
HELMUT SCHWICHTENBERG AND KARL STROETMANNFROM HIGHER ORDER TERMS TO CIRCUITS11. INTRODUCTIONIn his lecture at the congress, the �rst author gave a survey on some recentresults relevant for computability theory in the context of partial continuousfunctionals (cf. (Scott, 1982; Ershov, 1977; Stoltenberg-Hansen et al., 1994)):� An abstract de�nition of totality due to Berger (cf. (Berger, 1990; Berger,1993) and (Stoltenberg-Hansen et al., 1994, Ch. 8.3)), and applicationsconcerning density and e�ective density theorems.� Bounded �xed points: one can have the exibility of �xed point de�ni-tions and termination at the same time (cf. (Schwichtenberg and Wainer,1995)).� A notion of strict functionals as a tool to prove termination of higherorder rewrite systems (cf. (van de Pol and Schwichtenberg, 1995)).Since this work is published already, we do not give details here but ratherconcentrate on another \applied" aspect of computability theory in highertypes (also mentioned in the lecture): its possible use for the simultaneousdesign (from given components) and formal veri�cation of hardware.The basic observation is that many hardware units can be viewed as streamtransformers, converting some input (control or data streams) into an outputstream. This is possible even for bidirectional circuits since, in most cases,these can be modeled as pairs of unidirectional circuits. Here a stream issimply a function from the natural numbers (used to model time, i.e. thesystem clock) into the booleans (for control streams) or into some kind ofdata.We consider some simple schemata (explicit de�nition and a form of primi-tive recursion) to de�ne computable functionals. The resulting terms can bethought of as stream transformers, i.e. as circuits. The form of our schematathen makes it possible to directly translate a term into a circuit. On theother hand, we now have the term as a compact formal representation of thecircuit, in the context of a reasonable theory, i.e. computability theory for par-tial continuous functionals. This is particularly useful for purposes of formalveri�cation.Our approach o�ers a number of bene�ts.1The �rst author is partially supported by the working group Nada (New HardwareDesignMethods) of the Ec, and the second author is partially supported by a grant from theGerman Federal Ministry of Education, Science, Research, and Technology under contractnumber 01IS519A (project KorSys). 1

2 HELMUT SCHWICHTENBERG AND KARL STROETMANN1. It opens the possibility to treat some questions on hardware synthesisand veri�cation in a \mathematically civilized" setting. After all, it isan old experience in computability theory that it pays if one does notunnecessarily restrict (higher order) arguments. Moreover, it provides theproper mathematical framework to deal with unde�ned or error objects.2. Both the design and the veri�cation of a circuit can be done in a modu-lar way. In particular, the design and veri�cation can start from compo-nents that are only speci�ed abstractly by higher order formulas (Gordon,1986).3. The approach sketched can deal with various types of data abstractions.For example, in the example presented we will abstract completely fromthe bit level representation of the data.It is these bene�ts that distinguish our approach from others that are basedon representing circuitry by �nite automata.2. TERMSWe consider recursive de�nitions of stream transformers C in the formC(~a; t) = Mwith ~a a list of stream variables and M a term with free variables among ~a; twhich is built inductively by means of the clausesC(~a; predk(t)) with k � 1;ai(predk(t)) with k � 0;D(M1; : : : ;Mn):Here we have written pred(t) for t� 1 (which will be convenient in section 3);hence predk(t) is unde�ned if t < k. D ranges over already de�ned constants,and clearly ai denotes the i{th component of the list ~a. As an important specialcase we have explicit de�nitions, where M is built using the last two clausesonly; this special case will correspond to combinatorial circuits in section 3.Among the constants we always have if{then{else{�.As an example we pick the minmax unit proposed in (Claesen, 1990). Wehave taken its formulation from the IFIP WG 10.2 collection of circuit veri�ca-tion examples2; cf. (Kropf, 1995). It is described there as the �rst non{trivialexample which has gained some popularity and reveals some problems arisingin the area of digital signal processor veri�cation. We quote from the WWWpage:\The minmax unit has an input signal in which consists of a sequence ofintegers in the range of �256 to +255. The minmax unit has three booleancontrol signals clear , reset and enable. The unit produces an output sequenceout at the same rate as in in the following way.2These examples can be found at the URL http://i81fs1.ira.uka.de/benchmarks/.
schwstr1.tex - Date: May 29, 1996 Time: 10:28

