
TIERED ARITHMETICS

HELMUT SCHWICHTENBERG (MÜNCHEN DE)
STANLEY S. WAINER (LEEDS UK)

Abstract. In his paper “Logics for Termination and Correctness of
Functional Programs, II. Logics of Strength PRA” [4] Feferman was
concerned with the problem of how to guarantee the feasibility (or at
least the subrecursive complexity) of functions definable in certain lo-
gical systems. His ideas have influenced much subsequent work, for in-
stance the final chapter of [10]. There, linear two-sorted systems LT(;)
(a version of Gödel’s T) and LA(;) (a corresponding arithmetical the-
ory) of polynomial-time strength were introduced. Here we extend LT(;)
and LA(;) in such a way that some forms of non-linearity are covered as
well. This is important when one wants to deal on the proof level with
particular algorithms, not only with the functions they compute. Ex-
amples are divide-and-conquer approaches as in treesort, and the first
of two main sections here gives a detailed analysis of this. The sec-
ond topic treated heads in a different direction, though again its roots
lie in the final chapter of [10]. Instead of just two sorts we consider
transfinite ramified sequences of such sorts (or “tiers”). A hierarchy of
infinitary arithmetical systems EA(Iα) is devised, being weak analogues
of the iterated inductive definitions underpinning much of Feferman’s
work. Their strengths turn out to correspond to the levels of the ex-
tended Grzegorczyk or Fast-Growing hierarchy. A “pointwise” concept
of transfinite induction provides an ordinal measure of strength, but
it is a weak (essentially finitistic) notion, related to the Slow-Growing
hierarchy.

Keywords: Polynomial time, linear two-sorted arithmetic, program
extraction, tiered arithmetic, fast and slow-growing hierarchies, point-
wise transfinite induction.

1. Introduction

The principle of numerical induction:

A(0) ∧ ∀a(A(a)→ A(a+ 1))→ A(n)

may be viewed as being “impredicative”, since establishing that n has prop-
erty A might entail quantifying over all numbers, in particular n itself, even
before it is completely understood (cf. Nelson [8]). “Tiering” is a way to

1

2 H. SCHWICHTENBERG AND S.S. WAINER

unravel such impredicativities: one thinks of the input n as existing at a
higher level (tier) than A’s quantified variables – the output domain. Such
tiered or predicative inductions severely restrict the computational strength
of an arithmetical theory (cf. Leivant [6]).

For example, suppose we want to build a theory of elementary recursive
strength. Then we will have the exponential function E(n) representing 2n:

E(0) := 1, E(S(n)) := D(E(n)).

However, its iteration

F (0) := 1, F (S(n)) := E(F (n))

should be avoided. Let us see how a proof of “computational strength” of F
could arise. Let F (n) ' a denote the graph of F , viewed as an inductively
defined relation. We write F (n)↓ for ∃a(F (n) ' a). Then a proof of

∀nF (n)↓

should be disallowed. Such a proof would be by induction on n. In the step
we would need to prove ∀n(F (n)↓ → F (S(n))↓). So assume n is given and
we have an a such that F (n) ' a. We need to find b such that E(F (n)) ' b.
Clearly E(a) would be such a b, but here we have substituted the “output”
variable a in the recursion (or “input”) argument of E. We therefore distin-
guish input and output variables and argument positions in order to avoid
superexponential strength. The underlying idea is that the inputs form a
new “tier” lying over the domain of output values. While an input may be
fed down to the output level and used as a bound on induction or recursion
steps, this is a one-way process - for outputs may not be fed back as inputs.

If we want to even further restrict the computational strength to the
subelementary level, we need a linearity restriction. Consider for example
the function B(a, n) representing a+ 2n:

B(a, 0) := S(a), B(a, S(n)) := B(B(a, n), n).

Let B(a, n) ' b be the (inductively defined) graph of B, and consider the
following proof of

∀n,aB(a, n)↓,
by induction on n. In the step we have n and can assume ∀aB(a, n)↓; we
need to show ∀aB(a, S(n))↓, i.e., ∃c(B(B(a, n), n) ' c). Given n and a,
by induction hypothesis we have b such that B(a, n) ' b, and applying the
induction hypothesis again, we have c such that B(b, n) ' c. This double
use of the induction hypothesis is responsible for the exponential growth,

TIERED ARITHMETICS 3

and hence we use a linearity restriction to stay within the subelementary
realm.

2. Representing algorithms in linear two-sorted arithmetic

In this section we define the constructive systems A(;) and LA(;), their
intended use being to develop program specification proofs and then term
extraction for practical algorithms. The computational strength of A(;) will
be elementary recursive (going back to early developments of such theories
by Leivant [6], based on the safe / normal discipline of Bellantoni and Cook
[1] and earlier Simmons [11]). The subtheory LA(;) will be corresponding
theory of polynomial strength, and therefore relevant for the development
of feasible programs.

The main contents of this section will be a description of these theories
and their basic properties, followed by examples illustrating their use. In
order to build such these we first need to define their term structures, which
will incorporate higher types.

2.1. The term systems T(;) and LT(;). We consider types built from base
types ι by two forms ρ ↪→ σ and ρ → σ of arrow types, called input arrow
and output arrow. A type is safe if it does not involve the input arrow ↪→.

As base types we have the type B of booleans tt, ff, the (unary) natural
numbers N with constructors 0 and S : N → N, products ρ × σ with con-
structor ×+ : ρ → σ → ρ × σ and lists L(ρ) with constructors [] and ::ρ of
type ρ→ L(ρ)→ L(ρ). Note that all constructors have safe types.

Variables are typed, and come in two forms, input variables x̄ρ and out-
put variables xρ. Constants are (i) the constructors and (ii) the recursion
operators for base types, for instance

RτN : N ↪→ τ → (N ↪→ τ → τ) ↪→ τ,

RτL(ρ) : L(ρ) ↪→ τ → (ρ ↪→ L(ρ) ↪→ τ → τ) ↪→ τ,

where the value type τ is required to be safe. This requirement is necessary
because without it we could define the iterated exponential function F from
the exponential function E via iteration with value type N ↪→ N. We also
have (iii) the cases operators for base types, for instance

CτN : N→ τ → (N ↪→ τ)→ τ,

CτL(ρ) : L(ρ)→ τ → (ρ ↪→ L(ρ) ↪→ τ)→ τ,

Cτρ×σ : ρ× σ → (ρ ↪→ σ ↪→ τ)→ τ,

where again the value type τ is required to be safe.

4 H. SCHWICHTENBERG AND S.S. WAINER

Remark. Recursion and cases operators are provided for all base types. How-
ever, with arbitrary base types, we may have more than one recursive call.
If – as in 2.1 – we are to develop a theory based on linear ideas, we must
disallow recursion operators with multiple recursive calls, since this would
spoil the whole approach.

