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From a classical proof that the gcd of natural numbersa1 anda2 is a linear combination of the two, we extract
by Gödel’s Dialectica interpretation an algorithm computing the coefficients. The proof uses the minimum
principle. We show generally how well-founded recursion can be used to Dialectica interpret well-founded
induction, which is needed in the proof of the minimum principle. In the special case of the example above it
turns out that we obtain a reasonable extracted term, representing an algorithm close to Euclid’s.
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Finding and extracting computational content in existence proofs is a challenging subject, particularly so
when the proofs do not seem to have such content. This is regularly the case when what is proved is only a
“weak” existential formula, that is, a formula∀x∃̃yA0(x, y) with ∃̃ the weak existential quantifier defined by
∃̃yA0(x, y) := ¬∀y¬A0(x, y), andA0 quantifier-free.

Yiannis Moschovakis suggested the following example: the gcd of natural numbersa1 anda2 is a linear
combination of the two. This proof uses the minimum principle. Here we treat that example as a case study
for program extraction from classical proofs by Gödel’s Dialectica interpretation. We show generally how well-
founded recursion can be used to Dialectica interpret well-founded induction, which is needed in the proof of the
minimum principle. In the special case of the example above it turns out that we obtain a reasonable extracted
term, representing an algorithm close to Euclid’s.

In [3] the same example has already been treated, but with a different method: a refined [1] form of the “A-
translation” [5, 4]. The extracted algorithm was again close to Euclid’s. The work in [3] would probably benefit
as well from the use of well-founded induction. This and also a detailed comparison of the two methods is left
for future work.

1 Arithmetic in finite types

We use a standard formalizationHAω of arithmetic in finite types, based on natural deduction; cf. [10]. In fact,
its “negative” fragment suffices, because we will only need implication and universal quantification to build for-
mulas. For simplicity we take as the only base types the typeN of natural numbers (generated by the constructors
zero0 and successorS), andB of booleans (with constructorstt andff).

1.1 Language

Typesare built from base typesN andB by arrowsρ → σ and productsρ × σ. (Typed)termsare formed from
typed variables and constants by (type correct) lambda abstraction, application, pairing and projections; for the
latter we use the notationr0, r1 (for the left/right component ofr). Constants(including the structural and well-
founded recursion operators; see below) are defined bycomputation rules. We assume that the constants denote
total functions only. It is well known that under the standard conversion rules plus the computation rules every
term posesses a unique normal form, which in fact can be computed vianormalization by evaluation; see [2]. To
avoid equality reasoning in formal derivations we identify terms with the same normal form. The only predicates
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2 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

we admit are Leibniz equalityEqι, for our two base typesι = N andι = B. The axioms are

Eq+ : ∀xEq(x, x),

Eq− : ∀x,y

(
Eq(x, y) → ∀xC(x, x) → C(x, y)

)
.

One easily proves symmetry, transitivity and

Lemma (Compatibility) ∀x,y

(
Eq(x, y) → A(x) → A(y)

)
.

P r o o f. UseEq−, with C(x, y) := A(x) → A(y).

Lemma (Ex-Falso-Quodlibet) Definefalsity byF := EqB(ff, tt). Then

F → A.

P r o o f. We first show thatF → Eq(x, y). To see this, notice that fromEq(ff, tt) we obtain

Eq[if tt then x elsey][if ff then x elsey]

by compatibility. HenceEq(x, y). The claim follows by induction on formulas.

A further crucial use of the equality predicateEq is that it allows to lift a boolean termrB to a formula, using
atom(rB) := Eq(rB, tt). This opens up a convenient way to deal with equality onN: notice that we can define
decidable equality as a boolean-valued function=N : N → N → B. The computation rules ensure that for
instance the boolean termS(r) =N S(s) is identified withr =N s. We can now turn this boolean term into the
formulaEq(S(r) =N S(s), tt), which again is abbreviated byS(r) =N S(s), but this time with the understanding
that it is a formula. Then the two formulasS(r) =N S(s) andr =N s are identified, and consequently there is
no need to prove such trivial propositions explicitely.