FROM HIGHER ORDER TERMS TO CIRCUITS 31. Out is zero if clear is true, independent of the other control signals.2. If clear is false and enable is false then out equals the last value of inbefore enable became false.3. If clear is false and enable is true and reset is true then out follows in.4. If reset becomes false, then out equals, on each time point t, the meanvalue of the maximum and minimum value of in until that time point."Recall that we model input streams as functions from time (here: discretetime modeled by the natural numbers) to data (here: natural numbers). Forthe reasons of both simplicity and generality we take arbitrary natural num-bers, not just those with a �xed bit length. We assume that we have units(ALUs) computing the sum, maximum and minimum of two numbers. Thesefunctions are understood in the strict sense, i.e. an error in any of the ar-guments produces an error in the value. We also need a unit for the (strict)function half de�ned byhalf(2n) = half(2n+ 1) = n.The speci�cation talks about the \last value of in before enable becamefalse". In order to design a unit yielding that value, consider the followingrecursive de�nition (�):last(in; enable; 0) := if enable(0)then in(0)else undefnat�last(in; enable; t+ 1) := if enable(t + 1)then in(t+ 1)else last(in; enable; t)�Note that case distinction 0=t+1 here is not really necessary; it also wronglysuggests that when describing a unit from these recursion equations we wouldneed to perform a zero{test. We may write (�) equivalently as (��):last(in; enable; t) := if enable(t)then in(t)else last(in; enable; t� 1)�with the understanding that 0�1 = undefnat. (Hence (i) the �nal argument tof last ranges over the extended natural numbers now, (ii) we have to requiret 6= undefnat in (��) and (iii) we have to add last(in; enable; undefnat) =undefnat).
schwstr1.tex - Date: May 29, 1996 Time: 10:28

4 HELMUT SCHWICHTENBERG AND KARL STROETMANNSimilarly we de�ne the \the maximum and minimum value of in until thattime point" (i.e. where reset becomes false) bymax(in; reset; t) := if reset(t)then in(t)else maximum(in(t); max(in; reset; t� 1))�min(in; reset; t) := if reset(t)then in(t)else minimum(in(t); min(in; reset; t� 1))�Now the minmax unit can be de�ned explicitly byout(in; clear; reset; enable; t) =if clear(t)then 0else if enable(t)then half�max(in; reset; t) + min(in; reset; t)�else last(in; enable; t)��Note that among the constants for our example we have 0, +, maximum,minimum, and half.3. TRANSLATION INTO CIRCUITSWe begin with recursive de�nitions, i.e., C(~a; t) =M where M is a term withfree variables among~a; t built inductively by the three clauses above. We needa register unit REG- -which at time t+1 gives out its input value at time t (and is unde�ned at time0). For simplicity let us assume that ~a = a. First for any such term M [a; t] weinductively construct a circuit M-- -apred
schwstr1.tex - Date: May 29, 1996 Time: 10:28

FROM HIGHER ORDER TERMS TO CIRCUITS 5where both the a and the pred arrow may be missing. After this is done, weobtain the circuit for C(a) by feedback:M-- -a ..Case C(a; predk(t)) with k � 1. For k = 1; 2; : : : takeREG- -pred REG- - REG -pred ...Case a(predk(t)) with k � 0. For k = 0; 1; 2; : : : takea - REG- -a REG- - REG -a ...Case D(M1; : : : ;Mn). M1-- -apred ... Mn-- -apred D -
schwstr1.tex - Date: May 29, 1996 Time: 10:28

6 HELMUT SCHWICHTENBERG AND KARL STROETMANNAs an example, let us construct circuits for the recursive de�nitions of last,max and min. Here we need a multiplexer unitMUX-- -?testcorresponding to if{then{else{�. Recall the recursive de�nition of last:last(in; enable; t) := if enable(t)then in(t)else last(in; enable; pred(t))�We now apply our inductive construction to the respective subterms of theright hand side.last(in; enable; pred(t)): REG- -predin(t): -inenable(t): -enableif enable(t) then in(t) else last(in; enable; pred(t)) �:MUX-- -?enableREG-inpred
schwstr1.tex - Date: May 29, 1996 Time: 10:28

FROM HIGHER ORDER TERMS TO CIRCUITS 7Finally our circuit for last(in; enable; t) is built by feedback:MUX-- -?enableREG-in ...Similarly e.g. formax(in; reset; t) := if reset(t)then in(t)else maximum(in(t); max(in; reset; pred(t)))�we obtain REG- - MAXIMUM -- MUX --in ?reset... ..For explicit de�nitions C(a; t) = M [a; t] things are even simpler. For any suchM we inductively construct a circuit M- -a
schwstr1.tex - Date: May 29, 1996 Time: 10:28