T(;)-terms are built from variables and the constants above by introduc-
tion and elimination rules for the two type forms ρ ↪→ σ and ρ→ σ:

x̄ρ | xρ | Cρ (constant) |
(λx̄ρr

σ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρr

σ)ρ→σ | (rρ→σsρ)σ.

A term s is an input term if all its free variables are input variables, or else
s is of higher type and all its higher type free variables are input variables.

Remark. The restriction for (rρ↪→σsρ)σ is more liberal here than in [10]: we
now allow output variables of base type in case s is of higher type. This
change does not affect the estimates ensuring elementary complexity. We
also changed the type of step terms in recursion and cases operators, for
instance ρ ↪→ L(ρ) ↪→ τ → τ instead of ρ → L(ρ) → τ → τ in RτL(ρ). This

makes is easier to construct step terms as lambda-abstractions, since now
the abstracted variables corresponding to parts of the recursion argument
are input variables and hence usable to build input terms. These changes
do not affect the complexity estimates.

LT(;)-terms are built from variables and the constants above by intro-
duction and elimination rules for the two type forms ρ ↪→ σ and ρ→ σ, but
now with an additional linearity restriction:

x̄ρ | xρ | Cρ (constant) |
(λx̄ρr

σ)ρ↪→σ | (rρ↪→σsρ)σ (s an input term) |
(λxρr

σ)ρ→σ | (rρ→σsρ)σ (higher type output variables in r, s distinct,

r does not start with a cases operator Cτι) |
Cτι t~r (higher type output variables in FV(t) not in ~r)

with as many ri as there are constructors of ι. The notion of an input term
is the same as above. The restriction on output variables in the formation
of rρ→σs or Cτι t~r ensures that every higher type output variable can occur
at most once in a given LT(;)-term, except in the alternatives of a cases
operator.

TIERED ARITHMETICS 5

2.2. The theories A(;) and LA(;). We consider formulas built from atomic
formulas by (i) the two forms A ↪→ B and A→ B of implication, called in-
put and output implication, and (ii) universal quantification either ∀x̄A over
an input variable x̄ or ∀xA over an output variable x. Atomic formulas are
either terms of the type B of booleans viewed as propositions or else induc-
tively defined predicates – possibly with parameters – applied to argument
terms. We view ∃x̄A and ∃xA as atomic formulas, more precisely as (nullary)
inductive predicates with predicates { x̄ | A } or {x | A } as parameter.

In this section proofs are in minimal logic, in natural deduction style. It is
convenient to represent them as proof terms, as in Table 1. For quantification
on input variables x̄ we have similar rules, and also for the input implication
↪→. Assumption variables come in two forms, input ones ūA and output ones
uA. Axioms are the introduction and elimination axioms for ∃
∃+
{x |A } : ∀x(A→ ∃xA), ∃−{x |A(x) },P : ∃xA(x)→ ∀x̄(A(x̄) ↪→ P)→ P

and similarly for input variables x̄. For every base type we have its induction
and cases axioms, for instance

Indn̄,P : ∀n̄(P (0)→ ∀n̄(P (n̄)→ P (S(n̄))) ↪→ P (n̄N)),

Indl̄,P : ∀l̄(P ([])→ ∀x̄,l̄((P (l̄)→ P (x̄ :: l̄)) ↪→ P (l̄L(ρ)))

and

Casesn,P : ∀n(P (0)→ ∀n̄P (S(n̄))→ P (nN)),

Casesl,P : ∀l(P ([])→ ∀x̄,l̄P (x̄ :: l̄)→ P (lL(ρ))).

We call these raw proof terms. Note that when ignoring the annotations
of implications and variables we obtain proofs terms in ordinary arithmetic.
The raw proof terms need to be restricted to make up the theories A(;) and
LA(;). To formulate these restrictions it is easiest to refer to the extracted
term et(M) of a proof term M , which we introduce first. This requires some
preparations.

Computational content in proofs arises from computationally relevant
(c.r.) atomic formulas; in our setting the only ones are ∃x̄A and ∃xA. There
are also non-computational (n.c.) atomic formulas, like equalities. Following
Kolmogorov [5] we assign to every formula A an object τ(A), which is a type
or the “nulltype” symbol ◦. The definition can be conveniently written if
we extend the use of ρ ↪→ σ, ρ→ σ and ρ× σ to the nulltype symbol ◦:

(ρ ↪→ ◦) := ◦, (◦ ↪→ σ) := σ, (◦ ↪→ ◦) := ◦ and similarly for →,
(ρ× ◦) := ρ, (◦ × σ) := σ, (◦ × ◦) := ◦.

6 H. SCHWICHTENBERG AND S.S. WAINER

Derivation Term

u : A uA

[u : A]

|M
B →+uA→ B

(λuAM
B)A→B

|M
A→ B

| N
A →−B

(MA→BNA)B

|M
A ∀+x (with var.cond.)∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

With this understanding of ρ ↪→ σ, ρ→ σ and ρ× σ we can simply define

τ(A) := ◦ if A is an n.c. atomic formula,

τ(∃x̄ρA) := τ(∃xρA) := ρ× τ(A),

τ(A ↪→ B) := (τ(A) ↪→ τ(B)),

τ(A→ B) := (τ(A)→ τ(B)),

τ(∀x̄ρA) := (ρ ↪→ τ(A)),

τ(∀xρA) := (ρ→ τ(A)).

TIERED ARITHMETICS 7

We introduce a special “nullterm” symbol ε to be used as a “realizer” for
n.c. formulas, and extend term application to the nullterm symbol by

εt := ε, tε := t, εε := ε.

Now we can define the extracted term et(M) of a proof term M deriving
A. It is relative to a fixed assignment of input variables x̄ū of type τ(A)
to input assumption variables ūA, and similarly output variables xu of type
τ(A) to output assumption variables uA. If A is n.c., then et(M) := ε, else

et(ūA) := x̄
τ(A)
ū ,

et(uA) := xτ(A)
u ,

et((λūAM)A↪→B) := λ
x̄
τ(A)
ū

et(M),

et((λuAM)A→B) := λ
x
τ(A)
u

et(M),

et(MA↪→BN) := et(MA→BN) := et(M)et(N),

et((λx̃ρM)∀x̃A) := λx̃ρet(M),

et(M∀x̃Ar) := et(M)r,

with x̃ input or output variable. We also need to define extracted terms
for the axioms, i.e., ∃+, ∃− and for every base type its induction and cases
axioms. The extracted terms are

et(∃+
{xρ |A }) := ×+ of type ρ→ τ(A)→ ρ× τ(A)

et(∃−{xρ |A },P) := Cρ×τ(A) of type ρ× τ(A)→ (ρ ↪→ τ(A) ↪→ τ(P))→ τ(P)

and for the induction and cases axioms the corresponding recursion and
cases operators.

