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We consider the — V—fragment of first order logic with a distinguished predicate
symbol L (for falsity); as usual we write - for ¢ — 1. Gentzen’s natural de-
duction system for minimal logic in this language consists just of introduction and
elimination rules for — and V. Hence any proof in this system gives rise to a type—
free A\—term, possibly with assumption variables. If in addition a proof (and hence
also its associated A—term) is normal, then from its context, i.e. the assignment
of assumption formulas to its assumption variables, and from its endformula we
can recover all formulas in the proof. This representation of formal proofs seems
to be useful: for instance it allows an efficient implementation of normalization by
evaluation (cf. [1], [2]).

It is well known that any proof can be transformed into a unique normal form
with respect to S—conversion. Using n—expansion we can then construct the long
normal form, where all minimal formulas are atomic.

We are interested in the problem of how to find proofs in minimal logic, from
a somewhat practical point of view.* In particular we want to make use of existing
theorem provers based on classical logic. So our problem is to review under what
circumstances a classical proof can be converted into a proof in minimal logic, and
moreover to describe reasonable algorithms which do this conversion. A good survey
of the subject can be found in [3, Chapter 2.3]. Here we add a new result.

Note first that a convenient way to represent classical logic in our setting is to
add stability assumptions of the form

stabp : VZ.—-—PZ% — PZ

for all predicate symbols P. For then we can easily derive =@ — ¢ for an arbitrary
formula ¢, using
(Y = ¢Y) = (e 2 ¢P) 29
(Vz.—~—p = ) = —Vzp — Vo,

which are derivable in our —V—fragment of minimal logic. Hence by a classical proof

of 9 from assumptions ¢, ..., ¢, we mean a proof in minimal logic using stability
assumptions in addition to the given assumptions ¢1,. .., ¥n.-
A formula is called Horn formule if it has the form Vai,...,2,.41 — ... =

A,, — B with A; and B atomic. It is called definite Horn formula if in addition we
have B # L. If instead of atomic A; we allow universally quantified atomic formulas,
the result is called a generalized (definite) Horn formula.

* At the conference I gave a more general lecture on “Proofs and Programs”.
Since most of what I have said is already published (in [1] and [2]), this note only
elaborates one part of the lecture dealing with a very special aspect of the field.



Theorem 1. Let ¢1,...,9, be generalized Horn formulas. We have a quadratic
algorithm transforming a classical proof in long normal form of L from ¢1,...,py,
into a proof in minimal logic of L from the same assumptions.

The proof is by induction on the total number of stability axioms used. Note
first that bound assumption variables u in the given normal proof can only occur in
the context

stab pF(Aud)

with u of type =P7 and d of type L. The reason for this is that all top formulas
different from stability axioms are generalized Horn formulas which never have an
implication in the premise of another implication.

Case 1. There is at least one occurrence of a bound assumption variable in the
proof. Since we assume our proof to be in long normal form, any of the occurrences of
an assumption variable u of type = P7 must be the main premise of an ——elimination,
i.e. must be in a context ud; where u derives P7¥. Now choose an uppermost
occurrence of a bound assumption variable, i.e. a subderivation ud; where d; does
not contain an occurrence of any bound assumption variable. Since d; derives P7, we
can replace the whole subderivation stabp(Aud) of P7 (the one where u is bound)
by di. Hence we have removed one occurrence of a stability axiom.

Case 2. Otherwise. If there are no more stability axioms in the proof, we are
done. If not, choose an uppermost occurrence of a stability axiom, i.e. a subderiva-
tion stabp7(Aud) where d does not contain stability axioms. Since we are in case 2
here d also cannot contain free assumption variables which are bound elsewhere in
the proof. But since d derives L, we can replace the whole proof (which also has L
as its end formula) by d and hence we are done again.

Note that Theorem 1 is best possible in the sense that it becomes false if we
allow an implication in the body of one of the Horn formulas. A counterexample
(due to U. Berger) is

(P->Q)—-»>L)>(P—>1)— 1,

which is provable in classical but not in minimal logic. For if it were, we could replace
1 in this proof (which in minimal logic is just another propositional variable) by P,
and hence we would obtain a proof in minimal logic of the Peirce formula

(P—-Q)— P)—> P,

which is known to be underivable.
By essentially the same argument we obtain the following variant of Theorem
1 for generalized definite Horn formulas:

Theorem 2. Let ¢1,...,¢p, be generalized definite Horn formulas. We have a
quadratic algorithm transforming a classical proof in long normal form of an atomic
formula B from 1, . .., py into a proof in minimal logic of B from the same assump-
tions.

The proof is by a simple modification of the argument for Theorem 1. Note
that in case 2 it cannot happen that stability axioms occur in the proof since then
we would have a derivation d of L from definite Horn formulas, which is clearly
impossible.
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