8 HELMUT SCHWICHTENBERG AND KARL STROETMANNCase a(t). Take a�!. Case D(M1; : : : ;Mn). TakeMn-a -M1-a -... D -As an example, consider the explicit de�nitionmean(in; reset; t) := half(max(in; reset; t) + min(in; reset; t)):We construct a circuit to be called MEAN fromMAX, MIN, PLUS and HALFby MIN--inreset -MAX--inreset - PLUS - HALF -Now we can transform the explicit de�nitionout(in; clear; reset; enable; t) =if clear(t)then 0else if enable(t)then half�max(in; reset; t) + min(in; reset; t)�else last(in; enable; t)��
schwstr1.tex - Date: May 29, 1996 Time: 10:28

FROM HIGHER ORDER TERMS TO CIRCUITS 9into a circuit:
LAST--inenable -MEAN--inreset - MUX?enable -ZERO - MUX?clear -4. SPECIFICATIONFor readability we leave out the stream arguments and e.g. write out(t) forout(in; clear; reset; enable; t).We also omit leading universal quanti�ers. The required properties 1{4 of theinformal description of the minmax unit in section 2 then translate intoclear(t) = true! out(t) = 0, (1)clear(t) = false ^ enable(t) = false! out(t) = last(t), (2)clear(t) = false ^ enable(t) = true^ reset(t) = true! out(t) = in(t), (3)clear(t) = false ^ enable(t) = true ^ reset(t) = false! out(t) = half(max(t) + min(t)). (4)Note that we need non{strict equality here.The �rst thing to observe is that the assumption on reset(t) in (4) is notnecessary, i.e. we can prove the following strengthened form (4�) of (4):clear(t) = false ^ enable(t) = true! out(t) = half(max(t) + min(t)). (4�)However, this \strengthening" is slightly misleading, since we do need theassumption on reset(t) to prove that max(t) and min(t) have their expectedproperties, e.g. that max(t) is the maximum value of in since reset becamefalse. We split this up into two formulas: that max(t) is an upper bound, andthat it is the least upper bound. So we have to prove

schwstr1.tex - Date: May 29, 1996 Time: 10:28

10 HELMUT SCHWICHTENBERG AND KARL STROETMANNreset(t) = true^ �8n : nat: n 6= 0 ^ n � l! reset(t+ n) = false�^ �8n : nat: n � l ! in(t+ n)#�! 8n : nat: n � l ! in(t+ n) � max(t + l) (5)reset(t) = true^ �8n : nat: n 6= 0 ^ n � l! reset(t+ n) = false�^ �8n : nat: n � l ! in(t+ n) � k�! max(t + l) � k. (6)Note that we have to require the de�nedness of in(t + n) in (5) (i.e. thatin(t+n) is not undefnat); otherwise (5) would not hold, since undefnat � : : :as well as : : : � undefnat are de�ned to be false.Finally, we have to formulate the speci�cation of last(t), i.e. that it is the\last value of in before enable became false":enable(t) = true^ (8n : nat: n 6= 0 ^ n � l! enable(t+ n) = false)! last(t+ l) = in(t). (7)5. FORMAL VERIFICATIONIt is now more or less routine to prove that the minmax circuit constructedin section 3 meets the speci�cation given in section 4. However, we have notcon�ned ourselves with a paper and pencil proof but rather have checked thecorrectness of our proof with machine help. In the presence of error values forinput streams this seems to be particularly advisable, since it is easy for ahuman to forget some cases.In fact, we have done the formal veri�cation twice: First with the interac-tive proverMinlog (Schwichtenberg, 1993) developed by the �rst author, andthen again with the help of the automatic theorem prover Seduct (Stroet-mann, 1995) under development at Siemens.The Minlog system is designed to deal with terms denoting computablefunctionals over the partial continuous functionals; hence the proof wentrather smoothly. However, Minlog is an interactive prover with only lim-ited automated support (exept a mechanism to deal with equality logic whichuses normalization of higher order terms (Berger and Schwichtenberg, 1991)).Therefore, it was a challenge to see to what extent a theorem prover with moreautomated components, but based on many sorted �rst order logic, could beused as well. It turned out that this was possible. We conclude with commentson some of the observations we made in the course of doing the proof.The �rst problem is of course that the speci�cation given in section 4 iswritten in higher order logic (Gordon, 1986), whilst Seduct is a theoremprover for many{sorted �rst order logic. We therefore have to translate this
schwstr1.tex - Date: May 29, 1996 Time: 10:28