Now finally we are ready to define the theories A(;) and LA(;): a raw
proof term M is in A(;) (or LA(;)) if et(M) is a term in T(;) (or LT(;)).

2.3. Treesort. In this section we extend LT(;) and LA(;) in such a way that
some forms of non-linearity are covered as well. This is important when one
wants to deal on the proof level with particular algorithms, not only with
the functions they compute. Examples are divide-and-conquer approaches
like in treesort. The method requires two recursive calls and hence is not
covered by the linear setup in LT(;) and LA(;). However, one can show
that the number of conversion steps in the parse-dag computation model
still is a polynomial in the length of the list. Generally, one needs to extend
LT(;) and LA(;) by constants defined by computation rules meeting certain
criteria.

8 H. SCHWICHTENBERG AND S.S. WAINER

For the formulation of the treesort algorithm we use the base type T
(branch labelled binary trees) with a nullary constructor � and a ternary
constructor C of type N → T → T → T. The treesort algorithm is given
by the defined constants

TreeSort(l) = Flatten(MakeTree(l)),

MakeTree([]) = �,
MakeTree(a :: l) = Insert(a,MakeTree(l)),

Insert(a, �) = Ca(�, �),

Insert(a,Cb(u, v)) =

{
Cb(Insert(a, u), v) if a ≤ b
Cb(u, Insert(a, v)) otherwise,

Flatten(�) = [],

Flatten(Cb(u, v)) = Flatten(u) ∗ (b :: Flatten(v))

where ∗ denotes the Append-function. Notice that the second defining equa-
tion of Flatten has two recursive calls. Therefore this “divide-and-conquer”
algorithm is not covered by the treatment in [10]: the linearity restriction is
violated. The point of the present section is to show how this problem can
be overcome, by giving the non-linear Flatten-function a special treatment
w.r.t. our parse dag computation model, which we describe next.

Let LT(;) + Flatten be the extension of LT(;) by the defined constant
Flatten of type T ↪→ L(N). To obtain a polynomial upper bound on the
time complexity of functions definable in LT(;) + Flatten, we need a careful
analysis of the normalization process. Our time measurement is with respect
to a computation model that fits well to the lambda-terms we have to work
with, and is also close to actual computation.

We compute with terms represented as dags (directed acyclic graphs)
where only nodes for terms of base type can have in-degree greater than
one. Each graph is required to be connected and have a unique root (i.e.,
node with in-degree zero). Nodes can be (i) terminal nodes labelled by a
variable or constant, (ii) abstraction nodes with one successor, labelled with
a (typed input or output) variable and a pointer to the successor node, or
(iii) application nodes with two successors, labelled with pointers to them.
A parse dag is required to represent a parse tree for a term, i.e., the types
must fit and all other conditions above on the formation of terms must be
satisfied.

TIERED ARITHMETICS 9

The size ||d|| of a parse dag d is the number of nodes in it. A parse dag
is conformal if (i) every node with in-degree greater than 1 is of base type,
and (ii) every maximal path to a bound variable x passes through the same
binding λx-node. A parse dag is h-affine if every higher type variable occurs
at most once in the dag, except in the alternatives of a cases operator. We
identify a parse dag with the term it represents.

In our computation model the following steps require one time unit.

(a) Creation of a node given its label and pointers to its successor nodes.
(b) Deletion of a node.
(c) Given a pointer to an interior node, to obtain a pointer to one of its

successor nodes.
(d) Test on the type and the label of a node, and on the variable or constant

in case the node is terminal.

We will estimate the number of steps it takes to reduce a term t to its normal
form nf(t). For simplicity we fix an order of reduction, by requiring that the
leftmost innermost redex is converted first. Let #t denote the total number
of such reduction steps.

Lemma 2.1. Let l be a numeral of type L(N). Then

#(l ∗ l′) = O(|l|).
Proof. One easily proves #(l ∗ l′) ≤ N · (|l| + 1) by induction on |l|, for an
appropriate N . �

To estimate #Flatten(u) we use a size function for numerals u of type T:

|| � || := 0,

||Cn(u, v)|| := 2||u||+ ||v||+ 3.

Lemma 2.2. Let u be a numeral of type T. Then

#Flatten(u) = O(||u||).
Proof. We prove #Flatten(u) ≤ N(||u||+1) by induction on ||u||, for an appro-
priate N , and only deal with the second defining equation of Flatten, which
involves two recursive calls. Consider the parse dag for Flatten(Cn(u, v)).
We can assume that it takes ≤ N steps to transform it into a the parse dag
for Flatten(u) ∗ (a :: Flatten(v)). Then

#Flatten(Cn(u, v)) ≤ N + #Flatten(u) + #Flatten(v) +N(||u||+ 1)

using #(l ∗ l′) ≤ N(|l| + 1) (by Lemma 2.1) and |Flatten(u)| ≤ ||u||. Hence
by induction hypothesis

#Flatten(Ca(u, v)) ≤ N +N(||u||+ 1) +N(||v||+ 1) +N(||u||+ 1)

10 H. SCHWICHTENBERG AND S.S. WAINER

= N(2||u||+ ||v||+ 4)

= N(||Ca(u, v)||+ 1). �

We show that all functions definable in LT(;) + Flatten are polynomial-
time computable, by adapting the argument in [10] to the presence of defined
constants, here the constant Flatten. Call a term RD-free if it contains
neither recursion constants R nor Flatten. A term is called simple if it
contains no higher type input variables. Obviously simple terms are closed
under reductions, taking of subterms, and applications. Every simple term
is h-affine, due to the (almost) linearity of higher type output variables.

As in [10, p.416-418] we have

Lemma 2.3 (Simplicity). Let t be a base type term whose free variables are
of base type. Then nf(t) contains no higher type input variables.

Lemma 2.4 (Sharing normalization). Let t be an RD-free simple term.
Then a parse dag for nf(t), of size at most ||t||, can be computed from t in
time O(||t||2).

Corollary 2.5 (Base normalization). Let t be a closed RD-free simple term
of type N or L(N). Then nf(t) can be computed from t in time O(||t||2), and
||nf(t)|| ≤ ||t||.
Lemma 2.6 (RD-elimination). Let t(~x) be a simple term of safe type.
There is a polynomial Pt such that: if ~r are safe type RD-free closed simple
terms and the free variables of t(~r) are output variables, then in time Pt(||~r ||)
one can compute an RD-free simple term rdf(t; ~x;~r) such that t(~r) →∗
rdf(t; ~x;~r).

Proof. By induction on ||t||, as in [10, p.418-20]. We only have to add a case
for the defined constant Flatten.

