu r (s1 ∼D s2 ∧ u′1 ≈S u

′
2). By

the computation rule of DS we know DSu ≡ DS(s :: u′) ≡ 〈s, u′〉. Hence we
must prove ∼r

D(s1, s2, s) and ≈r
S(u1, u2, u), which we both have. �

Lemma 4.9. The corecursion operator coRαS realizes ≈+
S .

Proof. Equivalently rewrite ≈+
S as C := ∀u1,u2(Xu1u2 → ∀u1,u2(Xu1u2 →

∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ (u′1 ≈S u
′
2 ∨Xu′1u′2)∧ u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2))→

u1 ≈S u2) to make its cotype the same as the one for coRαS :

α→ (α→ D× (coS + α))→ coS.
We show that coRαS realizes C, i.e., coRαS r C. The goal then is

coRαS r (Xu1u2 →
∀u1,u2(Xu1u2 → ∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ (u′1 ≈S u

′
2 ∨Xu′1u′2) ∧

u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2))→
u1 ≈S u2).

Pick u with Xru1u2u and f such that

∀u1,u2,u(Xru1u2u→ fu r ∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ (u′1 ≈S u
′
2 ∨Xu′1u′2) ∧

u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2)).

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 23

Our goal is ≈r
S(u1, u2,

coRαSuf). To this end we use (≈r
S)+ in the form

∀u1,u2,u(Qu1u2u→
∀u1,u2,u(Qu1u2u→

∃s1,s2,s,u′1,u′2,u′(∼
r
D(s1, s2, s) ∧ (≈r

S(u′1, u
′
2, u
′) ∨Qu1u2u′) ∧

u1 ≡ s1::u′1 ∧ u2 ≡ s2::u′2) ∧ u ≡ s::u′))→
≈r

S(u1, u2, u))

with

∃z′(Xru1u2z
′ ∧ u ≡ coRαSz′f) =: Qu1u2u.

It suffices to prove the closure property of Q. Let u1, u2, u and also u′ be
given such that Xru1u2u

′ ∧ u ≡ coRαSu′f . We need to show

∃s1,s2,s,u′1,u′2,u′(
∼r

D(s1, s2, s) ∧ (≈r
S(u′1, u

′
2, u
′) ∨ ∃u′(Xru1u2u

′ ∧ u ≡ coRαSu′f)) ∧
u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2 ∧ u ≡ s :: u′).

(6)

Since ∼r
D(s1, s2, s) is equivalent to s1 ≡ s2 ≡ s and Xru1u2u

′ we know

fu′ r ∃s1,s2,u′1,u′2(s1 ∼D s2∧(u′1 ≈S u
′
2∨Xu′1u′2)∧u1 ≡ s1 :: u′1∧u2 ≡ s2 :: u′2).

Then fu′ ≡ 〈s, w〉 with ∼r
D(s1, s2, s) and w r (u′1 ≈S u

′
2 ∨Xu′1u′2), for some

s1, s2, u
′
1, u
′
2 such that u1 ≡ s1 :: u′1 and u2 ≡ s2 :: u′2. Hence

∃u′(≈r
S(u′1, u

′
2, u
′) ∧ w ≡ InL(u′)) ∨ ∃u′′(Xru′1u

′
2u
′′ ∧ w ≡ InR(u′′)).

We distinguish cases on this disjunction. Recall

coRαSuf ≡

{
s :: u if fu ≡ 〈s, InL(u)〉,
s :: coRαSu′f if fu ≡ 〈s, InR(u′)〉.

Case L. ≈r
S(u′1, u

′
2, u
′) ∧ w ≡ InL(u′) for some u′. Then (6) holds, since

u ≡ coRαSu′f ≡ s :: u′.
Case R. Xru′1u

′
2u
′′∧w ≡ InR(u′′) for some u′′. Then again (6) holds with

u′ := coRαSu′′f , since u ≡ coRαSu′f ≡ s :: coRαSu′′f ≡ s :: u′. �

4.3. Soundness. Constructively to state A means the same as to say that
A has a realizer. This statement A ↔ ∃x(x r A) was called “to assert is
to realize” in Feferman (1979). Here we call it invariance axiom, since it
expresses invariance of A under the realizability interpretation. Using the
invariance axioms we will prove the soundness theorem.