Negationis defined by¬A := A → F .

1.2 Derivation terms

It will be convenient to write derivations as terms, where the derived formula is viewed as the type of the term.
This representation is known under the nameCurry-Howard correspondence.

We give an inductive definition of derivation terms in Table 1, where for clarity we have written the correspond-
ing derivations to the left. For the universal quantifier∀ there is an introduction rule∀+x and an elimination rule
∀−, whose right premise is the termr to be substituted. The rule∀+x is subject to the standard(Eigen-) variable
condition: The derivation termM of the premiseA should not contain any open assumption withx as a free
variable.

1.3 Well-founded induction and recursion

1.3.1 Well-founded induction

Structural induction is naturally connected with the inductive generation of free algebras: at each point one recurs
to its immediate predecessors. The reason for the validity of this induction principle is of course the fact that free
algebras are well-founded. We now study a more general form of induction, called “well-founded induction”,
which allows recurrence toall points “strictly below” the present one. For applications it is best to make the
necessary comparisons w.r.t. a “measure function”µ. Then it suffices to use an initial segment of the ordinals
instead of a well-founded set. For simplicity we here restrict ourselves to the segment given byω, so the ordering
we refer to is just the standard<-relation on the natural numbers. The principle of well-founded induction is

GIndn,A : ∀µ,x

(
Progµ

xA(x) → A(x)
)

(1)

whereProgµ
xA(x) expresses “progressiveness” w.r.t. the measure functionµ and the ordering<:

Progµ
xA(x) := ∀x

(
∀y;µy<µxA(y) → A(x)

)
.

It is easy to see that in our special case of the<-relation we canprove(1) from structural induction. However,
using well-founded induction as a primitive axiom has an advantage when we consider its computational content,
which is well-founded recursion.
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derivation term

u : A uA

[u : A]

| M
B →+u

A → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

| M
A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1 Derivation terms for→ and∀.

1.3.2 Well-founded recursion

What was said above forproof by induction holds mutatis mutandis fordefinitionby recursion, as a principle to
definetotal functions. As in [9], we define the constantF of well-founded recursionby

FµxG = Gx
(
λy[if µy < µx then FµyG elseε]

)
, (2)

whereε denotes a canonical inhabitant of the value type. In our special case of the<-relation well-founded
recursion is easily definable from structural recursion; the details are spelled out in [9, p.399–400]. However,
well-founded recursion is preferable from an efficiency point of view.

2 Gödel’s Dialectica interpretation

In his original functional interpretation [6], G̈odel assigned to every formulaA a new one∃~x∀~yAD(~x, ~y) with
AD(~x, ~y) quantifier-free. Here~x, ~y are lists of variables of finite types; the use of higher types is necessary even
when the original formulaA is first-order. He did this in such a way that whenever a proof ofA in arithmetic is
given, one could produce closed terms~r such that the quantifier-free formulaAD(~r, ~y) is provable inT.

In [6] Gödel used a Hilbert-style proof calculus. However, since the realizers will be formed in aλ-calculus
formulation of systemT, Gödel’s interpretation becomes a lot more perspicious when it is done for natural
deduction, as in the present exposition. A difference to the earlier treatments of Jørgensen [8] and Hernest
[7] is that we view open assumptions not as formulas, but as assumption variables. The well-known need for
contractions then comes up in the (only) logical rule with two premises: modus ponens (or implication elimination
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4 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

→−). We will need that for every quantifier-free formulaC there is a boolean termrC such thatC ↔ rC = tt;
but this clearly is the case for our language.

2.1 Positive and negative types

To determine the types of~x and~y, we assign to every formulaA objectsτ+(A), τ−(A) (a type or the “nulltype”
symbolε). τ+(A) is for the realizer,τ−(A) for the challenge. We also extend the use ofρ → σ andρ× σ to the
nulltype symbolε:

(ρ → ε) := ε,

(ε → σ) := σ,

(ε → ε) := ε,

(ρ× ε) := ρ,

(ε× σ) := σ,

(ε× ε) := ε.