Case Flatten. Then t is of the form Flatten(l), because the term has safe
type. Since l is an input term, all free variables of l are input variables – they
must be in ~x since free variables of t(~r) are output variables. Therefore l(~r)
is closed, implying nf(l(~r)) is a list. One obtains rdf(l; ~x;~r) in time Pl(||~r ||)
by the induction hypothesis. Then by base normalization one obtains the
lists l̂ := nf(rdf(l; ~x;~r)) in a further polynomial time. Now Lemma 2.2
implies the claim. �

Theorem 2.7 (Normalization). Let t be a closed term in LT(;)+ Flatten of
type N � . . .N � N (�∈ {↪→,→}). Then t denotes a poly-time function.

Proof. One must find a polynomialQt such that for allRD-free simple closed
terms ~n of type N one can compute nf(t~n) in time Qt(||~n ||). Let ~x be new

TIERED ARITHMETICS 11

variables of type N. The normal form of t~x is computed in an amount of
time that may be large, but it is still only a constant with respect to ~n. By
the simplicity lemma nf(t~x) is simple. By RD-elimination one reduces to an
RD-free simple term rdf(nf(t~x); ~x ;~n) in time Pt(||~n ||). Since the running
time bounds the size of the produced term, ||rdf(nf(t~x); ~x ;~n)|| ≤ Pt(||~n ||).
By sharing normalization one can compute

nf(t~n) = nf(rdf(nf(t~x); ~x ;~n))

in time O(Pt(||~n ||)2), so for Qt one can take some constant multiple of
Pt(||~n ||)2. �

2.4. Treesort in LA(;) + Flatten. We have seen that polynomial-time al-
gorithms can be implemented as extracted terms of appropriate proofs in
LA(;). This is developed in detail in [10, Section 8.4]. Here we describe that
and how the same mechanism works when both LT(;) and LA(;) contain
constants (like Flatten) defined by equations involving multiple recursive
calls. As an example we treat the treesort algorithm in LA(;).

A tree u is called sorted if the list Flatten(u) is sorted. We recursively
define a function I inserting an element a into a tree u in such a way that,
if u is sorted, then so is the result of the insertion:

I(a, �) := Ca(�, �),

I(a,Cb(u, v)) :=

{
Cb(I(a, u), v) if a ≤ b,
Cb(u, I(a, v)) if b < a

and, using I, a function S sorting a list l into a tree:

S([]) := �, S(a :: l) := I(a, S(l)).

We represent these functions by inductive definitions of their graphs. Thus,
writing I(a, u, u′) to denote I(a, u) = u′ and similarly, S(l, u) for S(l) = u,
we have the following clauses:

I(a, �, Ca(�, �)),
a ≤ b→ I(a, u, u′)→ I(a,Cb(u, v), Cb(u

′, v)),

b < a→ I(a, v, v′)→ I(a,Cb(u, v), Cb(u, v
′)),

and

S([], �),
S(l, u)→ I(a, u, u′)→ S(a :: l, u′).

12 H. SCHWICHTENBERG AND S.S. WAINER

As an auxiliary function we use tli(l), which is the tail of the list l of length
i, if i < |l|, and l otherwise. Its recursion equations are

tli([]) := [], tli(a :: l) :=

{
tli(l) if i ≤ |l|
a :: l else.

We will need some easy properties of S and tl:

S([a], Ca(�, �)),
S(l, Cb(u, v))→ a ≤ b→ I(a, u, u′)→ S(a :: l, Cb(u

′, v)),

S(l, Cb(u, v))→ b < a→ I(a, v, v′)→ S(a :: l, Cb(u, v
′)),

i ≤ |l| → tli(a :: l) = tli(l),

tl|l|(l) = l, tl0(l) = [].

We would like to derive ∃uS(l, u) in LA(;). However, we shall not be
able to do this. All we can achieve is |l| ≤ n → ∃uS(l, u), with n an input
parameter.

Lemma 2.8 (Tree insertion). ∀a,n,u(|u| ≤ n→ ∃u′I(a, u, u′)).

Proof. We fix a and use induction on n. In the base case we can take
u′ := Ca(�, �). In the step assume the induction hypothesis and |w| ≤ n+ 1.
If |w| ≤ n use the induction hypothesis. Now assume n < |w|. Then w
is of the form Cb(u, v). If a ≤ b pick u′ by induction hypothesis and take
Cb(u

′, v). If b < a pick v′ by induction hypothesis and take Cb(u, v
′). �

Lemma 2.9 (Treesort). ∀l,n,m(m ≤ n→ ∃uS(tlmin(m,|l|)(l), u)).

Proof. We fix l, n and use induction on m. In the base case we can take
u := �, using tl0(l) = []. In the step case assume the induction hypothesis
and m + 1 ≤ n. If |l| ≤ m we are done by the induction hypothesis.
If m < |l| we must show ∃uS(tlm+1(l), u). Now tlm+1(l) = a :: tlm(l)
with a := hd(tlm+1(l)), since m < |l|. If m = 0 take u := Ca(�, �). If
0 < m, by induction hypothesis we have w with S(tlm(l), w), and w is of
the form Cb(u, v). If a ≤ b, pick u′ by Lemma 2.8 such that I(a, u, u′). Take
S(a :: tlm(l), Cb(u

′, v)). If b < a, pick v′ by Lemma 2.8 such that I(a, v, v′).
Take S(a :: tlm(l), Cb(u, v

′)). �

We have formalized these proofs in Minlog and extracted their computa-
tional content, i.e., LT(;)-terms. For Lemma 2.8 we obtain a term involving
the recursion operatorRτN : N ↪→ τ → (N ↪→ τ → τ)→ τ with τ := T→ T.
This term represents the function f of type N→ N ↪→ T→ T defined by

f(a, 0, u) := Ca(�, �),

TIERED ARITHMETICS 13

f(a, n+ 1, u) :=


f(a, n, u) if |u| ≤ n,
CLb(u)(f(a, n, L(u)), R(u)) if n < |u| and a ≤ Lb(u),

CLb(u)(L(u), f(a, n,R(u))) if n < |u| and Lb(u) < a

with Lb(u), L(u), R(u) label and left and right subtree of u 6= �. For
Lemma 2.9 we obtain the function g of type L(N)→ N ↪→ N ↪→ T with

g(l, n, 0) := �, g(l, n,m+ 1) :=
u if |l| ≤ m,
Chd(tl1(l))(�, �), if 0 = m < |l|,
CLb(u)(f(a,m,L(u)), R(u)) if 0 < m < |l| and a ≤ Lb(u)

CLb(u)(L(u), f(a,m,R(u))) if 0 < m < |l| and Lb(u) < a

where u := g(l, n,m) and a := hd(tlm+1(l)).
Specializing Lemma 2.9 to l, n, n we obtain an LA(;)-derivation of

(1) |l| ≤ n→ ∃uS(l, u).

Let S̄(l, l′) express that l′ is multiset-equal to l and sorted. One easily proves
S(l, u)→ S̄(l,Flatten(u)) and thus gets an LA(;) + Flatten-derivation of

(2) |l| ≤ n→ ∃l′S̄(l, l′).