Axiom (Invariance). For r-free c.r. formulas A we require

InvAllA : ∀z(z r A→ A).(7)

InvExA : A→ ∃z(z r A).(8)

Theorem 4.10 (Soundness). Let M be an r-free derivation of a formula A
from assumptions ui : Ci (i < n). Then we can derive{

et(M) r A if A is c.r.

A if A is n.c.

24 HELMUT SCHWICHTENBERG

from assumptions {
zui r Ci if Ci is c.r.

Ci if Ci is n.c.

Proof. By induction on M . The axiom cases have been done before, and
from the remaining cases we only treat the ones using invariance axioms.

Case (λuAM
B)A→B with B n.c. and A c.r. We need a derivation of

A → B. By induction hypothesis we have a derivation of B from z r A.
Using the invariance axiom A→ ∃z(z r A) we obtain the required derivation
of B from A as follows.

A→ ∃z(z r A) A

∃z(z r A)

[z r A]

| IH
B
∃−B

Case (MA→BNA)B with B n.c. and A c.r. We need a derivation of B. By
induction hypothesis we have derivations of A→ B and of et(N) r A. Using
the invariance axiom ∀z(z r A→ A) we obtain the required derivation from

∀z(z r A→ A) et(N)

et(N) r A→ A

| IH
et(N) r A

A

and the derivation of A→ B. �

4.4. Extensionality of extracted terms. Let I be an inductive predicate
and ιI its associated algebra. One can show that

• every constructor of ιI is extensional w.r.t. its clause I+i ,
• RαιI is extensional w.r.t. the least-fixed-point axiom I−,

• the destructor of ιI is extensional w.r.t. the closure axiom coI−, and
• coRαιI is extensional w.r.t. the greatest-fixed-point axiom coI+.

We prove these claims for special cases only. For the first two claims we
consider the inductive predicate ∼L.

Lemma 4.11. The constructors of L are extensional w.r.t. ∼L’s clauses.

Proof. We only consider the second constructor C. The goal is to show that
C is extensional w.r.t. the cotype D→ L→ L of ∼L’s second clause, which
by definition of

.
= means

∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → s1 :: `1 ∼L s2 :: `2).

But this is the second clause of ∼L. �

Lemma 4.12. RαL is extensional w.r.t. the least-fixed-point axiom ∼−L .

Proof. We equivalently rewrite ∼−L as C :=

∀`1,`2(`1 ∼L `2 → X[][]→ ∀s1,s2,`1,`2(s1 ∼D s2 → `1 ∼L `2 → X`1`2 →
X(s1 :: `1, s2 :: `2))→ `1`2)

to make its cotype the same as the one for RαL:

L→ α→ (D→ L→ α→ α)→ α.

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 25

We must show RαL
.
=C RαL with α := ϕ(X). By definition of

.
=C this is

equivalent to

∀x1,x2,f1,f2,`1,`2(x1
.
=α x2 → f1

.
=D→L→α→α f2 → `1 ∼L `2 →

RαL`1x1f1
.
=α RαL`2x2f2).

Assume x1
.
=α x2 and f1

.
=D→L→α→α f2. Use the least-fixed-point axiom

∼−L (in its original form) with competitor predicate

X := { `1, `2 | RαL`1x1f1
.
=α RαL`2x2f2 }.

Case []. By the computation rules for RαL the claim X[][] follows from
x1

.
=α x2. Case ::. Assume s1 ∼D s2 and f1

.
=D→L→α→α f2. Let y1 :=

RαL`1x1f1 and y2 := RαL`2x2f2. Then y1
.
=α y2 by assumption. The goal

f1s1`1y1
.
=α f2`2x2y2 follows from f1

.
=f2, s1∼s2, `1∼`2 and y1

.
=αy2. �

For the final two claims we only consider the coinductive predicate ≈S.

Lemma 4.13. The destructor DS is extensional w.r.t. ≈−S .

Proof. The closure axiom ≈−S has cotype coS → D × coS. The goal is
DS

.
=(coS→D×coS) DS, which unfolds into

∀u1,u2(u1 ≈S u2 → DSu1 ∼D×coS DSu2).

Assume u1 ≈S u2. By ≈−S we obtain s1, s2, u
′
1, u
′
2 with

s1 ∼D s2 ∧ u′1 ≈S u
′
2 ∧ u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2.