Then

τ+(Eq(r, s)) := ε,

τ+(∀xρA) := ρ → τ+(A),

τ−(Eq(r, s)) := ε,

τ−(∀xρA) := ρ× τ−(A)

and for implication

τ+(A → B) :=
(
τ+(A) → τ+(B)

)
×

(
τ+(A) → τ−(B) → τ−(A)

)
,

τ−(A → B) := τ+(A)× τ−(B).

In caseτ+(A) (τ−(A)) is 6= ε we say thatA haspositive (negative) computational content.

2.2 Gödel translation

For every formulaA and termsr, s of type τ+(A), τ−(A) we define a new quantifier-free formula|A|rs by
induction onA. It is convenient here to allow a “nullterm” symbolε, in case one ofτ+(A), τ−(A) is the
nulltype symbol, and to extend the use of term operations to it:εr := εε := ε0 := ε1 := ε, rε := r and
〈r, ε〉 := 〈ε, r〉 := r.

|Eq(t1, t2)|εε := Eq(t1, t2),

|∀xA(x)|rs := |A(s0)|r(s0)s1 ,

|A → B|rs := |A|s0r1(s0)(s1) → |B|r0(s0)s1 .

If r, s in |A|rs are formed by the pair constructor in case they are of pair type, we have the easier-to-memorize
equations

|∀xA(x)|fs,t = |A(s)|fs
t , |A → B|f,g

s,t = |A|sgst → |B|fs
t .

The formula∃x∀y|A|xy is called theGödel translationof A, where∃x, ∀y is missing ifτ+(A), τ−(A) is the
nulltype symbol, respectively.

Theorem (Soundness)LetM be a derivation ofA from assumptionsui : Ci (wherei = 1, . . . , n). Letxi of
typeτ+(Ci) be variables for realizers of the assumptions, andy be a variable of typeτ−(A) for a challenge of
the goal. Then we can find terms

• [[M ]]+ =: t of typeτ+(A) with y /∈ FV(t) and

• [[M ]]−i =: ri of typeτ−(Ci),

and a derivation of|A|ty from assumptions̄ui : |Ci|xi
ri

.

The proof is by induction onM . It will be given in the following three sections: for the logic rules, for
(ordinary) induction and for well-founded induction.
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2.3 Soundness of logic

Caseu : A. Let x of type τ+(A) be the variable for a realizer of the assumptionu. Define [[u]]+ := x and
[[u]]− := y.

CaseλuAMB . By IH (induction hypothesis) we have a derivation of|B|tz from ū : |A|xr andūi : |Ci|xi
ri

, where

ū : |A|xr may be absent. Substitutey0 for x andy1 for z. By (→+) we obtain|A|y0
r[x,z:=y0,y1] → |B|t[x:=y0]

y1 ,
which is (up toβ-conversion)

|A → B|λxt,λx,zr
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Herer is the canonical inhabitant of the typeτ−(A) in caseū : |A|xr is absent. Hence we can define the required
terms by (assuming thatuA is u1)

[[λuM ]]+ := (λx[[M ]]+, λx,z[[M ]]−1 ), [[λuM ]]−i := [[M ]]−i+1[x, z := y0, y1].

CaseMA→BNA. By IH we have a derivation of

|A → B|tx = |A|x0
t1(x0)(x1) → |B|t0(x0)

x1 from |Ci|xi
pi

, |Ck|xk
pk

, and of

|A|sz from |Cj |
xj
qj , |Ck|xk

qk
.

Substituting〈s, y〉 for x in the first derivation and oft1sy for z in the second derivation gives

|A|st1sy → |B|t0s
y from |Ci|xi

p′
i
, |Ck|xk

p′
k
, and

|A|st1sy from |Cj |
xj

q′
j
, |Ck|xk

q′
k

.