From the specialization (1) we get the function h of type L(N) → N ↪→ T
with h(l, n) := g(l, n, n). For (2) we finally obtain an LT(;) + Flatten-term
representing the function h̄ of type L(N) → N ↪→ L(N) with h̄(l, n) :=
Flatten(h(l, n)).

3. Transfinitely iterated tiering

This section investigates the effect of adding to an arithmetical base the-
ory a transfinite hierarchy of number-theoretic tiers {Iα}, indexed by count-
able “tree ordinals” α (that is, ordinals with fixed, chosen fundamental se-
quences {λi}i∈N assigned to limits λ). I0 will be the “output” domain and
I1 the first level of “inputs”, controlling the lengths of inductions on for-
mulas of level 0. Thus from the previous section and chapter 8 of [10] one
notes already that a (non-linear) arithmetical theory incorporating I0 + I1

will have computational strength = elementary. Now let us see what may
be gained by adding successively higher levels of input, and what conditions
should be placed on those levels. Initially we will work quite informally, but
will make things more precise later.

14 H. SCHWICHTENBERG AND S.S. WAINER

A version of the fast-growing hierarchy is:

F0(n) = n+ 1 ; Fβ+1(n) = F 2n

β (n) ; Fλ(n) = Fλn(n) .

The lesson is that each new tier will allow a new level of iteration/induction,
so let us assume that we can prove Fβ : Iβ → Iβ, that is

∀x(Iβ(x)→ ∃y(Iβ(y) ∧ Fβ(x) ' y)) .

Then the formula A(z) ≡ F 2z

β :Iβ → Iβ is inductive, and so by tiered in-

duction: ∀z(Iβ+1(z)→ A(z)). The tiering also entails Iβ+1(z)→ Iβ(z) and
therefore by definition of Fβ+1(z),

∀z(Iβ+1(z)→ ∃y(Iβ(y) ∧ Fβ+1(z) ' y)) .

Now a further principle of tiering is that the level of a “computed” variable
y may be “lifted” as high as the lowest level of non-zero input on which it
depends (a form of Σ0

1-reflection rule as used in Cantini [3]). Therefore the
Iβ(y) may be lifted to Iβ+1(y) so that

∀z(Iβ+1(z)→ ∃y(Iβ+1(y) ∧ Fβ+1(z) ' y)) .

Hence Fβ+1 : Iβ+1 → Iβ+1.
At limits λ we want to show Fλ : Iλ → Iλ. Assume inductively that it

holds already at each stage λx of the fundamental sequence to λ, thus

∀z(Iλx(z)→ ∃y(Iλx(y) ∧ Fλx(z) ' y)) .

The condition placed on limit tiers must now be Iλ(x) → Iλx(x) for then,
by the definition of Fλ(x):

Iλ(x)→ ∃y(Iλx(y) ∧ Fλ(x) ' y) .

Again, since the ∃y only depends upon x at level λ, the Iλx(y) may be lifted
to Iλ(y) and this completes the limit step.

To summarize, the main principles are (i) tiered induction, (ii) lifting, and
(iii) diagonal: Iλ(x) → Iλx(x). These are formalized below, in a hierarchy
of infinitary arithmetics EA(Iα) whose computational strengths correspond
exactly to the levels Eα of the fast-growing, extended Grzegorczyk hierarchy.

3.1. The Infinitary Systems EA(Iα). Given α, the infinitary system EA(Iα)
derives Tait-style sequents with numerical input declarations:

n1:Iβ1 , . . . nj :Iβj `
γ Γ abbreviated ~n:~I `γ Γ

where α � β1 � . . . � βj . Γ will be a finite set of closed formulas in
the language of arithmetic augmented by elementary term constructors for

TIERED ARITHMETICS 15

sequence-coding and suitably large ordinal notations, and a new binary “in-
put predicate” Ib(m) representing m:Iβ when β is the tree ordinal denoted
by the notation b, and 0 if b is not a notation. We will write Iβ(m) for
Ib(m), but no confusion should arise. The set Γ is said to be of “level”
less than ξ (written lev(Γ) ≺ ξ) if every Iβ occurring has β ≺ ξ. An im-
portant convention will be that a declaration nj :Iβj where nj = 0 will be
suppressed (i.e. assumed and not explicitly stated). Of the declared inputs,
only finitely-many will be non-zero. An obvious principle is that n:Iβ `γ A
means `γ Iβ(n) → A but the declarations nj :Iβj to the left of `γ will be
kept distinct from the formulas in Γ.

The ordinal bounds γ on the heights of derivations will come from a
certain initial segment of tree-ordinals (depending on α) to be specified
later. There will be an associated elementary recursive notation-system
allowing computation of e.g. successors, predecessors, and limit-projection
(λ, n) 7→ λn. It will be assumed that the ordering ≺ on tree ordinals will be
the union of orderings ≺n where, for each n, the ≺n is the transitive closure
of δ ≺n δ + 1 and λn ≺n λ for limits λ. Most “standard” notation systems
satisfy δ ≺n γ → δ + 1 �n+1 γ and this too will be a standing assumption
here. The “n-descending chain” from γ is

0 ≺ 1 ≺ . . . ≺ δ ≺ δ + 1 ≺ . . . ≺ λn ≺ λ ≺ . . . ≺ γ
and this will therefore be contained in the n+ 1-descending chain. Alterna-
tive notation for γ′ + 1 �n γ is γ′ ∈ γ[n] – see part 2 of [10].

Logic rules. To ensure appropriate levels of stratification, the ordinals γ′

bounding the premises of all rules below, bear the following relationship to
the ordinal bounds γ assigned to their conclusions: γ′ + 1 �n γ where n:Iβ
is a declared input at a level higher than the levels of all formulas in the
premises and conclusion. In the case where there is no higher level, that
is Iα already appears in Γ, then rules may be applied, but only under the
constraint γ = γ′ + 1.

The Axioms are ~n:~I `γ Γ where the set Γ contains a true atom (e.g. an
equation or inequation between closed terms, or s 6= s′, t 6= t′, Īs(t), Is′(t

′)).
The Cut rule, with cut formula C, is

~n:~I `γ′ Γ,¬C ~n:~I `γ′′ Γ, C

~n:~I `γ Γ
.

The ∃-rules are:

~n:~I `γ
′
c Iβ(m) ~n:~I `γ′′ A(m),Γ

~n:~I `γ ∃x(Iβ(x) ∧A(x)),Γ
.

16 H. SCHWICHTENBERG AND S.S. WAINER

Here the left-hand premise “computes” witness m according to the compu-
tation rules given below.

The ∀-rules are versions of the ω-rule:

. . .max(n,m):Iβ, . . . `γ
′
A(m),Γ for every m in N

. . . n:Iβ, . . . `γ ∀x(Iβ(x)→ A(x)),Γ

but note the fixed ordinal bound γ′ on the premises, which does not vary
with m. This helps to keep the theory “weak”.