By the computation rule for DS we have DSui ≡ 〈si, u′i〉. By the clause for
∼D×coS this implies the claim DSu1 ∼D×coS DSu2. �

Lemma 4.14. coRαS is extensional w.r.t. the greatest-fixed-point axiom ≈+
S .

Proof. Equivalently rewrite ≈+
S as C := ∀u1,u2(Xu1u2 → ∀u1,u2(Xu1u2 →

∃s1,s2,u′1,u′2(s1 ∼D s2 ∧ (u′1 ≈S u
′
2 ∨Xu′1u′2)∧ u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2))→

u1 ≈S u2) to make its cotype the same as the one for coRαS :

α→ (α→ D× (coS + α))→ coS.
Call this cotype ψ. The goal is coRαS

.
=ψ

coRαS , which unfolds into

∀x1,x2(x1
.
=α x2 → ∀f1,f2(f1

.
=α→D×(coS+α) f2 → coRαSx1f1 ≈S

coRαSx2f2)).

Assume x1
.
=α x2 and f1

.
=α→D×(coS+α) f2. Let u1 := coRαSx1f1 and u2 :=

coRαSx2f2. To prove the goal u1 ≈S u2 we use coinduction, or more precisely

≈+
S with competitor predicate

X := {u1, u2 | ∃y1,y2(u1 ≡ coRy1f1 ∧ u2 ≡ coRy2f2 ∧ y1
.
=α y2) }.

This means that we have to show

∃s1,s2,u′1,u′2(

s1 ∼D s2 ∧ (u′1 ≈S u
′
2 ∨ ∃y1,y2(u′1 ≡ coRy1f1 ∧ u′2 ≡ coRy2f2 ∧ y1

.
=α y2)) ∧

u1 ≡ s1 :: u′1 ∧ u2 ≡ s2 :: u′2).

From x1
.
=α x2 and f1

.
=α→D×(coS+α) f2 we obtain f1x1 ∼D×(coS+α) f2x2.

By definition of ∼× this implies the existence of s1, s2, a1, a2 with

f1x1 ≡ 〈s1, a1〉 ∧ f2x2 ≡ 〈s2, a2〉 ∧ s1 ∼D s2 ∧ a1 ∼(coS+α) a2,

26 HELMUT SCHWICHTENBERG

and by definition of ∼+ from a1 ∼(coS+α) a2 we obtain the disjunction

(a1 ≡ InL(u′1) ∧ a2 ≡ InL(u′2) ∧ u′1 ≈S u
′
2) ∨

(a1 ≡ InR(x′1) ∧ a2 ≡ InR(x′2) ∧ x′1
.
=α x

′
2).

We argue by cases on this disjunction. Recall

coRαSxf ≡

{
s :: u if fx ≡ 〈s, InL(u)〉,
s :: coRαSx′f if fx ≡ 〈s, InR(x′)〉.

Case L. Then we have s1, s2, u
′
1, u
′
2 with s1 ∼D s2 and u′1 ≈S u

′
2 such that

fixi ≡ 〈si, InL(u′i)〉. Hence ui := coRαSxifi ≡ si :: u′i, and the claim follows.
Case R. Then we have s1, s2, x

′
1, x
′
2 with s1 ∼D s2 and x′1

.
=α x

′
2 such that

fixi ≡ 〈si, InR(x′i)〉. Hence ui := coRαSxifi ≡ si :: u′i with u′i := coRαSx′ifi,
and again the claim follows. �

We now prove compatibility of extracted terms with pointwise equality
w.r.t. the cotype of the formula proved. For a convenient formulation we
assume two more fixed assignments u 7→ z′u, z

′′
u of object variables to as-

sumption variables.

Theorem 4.15 (Compatibility of extracted terms). Let M : A be a proof of
a c.r. formula A and ui : Ci (i = 1, . . . , n) all free c.r. assumptions whose
associated object variable zui is free in et(M). Then we can find a proof of

et(M)(z′u1 , . . . z
′
un)

.
=A et(M)(z′′u1 , . . . z

′′
un)

from assumptions z′ui
.
=Ci z

′′
ui for i = 1, . . . , n.