Now we contract|Ck|xk

p′
k

and|Ck|xk

q′
k

: since|Ck|xk
w is quantifier-free, there is a boolean termrCk

such that

|Ck|xk
w ↔ rCk

w = tt. (3)

Hence withrk := [if rCk
p′k then q′k elsep′k] we can derive both|Ck|xk

p′
k

and|Ck|xk

q′
k

from |Ck|xk
rk

. The derivation

proceeds by cases on the boolean termrCk
p′k. If it is true, thenrk converts intoq′k, and we only need to derive

|Ck|xk

p′
k
. But this follows by substitutingp′k for w in (3). If rCk

p′k is false, thenrk converts intop′k, and we only

need to derive|Ck|xk

q′
k

, from |Ck|xk

p′
k
. But the latter impliesff = tt (substitute againp′k for w in (3)) and therefore

every quantifier-free formula, in particular|Ck|xk

q′
k

.

Using(→−) we obtain

|B|t0s
y from |Ci|xi

p′
i
, |Cj |

xj

q′
j
, |Ck|xk

rk
.

Let [[MN ]]+ := t0s and[[MN ]]−i := p′i, [[MN ]]−j := q′j , [[MN ]]−k := rk.

CaseλxMA(x). By IH we have a derivation of|A(x)|tz from ūi : |Ci|xi
ri

. Substitutey0 for x andy1 for z. We

obtain|A(y0)|t[x:=y0]
y1 , which is (up toβ-conversion)

|∀xA(x)|λxt
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Hence we can define the required terms by

[[λxM ]]+ := λx[[M ]]+,

[[λxM ]]−i := [[M ]]−i [x, z := y0, y1].

CaseM∀xA(x)s. By IH we have a derivation of|∀xA(x)|tz = |A(z0)|t(z0)
z1 from |Ci|xi

ri
. Substituting〈s, y〉 for

z gives

|A(s)|tsy from |Ci|xi

ri[z:=〈s,y〉].

Let [[Ms]]+ := ts and[[Ms]]−i := ri[z := 〈s, y〉].
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6 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

2.4 Soundness of ordinary induction

We consider induction for the natural numbers, given by constructors0 andS; for boolean induction the argument
is similar (and simpler). The induction schema then reads

Indn,A : ∀n

(
A(0) → ∀m(A(m) → A(m + 1)) → A(n)

)
.

Let B(n) := A(0) → ∀m(A(m) → A(m + 1)) → A(n). Clearly we can deriveB(0) andB(n) → B(n + 1).
By those parts of the proof of the Soundness Theorem that we have dealt with already, we obtain realizing terms
s andt, r and derivations of|B(0)|sy and of|B(n) → B(n + 1)|t,rx,u, hence of

|B(n)|xrxu → |B(n + 1)|txu
∀y|B(n)|xy → |B(n + 1)|txu
∀y|B(n)|xy → ∀y|B(n + 1)|txy .

So if we defineg(0) := s andg(n + 1) := t(g(n)), then we have proved by induction that∀y|B(n)|g(n)
y , which

is ∀y|∀nB(n)|gn,y.
However, for an implementation of the Dialectica interpretation it is advisable to replace axioms by rules

whenever possible. In particular, more perspicious realizers for proofs involving induction can be obtained if the
induction axiom appears with sufficiently many arguments, so that it can be seen as an application of an induction
rule. Note that this can always be achieved by means ofη-expansion. Moreover, in this way we are able to stay
within a quantifier-free setup.