The ∨,∧ rules are unsurprising and we don’t list them.
The final logic rule allows interaction with computation in the form:

. . . n:Iβ `γ
′
c Iβ(m) . . .m:Iβ, . . . `γ

′′
Γ

. . . n:Iβ, . . . `γ Γ
.

Computation rules. The same conditions on tree-ordinal bounds γ apply.

The Computational Axioms are ~n:~I `γc Iβ′(`), Γ provided there is n:Iβ
occurring in the declaration such that ` ≤ n+ 1 and β′ �n β. Thus by the
(∀)-rule, with any γ, `γ+1 ∀x(Iβ(x)→ Iβ′(x)) provided β′ �n β for every n.
Also, with zero declaration, `γ+n Iβ(n)→ Iβ′(`) since `γ+n−1 Iβ(n), and so
Iβ is inductive and is contained in Iβ′ whenever β′ ≺n β for all n.

The Lifting Rule, from Iβ′ to Iβ when β′ ≺n β, is:

. . . n:Iβ `γc Iβ′(m)

. . . n:Iβ `γc Iβ(m)

recalling that, in the declaration, the blank after n:Iβ means zeros.
The Computation Rules (call-by-value) are:

. . . n:Iβ `γ
′
c Iβ(m) . . .m:Iβ `γ

′′
c Iβ(`)

. . . n:Iβ `γc Iβ(`)
.

Alternative ordinal assignment. Alternatively, in each rule above one
could simply take γ = max(γ0, γ1)+1 or = γ′+1. But then, in order to make
use of the ∀-rule, which requires a fixed bound on all premises, one needs

to add an Accumulation Rule, as in Buchholz [2]: from ~n:~I `γ′ Γ derive

~n:~I `γ Γ provided γ′ + 1 �n γ, where n is declared at a level greater than
the level of Γ. (This is also a suitably modified version of Mints’ Repetition
Rule [7].)

TIERED ARITHMETICS 17

Basic lemmas.

Lemma 3.1 (Tiered Induction). If the level of A is ≺ β and β′ ≺ β and a
appropriately measures the “size” of the formula A, so that `a A,¬A, then

`a+2ω+1 A(0) ∧ ∀z(Iβ′(z)→ A(z)→ A(z + 1))→ ∀x(Iβ(x)→ A(x)) .

Proof. By repeatedly applying the (∧) and (∃) rules, using `a A,¬A, one
obtains for each m,

m:Iβ `a+2m+1 A(0) ∧ ∀z(Iβ′(z)→ A(z)→ A(z + 1))→ A(m) .

Then m : Iβ `a+2ω A(0) ∧ ∀z(Iβ′(z) → A(z) → A(z + 1)) → A(m) because
for the tree ordinal ω we take the successor function as its “standard” fun-
damental sequence and so m + 1 ≺m ω and hence a + 2m + 2 ≺m a + 2ω.
This holds for every m, so the result follows by applying the (∀)-rule. �

Lemma 3.2 (Bounding). Let {fβ(g)} be the following functional version of
the fast-growing hierarchy:

f0(g)(n;m) = m+ 1

fβ+1(g)(n;m) = fβ(g)(max(n,m);−)2g(max(n,m))
(m)

fλ(g)(n;m) = fλn(g)(n;m) .

Let Gγ(n) be the slow-growing function, giving the size of {γ′ : γ′+ 1 �n γ}.
Then if ~n:~I `γc Iβ(m) by the computation rules alone, we have:

m ≤ fβ(g)(n;−)2g(n)
(m̄)

where g = Gγ, m̄ = max~n and n is the maximum of all declared inputs at
levels � β.

Proof. Proceed by induction on β with a nested induction on γ. Let g′ = Gγ′
and g = Gγ and note that if γ′ + 1 �n γ then g′(n) < g(n).

If ~n:~I `γc Iβ(m) comes about by a computational axiom then m ≤ m̄+1 =
f0(g)(n; m̄) and the result is immediate.

If it arises by Lifting from ~n:~I `γc Iβ′(m) where β′ ≺n β, then inductively
one may assume that

m ≤ fβ′(g)(m̄;−)2g(m̄)
(m̄) = fβ′+1(g)(n; m̄) .

Now since β′ + 1 �n β → β′ + 1 �n′ β when n ≤ n′, it follows that

m ≤ fβ′+1(g)(n; m̄) ≤ fβ(g)(n; m̄) ≤ fβ(g)(n;−)2g(n)
(m̄) .

Suppose the given derivation comes about by the Computation Rule

from premises ~n:~I `γ
′
c Iβ(`) and ~n:~I, `:Iβ `γ

′′
c Iβ(m). Note that in this

18 H. SCHWICHTENBERG AND S.S. WAINER

case both γ′ + 1 and γ′′ + 1 are �n γ so g′(n), g′′(n) < g(n). Then

the induction hypothesis gives m ≤ fβ(g′′)(n;−)2g
′′(n)

(max(m̄, `)) and also

` ≤ fβ(g′)(n;−)2g
′(n)

(m̄). Composing, and at the same time increasing
fβ(g′) and fβ(g′′) to fβ(g),

m ≤ fβ(g)(n;−)2g
′(n)+2g

′′(n)
(m̄) ≤ fβ(g)(n;−)2g(n)

(m̄)

as required. �

Lemma 3.3 (Cut elimination). (i) Suppose ~n:~I `γ Γ,¬C and ~n:~I `δ Γ, C,
both with cut-rank (maximum size of cut formulas) ≤ r. Suppose also that C
is either an atom, or a disjunction D0∨D1 or of existential form ∃x(Ij(x)∧
D(x)) with D of size r (the “size” of input predicates is defined to be zero).

Then ~n:~I `γ+δ Γ again with cut-rank r.

(ii) Hence if ~n:~I `γ Γ with cut-rank r + 1 then ~n:~I `ωγ Γ with cut-rank

≤ r and (repeating this) ~n:~I `γ∗ Γ with cut-rank 0, where γ∗ = expr+1
ω (γ).

Proof. The proofs are fairly standard. �

Note on Σ0
1 reflection. The (∃) and “lifting” rules combine to derive the

following version of Σ0
1-reflection:

Suppose one has a cut-free derivation of n:Iα `γ Γ where Γ is a set of Σ0
1

formulas of level β′ ≺n β ≺n α. Then n:Iα `γ Γ′ where Γ′ results from Γ by
lifting(some or all) existential quantifiers to level β.

The proof is by induction on γ. Briefly, suppose the premises of the last ∃-
rule are n:Iα `γ

′
Iβ′(m) and n:Iα `γ

′′
Γ, B(m) where Γ contains the formula

∃x(Iβ′(x)∧B(x)). Then by the induction hypothesis, n:Iα `γ
′′

Γ′, B′(m), and

by lifting, n:Iα `γ
′
Iβ(m). Then n:Iα `γ Γ′,∃x(Iβ(x)∧B′(x)) by reapplying

the ∃-rule.