FROM HIGHER ORDER TERMS TO CIRCUITS 11speci�cation into �rst order logic. However, the only part of this speci�cationthat is not �rst order is the use of the variables in, clear, reset, and enable ashigher order variables, e.g. in out(t). Now a closer inspection reveals that thisuse of higher order variables is not essential: we can eliminate expressions ofthe form out(t) by introducing a new function symbol @ with signature@ : n stream� nat! nat,where n stream is the type of streams of natural numbers. Of course, theintention is that for any stream of natural numbers f the value of f @ t isthe same as f(t). Since second order variables occur only in this context wecan eliminate them by replacing all expressions of the form f(t) where f is asecond order variable with the expression f @ t.A point of general interest that we learned while carrying out the proofis the following. If the formulas to be proved contain quanti�ed subformu-las, then it seems to be a good idea to de�ne predicates equivalent to thesesubformulas. For example, property (6) contains the universally quanti�edsubformula8n : nat: n � l! in@(t+ n) � k.To eliminate this subformula we have introduced the predicate bounded satis-fying an appropriate lemma. This lemma could then be used to eliminate theabove subformula from (6).ACKNOWLEDGEMENTSThe authors would like to acknowledge the fact that the paper has bene�tedfrom a number of comments made by Dr. Gerd Venzl.REFERENCESUlrich Berger. Totale Objekte und Mengen in der Bereichstheorie. PhD thesis, Mathema-tisches Institut der Universit�at M�unchen, 1990.Ulrich Berger. Total sets and objects in domain theory. Annals of Pure and Applied Logic,60:91{117, 1993.Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed�{calculus. In Rao Vemuri, editor, Proceedings of the Sixth Annual IEEE Symposiumon Logic in Computer Science, pages 203{211. IEEE Computer Society Press, LosAlamitos, 1991.Luc Claesen, editor. Formal VLSI Speci�cation and Synthesis VLSI Design Methods I andII. IFIP, sponsored by IMEC, North{Holland, Amsterdam, 1990.Yuri L. Ershov. Model C of partial continuous functionals. In R. Gandy and M. Hyland,editors, Logic Colloquium 1976, pages 455{467. North{Holland, Amsterdam, 1977.Mike Gordon. Why higher{order logic is a good formalism for specifying and verifyinghardware. In G.J. Milne and P.A. Subrahmanyam, editors, Formal Aspects of VLSIDesign, pages 153{177. Elsevier, Amsterdam, 1986.Thomas Kropf. Benchmark{circuits for hardware{veri�cation. In R. Kumar and T. Kropf,editors, Theorem Provers in Circuit Design (TPCD '94), volume 901 of Lecture Notesin Computer Science, pages 1{12. Springer Verlag, Berlin, Heidelberg, New York, 1995.
schwstr1.tex - Date: May 29, 1996 Time: 10:28

12 HELMUT SCHWICHTENBERG AND KARL STROETMANNJaco van de Pol and Helmut Schwichtenberg. Strict functionals for termination proofs. InM. Dezani-Ciancaglini and G. Plotkin, editors,Typed Lambda Calculi and Applications,volume 902 of Lecture Notes in Computer Science, pages 350{364. Springer Verlag,Berlin, Heidelberg, New York, 1995.Helmut Schwichtenberg. Proofs as programs. In P. Aczel, H. Simmons, and S.S. Wainer,editors, Proof Theory. A selection of papers from the Leeds Proof Theory Programme1990, pages 81{113. Cambridge University Press, 1993.Helmut Schwichtenberg and Stanley S. Wainer. Ordinal bounds for programs. In P. Cloteand J. Remmel, editors, Feasible Mathematics II, pages 387{406. Birkh�auser, Boston,1995.Dana Scott. Domains for denotational semantics. In E. Nielsen and E.M. Schmidt, editors,Automata, Languages and Programming, volume 140 of Lecture Notes in Computer Sci-ence, pages 577{613. Springer Verlag, Berlin, Heidelberg, New York, 1982. A correctedand expanded version of a paper prepared for ICALP'82, Aarhus, Denmark.Viggo Stoltenberg-Hansen, Edward Gri�or, and Ingrid Lindstr�om. Mathematical Theoryof Domains. Cambridge tracts in Theoretical Computer Science. Cambridge UniversityPress, 1994.Karl Stroetmann. SEDUCT | a proof compiler for �rst order logic. In M. Broy andS. J�ahnichen, editors, KORSO: Methods, Languages and Tools for the Construction ofCorrect Software. Final Report, volume 1009 of Lecture Notes in Computer Science,pages 299{316. Springer Verlag, Berlin, Heidelberg, New York, 1995.Helmut SchwichtenbergMathematisches Institut der Universit�at M�unchenTheresienstr. 39, D-80333 M�unchenemail: schwicht@rz.mathematik.uni-muenchen.deKarl StroetmannSiemens AG, Corporate Research and DevelopmentOtto{Hahn{Ring 6, D{81739 M�unchenemail: Karl.Stroetmann@zfe.siemens.de

schwstr1.tex - Date: May 29, 1996 Time: 10:28