ConsiderIndn,A~aaM
A(0)
0 M

∀n(A(n)→A(n+1))
1 . By IH we have derivations of

|∀n(A(n) → A(n + 1))|tn,f,y =

|A(n) → A(n + 1)|tnf,y =

|A(n)|ftn1fy → |A(n + 1)|tn0f
y from |Ci|xi

ri1(n,f,y)

and of

|A(0)|t0x0
from |Ci|xi

ri0(x0)
.

i ranges over all assumption variables inIndn,A~aaM0M1 (if necessary choose canonical termsri0 andri1). It
suffices to construct terms (involving recursion operators)t̃, r̃i with free variables among~x such that

∀m,y

(
(|Ci|xi

r̃imy)i → |A(m)|t̃my
)
, (4)

where(Ci)i → A is short forC1 → · · · → Cn → A. For then we can define[[Indn,A~aaM0M1]]+ := t̃a and
[[Indn,A~aaM0M1]]−i := r̃iay. The recursion equations fort̃ are

t̃0 = t0, t̃(n + 1) = tn0(t̃n)

and forr̃i

r̃i0y = ri0(y), r̃i(n + 1)y =

{
ri1(n, t̃n, y) =: si(y) if ¬|Ci|xi

si(y),

r̃in(tn1(t̃n)y) otherwise.

t̃, r̃i can be written explicitely with recursion operators:

t̃m = Rmt0(λn(tn0)),

r̃im = Rm(λyri0)
(
λn,p,y[if rCisi(y) then p(tn1(t̃n)y) elsesi(y)]

)
with si(y) as above. It remains to prove (4). We shall do this by quantifier-free induction. To this end, define

s̃0ym := y, s̃(k + 1)ym := t(m−· k −· 1)1
(
t̃(m−· k −· 1)

)
(s̃kym).
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We prove by induction onn that

n ≤ m →
(
|Ci|xi

r̃in(s̃(m−· n)ym)

)
i
→ |A(n)|t̃ns̃(m−· n)ym. (5)

Then (4) will follow with n := m. For the base casen = 0 we must show(
|Ci|xi

r̃i0(s̃mym)

)
i
→ |A(0)|t̃0s̃mym.

Recall that the global IH (for the base derivation) gives withx0 := s̃mym(
|Ci|xi

ri0(s̃mym)

)
i
→ |A(0)|t0s̃mym.

By definition of t̃ andr̃i this is what we want. Now consider the successor case. Assumen + 1 ≤ m. We write
s̃k for s̃kym. Notice that fork + 1 = m −· n by definition ofs̃ we havẽs(m −· n) = tn1(t̃n)(s̃(m −· n −· 1)).
Assume|Ci|xi

r̃i(n+1)(s̃(m−· n−· 1)) for all i. We must show|A(n + 1)|t̃(n+1)
s̃(m−· n−· 1). Let y0 abbreviatẽs(m −· n −· 1).

If ¬|Ci|xi

si(y0)
for somei, then by definitioñri(n + 1)y0 = si(y0) and we have|Ci|xi

si(y0)
, a contradiction. Hence

|Ci|xi

si(y0)
for all i, and thereforẽri(n + 1)y0 = r̃in(tn1(t̃n)y0) = r̃in(s̃(m −· n)). The IH (5) therefore gives

|A(n)|t̃ns̃(m−· n), because of our initial assumptions|Ci|xi

r̃i(n+1)y0
. Recall that the global IH (for the step derivation)

gives withf := t̃n andy := s̃(m−· n−· 1)(
|Ci|xi

si(s̃(m−· n−· 1))
)
i
→ |A(n)|t̃ns̃(m−· n) → |A(n + 1)|t̃(n+1)

s̃(m−· n−· 1)

and we are done.