3.2. The Computational Strength of EA(Iα). To illustrate, we now fix
attention on the segment α ≺ ε0 and choose the “standard” notation system
for it, based, say, on Cantor normal forms with base ω. The EA(Iα)’s thus
provide a “tiering” of Peano Arithmetic.

The heights γ of derivations allowed in EA(Iα) was previously left open,
but now we need to be specific. Thus, henceforth, the heights γ of derivations
in EA(Iα) will also be restricted to γ ≺ ε0, allowing EA(Iα)-derivations to
be closed under cut elimination.

TIERED ARITHMETICS 19

Theorem 3.4. The provably recursive functions of EA(Iα) are exactly those
functions elementary recursive in Fα where F is the version of the fast-
growing hierarchy defined earlier:

F0(n) = n+ 1 ; Fδ+1(n) = F 2n

δ (n) ; Fλ(n) = Fλn(n) .

Proof. EA(Iα) was devised in the first place, precisely in order to allow
derivation of Fβ : Iβ → Iβ for each β � α. Furthermore, examination of
that argument (in the introduction to this section) would show that the
height of this derivation is (of the order) ω · α + 2. The Computation rule
will then allow finite compositions of these functions to be formed and de-
rived in EA(Iα). Thus if f is elementary in Fα (i.e. computable in time
bounded by some finite iterate of Fα) then there is an elementary relation
R(n,m) such that f(n) may be computed by finding the least m satisfying
R(n,m), and furthermore this m is ≤ F kα(n) for a fixed k. To show that
f is provably recursive in EA(Iα) it is therefore only necessary to prove
n:Iα `γ ∃y(Iα(y) ∧ R(x, y)) with γ independent of n. But because m is

bounded by F kα(n) and this provably exists in EA(Iα), we have n:Iα `c Iα(m)
with height independent of n, and also n:Iα ` R(n,m) since this entails just
the checking of bounded quantifiers. Application of the (∃)-rule then gives
n:Iα `γ ∃y(Iα(y) ∧R(x, y)).

Conversely, suppose f is provably recursive in EA(Iα). This means there
is an inductively-given or elementary relation R such that R(n,m)→ f(n) '
(m)0 holds, and at some level Iβ, `γ ∀x(Iα(x) → ∃y(Iβ(y) ∧ R(x, y))). By
inversion, n:Iα `γ ∃y(Iβ(y) ∧ R(n, y)) for every n. This has a cut-free

derivation with height γ∗ = expkω(γ) for some fixed k. Therefore (invert-
ing the ∃y several times if necessary) for each n the correct value m sat-
isfying R(n,m) is such that n:Iα `c Iβ(m) with height �n γ∗. By the

Bounding Lemma, m ≤ fβ(g)(n;−)2g(n)
(n) where g = Gγ∗ . This g is ele-

mentary, because Gγ∗(n) has the effect of replacing each ω in the Cantor
normal form of γ∗ by n. Therefore g(n) is bounded by a fixed finite iterate
of F1(n) = n + 2n. It is now not difficult to see, by induction on β, that
fβ(g)(n;−) ≤ Fβ(g(maxn,−) + `), and hence m ≤ Fβ+1(g(n) + `) for some
fixed `. This bound is, as a function of n, elementary in Fα, and so the
function f , being given by bounded search (find the least m less than the
bound, such that R(n,m)) is also elementary in Fα. �

3.3. Weak, Pointwise Transfinite Induction. A basic version of trans-
finite induction up to γ is

A(0) ∧ ∀δ(A(δ)→ A(δ + 1)) ∧ ∀λ(∀iA(λi)→ A(λ))→ A(γ) .

20 H. SCHWICHTENBERG AND S.S. WAINER

Weak, pointwise-at-x transfinite induction up to γ is the following prin-
ciple:

A(0) ∧ ∀δ(A(δ)→ A(δ + 1)) ∧ ∀λ(A(λx)→ A(λ))→ A(γ)

where x is a numerical input variable. We denote this principle PTI(x, γ,A)
and write PTI(x, γ) for the schema.

Using this, we can immediately prove, with only a small amount of basic
coding apparatus, that the x-descending sequence from γ exists. That is

∃sD(s, x, γ)

where D(s, x, γ) is the bounded formula saying that s is the sequence num-
ber of ordinal notations such that (s)0 = 0 and (s)lh(s)−1 = γ and for each
i < lh(s) − 1 either (s)i+1 is a limit λ, in which case (s)i = λx, or (s)i+1 is
a successor δ + 1, in which case (s)i = δ.

Thus ∃sD(s, x, γ) expresses the pointwise-at-x well-foundedness of γ, and
we often abbreviate it as PWF(x, γ). The contrast between this Σ0

1 notion
and full Π1

1 well-foundedness is stark, but even here there are interesting
analogies to be drawn. Whereas the natural subrecursive hierarchies of
proof-theoretic bounding functions are “fast” growing in the classical case,
they are “slow” growing in the pointwise case. For detailed comparisons
between the two, see [10], and Weiermann [12]. Schmerl [9] was the first to
formulate such weak, pointwise induction schemes in the context of Peano
Arithmetic.

Definition 3.5. The functions Lx and Gx are defined as follows:
Lx(γ) = a iff ∃s(D(s, x, γ) ∧ a = lh(s)− 1)
Gx(γ) = a iff ∃s(D(s, x, γ) ∧ a = #(s))
where #(s) is the number of successors in the descending sequence s.

Lemma 3.6. Lx and Gx satisfy the following recursive definitions:
Lx(0) = 0, Lx(δ + 1) = Lx(δ) + 1, Lx(λ) = Lx(λx) + 1 .
Gx(0) = 0, Gx(δ + 1) = Gx(δ) + 1, Gx(λ) = Gx(λx) .

These functions, being given “pointwise-at-x”, are alternative versions of
the slow growing hierarchy, and they are both provably defined as immedi-
ate consequences of pointwise well-foundedness. They each have their uses,
though we favour Gx since, for each x, it more readily collapses the arith-
metic of tree ordinals down onto ordinary arithmetic. Thus writing x as the
subscript and γ as the argument (instead of the other way around) is often

TIERED ARITHMETICS 21

a more appropriate notation. We use both, depending on context. Under
the assumption δ ≺n γ → δ + 1 �n+1 γ it immediately follows that

Gn(γ) ≤ Ln(γ) ≤ Gn+1(γ) .

Of course, even to call PTI(x, γ) a transfinite induction principle requires
a stretch of the imagination, because it is really just a collection of finitary
inductions indexed by x and uniformized by γ. The following lemma brings
this out more clearly. The levels at which inputs and quantifiers are declared
will, for the time being, be suppressed.