Proof. By induction on M . Case u : C. Immediate. Case c : A an axiom.
This is clear in case the extracted term is the identity. For the axioms I±

and coI± it was proved in Lemmas 4.11 - 4.14.
Case (λuAM

B)A→B with A c.r. For simplicity assume that u is the
only assumption variable whose zu is free in et(M). By IH we have a
proof of et(M)(z′u)

.
=A et(M)(z′′u) from z′u

.
=A z′′u. We want a proof of

et(λuM)
.
=A→B et(λuM), i.e., λzuet(M)(zu)

.
=A→B λzuet(M)(zu), which is

∀z′u,z′′u (z′u
.
=A z

′′
u → et(M)(z′u)

.
=B et(M)(z′′u)).

Apply→+ and twice ∀+ to the proof given by IH. In case A n.c. the extracted
term et(λuM) is et(M) and the claim is immediate.

Case MA→BNA with A c.r. For simplicity assume that there no assump-
tion variables whose associated object variable is free in et(MN). By IHM

we have a proof of et(M)
.
=A→B et(M), i.e.,

∀z′u,z′′u (z′u
.
=A z

′′
u → et(M)z′u

.
=B et(M)z′′u).

By IHN we have a proof of et(N)
.
=A et(N). Applying an instance of the

first proof to the second gives et(M)et(N)
.
=B et(M)et(N), as required. In

case A n.c. the extracted term et(MN) is et(M) and the claim is immediate.
Cases λxM , Mt. Obvious, since the extracted term does not change. �

Corollary 4.16 (Extensionality of extracted terms). Let M : A be a proof
of a c.r. formula A and ui : Ci (i = 1, . . . , n) all free c.r. assumptions whose
associated object variable zui is free in et(M). Then we can find a proof of
et(M)

.
=A et(M) from assumptions zui

.
=Ci zui for i = 1, . . . , n.

COMPUTATIONAL ASPECTS OF BISHOP’S CONSTRUCTIVE MATHEMATICS 27

Proof. In the constructed proof substitute z′ui , z
′′
ui by zui . �

5. Applications

Space restrictions do not permit to go into applications, which are mainly
in constructive analysis2. We can only refer to e.g. Berger et al. (2016);
Schwichtenberg and Wiesnet (2021).

References

Ulrich Berger, Kenji Miyamoto, Helmut Schwichtenberg, and Hideki Tsuiki.
Logic for Gray-code computation. In D. Probst and P. Schuster, editors,
Concepts of Proof in Mathematics, Philosophy, and Computer Science,
pages 69–110. De Gruyter, 2016.

Errett Bishop. Mathematics as a numerical language. In J. Myhill A. Kino
and R.E. Vesley, editors, Intuitionism and Proof Theory, Proceedings of
the summer conference at Buffalo N.Y. 1968, Studies in logic and the
foundations of mathematics, pages 53–71. North-Holland, Amsterdam,
1970.

Solomon Feferman. Constructive theories of functions and classes. In
K. McAloon M. Boffa, D. van Dalen, editor, Logic Colloquium 78, vol-
ume 97 of Studies in Logic and the Foundations of Mathematics, pages
159–224. North-Holland, Amsterdam, 1979.

Robin Gandy. On axiomatic systems in mathematics and theories in physics.
PhD thesis, University of Cambridge, 1953.

Robin Gandy. On the axiom of extensionality – part I. The Journal of
Symbolic Logic, 21(1):36–48, 1956.

Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunkts. Dialectica, 12:280–287, 1958.

Kim G. Larsen and Glynn Winskel. Using information systems to solve
recursive domain equations. Information and Computation, 91:232–258,
1991.

Helmut Schwichtenberg and Stanley S. Wainer. Proofs and Computations.
Perspectives in Logic. Association for Symbolic Logic and Cambridge Uni-
versity Press, 2012.

Helmut Schwichtenberg and Franziskus Wiesnet. Logic for exact real
arithmetic. Logical Methods in Computer Science, 17(2), 2021.
arxiv.org/abs/1904.12763.

Dana Scott. Domains for denotational semantics. In E. Nielsen and E.M.
Schmidt, editors, Automata, Languages and Programming, volume 140
of LNCS, pages 577–613. Springer Verlag, Berlin, Heidelberg, New York,
1982.

Gaisi Takeuti. On a generalized logic calculus. Japanese Journal of Mathe-
matics, 23:39–96, 1953.

Anne S. Troelstra. Handbook of Proof Theory (ed. S. Buss), chapter Reali-
zability, pages 408–473. Elsevier, 1998.

2see minlog/examples/analysis