Lemma 3.7. In any arithmetical theory containing the basic coding appa-
ratus, PTI(x, γ) implies Numerical Induction up to Gx(γ), and conversely,
Numerical Induction up to Lx(γ) implies PTI(x, γ).

More precisely, given any formula F (a), let A(δ) ≡ ∀a ≤ Gx(δ).F (a)
where ∀a ≤ Gx(δ).F (a) stands for ∃b(Gx(δ) = b ∧ ∀a ≤ b.F (a)). Then one
may prove (with x, γ declared at a level higher than that of F (a) and A(δ))

PTI(x, γ,A)→ (F (0) ∧ ∀b(F (b)→ F (b+ 1))→ ∀a ≤ Gx(γ).F (a)) .

Conversely, given any formula A(δ) let F (b) ≡ ∀δ �x γ(Lx(δ) = b→ A(δ))
where δ �x γ means ∃s(D(s, x, γ) ∧ ∃i < lh(s)((s)i = δ)). Then

(F (0) ∧ ∀b(F (b)→ F (b+ 1))→ ∀a ≤ Lx(γ).F (a))→ PTI(x, γ,A) .

Proof. We argue informally. For the first part, it is only necessary to
show that the progressiveness of F implies A(0) and ∀δ(A(δ) → A(δ + 1))
and A(λx) → A(λ) for limits λ. But F (0) immediately implies A(0). If
∀b(F (b) → F (b + 1)) then ∀a ≤ Gx(δ).F (a) → ∀a ≤ Gx(δ + 1).F (a) which
gives ∀δ(A(δ)→ A(δ+1)). The limit case A(λx)→ A(λ) is immediate since
Gx(λx) = Gx(λ). Therefore PTI(x, γ,A) gives A(γ) ≡ ∀a ≤ Gx(γ).F (a).

For the converse, assume A is progressive, i.e. A(0) and ∀δ(A(δ)→ A(δ+
1)) and A(λx)→ A(λ) at limits λ. Then one easily proves F (0) and for any
b, F (b) → F (b + 1). For assume F (b). Then if δ �x γ and Lx(δ) = b + 1,
δ is either a successor or a limit and its immediate predecessor in the �x-
sequence, call it δ′, satisfies Lx(δ′) = b. Therefore A(δ′) holds and, by the
progressiveness of A one immediately gets A(δ). Hence F (b+ 1), and so by
numerical induction up to Lx(γ) we then have F (Lx(γ)) and hence A(γ).
This implies PTI(x, γ,A). �

The motto is: “In a theory of predicative, or tiered, numerical induction,
Gγ ↓ witnesses the provability of pointwise transfinite induction up to γ.”

22 H. SCHWICHTENBERG AND S.S. WAINER

Definition 3.8. Extend Gx to the third number-class by taking large sups
to small sups. Thus: Gx(0) = 0; Gx(δ+ 1) = Gx(δ) + 1; Gx(λ) = Gx(λx) at
small limits λ, and at large limits, Gx(SUPξ λξ) = supiGx(λi).

Note in particular, Gx(Ω) = ω.

Definition 3.9. For each α in the third number-class, define the function
ϕα from countable tree ordinals to countable tree ordinals:

ϕα(β) =


β + 1 if α = 0

ϕ2β
α−1(β) if α is a successor

supi ϕαi(β) if α is a small limit
ϕαβ (β) if α is a large limit.

Lemma 3.10 (Collapsing). Provided each large limit λ � α satisfies the
condition Gx(λξ) = Gx(λ)Gx(ξ), we have:

Gx(ϕα(β)) = FGx(α)(Gx(β)) .

Proof. As in chapter 5 of [10]. �

Theorem 3.11. For each α ≺ ε0, let ᾱ be the ordinal in the third number-
class obtained by replacing ω by Ω throughout its Cantor normal form. Then
ϕᾱ+1(ω) is the supremum of the ordinals γ for which EA(Iα) proves point-
wise transfinite induction up to γ.

Proof. Pointwise transfinite induction up to γ = ϕᾱ+1(ω) cannot be proven
in EA(Iα) because, by Collapsing, Gγ(n) = FGn(ᾱ+1)(n) = Fα+1(n) and this
is not elementary in Fα. Hence Numerical Induction up to Gγ cannot be

proven in EA(Iα). On the other hand, γ = supi γi where every γi = ϕ2i
ᾱ (ω).

But pointwise transfinite induction up to each γi is provable in EA(Iα)
because Gγi is a finite iteration of Fα and therefore elementary in Fα. �

The ϕ functions used here are not the Bachmann-Veblen functions φ, but
are closely related. Thus

⋃
α≺ε0 EA(Iα) is a tiered version of PA∞ and its

provable pointwise transfinite inductions hold up to all ordinals below the
Bachmann-Howard ϕεΩ+1(ω).

References

[1] S. Bellantoni and S. Cook. A new recursion-theoretic characterization of the polytime
functions. Computational Complexity, 2:97–110, 1992.

[2] W. Buchholz. An independence result for Π1
1–CA+BI. Annals of Pure and Applied

Logic, 33(2):131–155, 1987.
[3] A. Cantini. Polytime, combinatory logic and positive safe induction. Archive for Ma-

thematical Logic, 41(2):169–189, 2002.

TIERED ARITHMETICS 23

[4] S. Feferman. Logics for termination and correctness of functional programs, II. logics
of strength PRA. In P. Aczel, H. Simmons, and S. Wainer, editors, Proof Theory.
A selection of papers from the Leeds Proof Theory Programme 1990, pages 195–225.
Cambridge University Press, 1992.

[5] A. N. Kolmogorov. Zur Deutung der intuitionistischen Logik. Math. Zeitschr., 35:58–
65, 1932.

[6] D. Leivant. Ramified recurrence and computational complexity I: Word recurrence
and poly–time. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages
320–343. Birkhäuser, Boston, 1995.

[7] G. Mints. Finite investigations of transfinite derivations. Journal of Soviet Mathe-
matics, 10:548–596, 1978. Translated from: Zap. Nauchn. Semin. LOMI 49 (1975).

[8] E. Nelson. Predicative Arithmetic. Princeton University Press, 1986.
[9] U. Schmerl. A proof theoretical fine structure in systems of ramified analysis. Archiv

für Mathematische Logik und Grundlagenforschung, 22:167–186, 1982.
[10] H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives in Logic.

Association for Symbolic Logic and Cambridge University Press, 2012.
[11] H. Simmons. The realm of primitive recursion. Archive for Mathematical Logic,

27:177–188, 1988.
[12] A. Weiermann. What makes a (pointwise) subrecursive hierarchy slow growing? In

S. Cooper and J. Truss, editors, Sets and Proofs: Logic Colloquium ’97, volume 258
of London Mathematical Society Lecture Notes, pages 403–423. Cambridge University
Press, 1999.