2.5 Soundness of well-founded induction

We now treat well-founded induction. ConsiderGIndn,A~ahkMProgh
nA(n) : A(n). By IH we can derive

|Progh
nA(n)|tn,f,z =

|∀n(∀m;hm<hnA(m) → A(n))|tn,f,z =

|∀m;hm<hnA(m) → A(n)|tnf,z =

|∀m;hm<hnA(m)|ftn1fz → |A(n)|tn0f
z =(

h(tn1fz0) < hn → |A(tn1fz0)|f(tn1fz0)
tn1fz1

)
→ |A(n)|tn0f

z from |Ci|xi

ri(n,f,z),

wherei ranges over all assumption variables inGIndn,A~ahkM (if necessary choose canonical termsri). It
suffices to construct terms (involving well-founded recursion operators)t̃, r̃i with free variables among~x such
that

∀n,z

(
(|Ci|xi

r̃inz)i → |A(n)|t̃nz
)
, (6)

for then we can define[[GIndn,A~ahkM ]]+ = t̃k and[[GIndn,A~ahkM ]]−i = r̃ikz. The recursion equations fort̃
andr̃i are

t̃n = tn0[t̃]<hn, r̃inz =

{
ri(n, [t̃]<hn, z) =: s if ¬|Ci|xi

s ,

[r̃i]<hn(t′0)(t′1) otherwise,

with the abbreviations

[r]<hn := λm[if hm < hn then rm elseε], t′ := tn1[t̃]<hnz.

It remains to prove (6). For its proof we use well-founded induction. Fixn. We can assume

∀m;hm<hn∀z

(
(|Ci|xi

r̃imz)i → |A(m)|t̃mz
)
. (7)
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8 H. Schwichtenberg: Dialectica Interpretation of Well-Founded Induction

Fix z and assume|Ci|xi

r̃inz for all i. We must show|A(n)|t̃nz . If ¬|Ci|xi
s for somei, then by definitioñrinz = s

and we have|Ci|xi
s , a contradiction. Hence|Ci|xi

s for all i, and thereforẽrinz = [r̃i]<hn(t′0)(t′1). The IH (7)
with m := t′0 andz := t′1 gives

h(t′0) < hn → (|Ci|xi

r̃i(t′0)(t′1)
)i → |A(t′0)|t̃(t

′0)
t′1 .

Recall that the global IH (for the derivation of progressiveness) gives withf := [t̃]<hn

(|Ci|xi
s )i →

(
h(t′0) < hn → |A(t′0)|[t̃]<hn(t′0)

t′1

)
→ |A(n)|tn0[t̃]<hn

z .

Sincet̃(t′0) = [t̃]<hn(t′0) andr̃inz = [r̃i]<hn(t′0)(t′1) = r̃i(t′0)(t′1) we are done.
Notice that we can view this proof as an application ofquantifier-freewell-founded induction, where the

formula(|Ci|xi

r̃inz)i → |A(n)|t̃nz is proved w.r.t. the measure functionh′nz := hn.

3 An application: Euclid’s theorem

3.1 Informal proof

Theorem Assume0 < a2. Then there must exist natural numbersk1, k2 such that0 < |k1a1 − k2a2| and
Rem(ai, |k1a1 − k2a2|) = 0 (i = 1, 2).

P r o o f. Assume0 < a2. Denote|k1a1 − k2a2| by h~k andRem(a, b) = 0 by b | a, and(b | a1) ∧ (b | a2) by
b | a1, a2. Since the theorem claims existence in the weak (or “classical”) sense, from the “false” assumption

u : ∀~k;0<h~k(h~k | a1, a2 → F )

we need to deriveF . Assumeu. It suffices to prove∀~k;0<h~k h~k | a1, a2, for then the desired contradiction
follows with k1 = 0 andk2 = 1, using the assumption0 < a2. For the proof we use well-founded induction with
measureh and formulaA(~k) := 0 < h~k → h~k | a1, a2. Therefore it suffices to prove

Progh := Progh
~k

A(~k) =

∀~k

(
∀~l;0<h~l<h~k h~l | a1, a2 → 0 < h~k → h~k | a1, a2

)
.

(8)

Fix ~k and assume

u1 : ∀~l;0<h~l<h~k h~l | a1, a2,

u2 : 0 < h~k.

We must showh~k | ai for i = 1, 2. By symmetry it suffices to consideri = 1. DenoteQuot(a1, h~k) by q and
Rem(a1, h~k) by r. We must showr = 0. Because of0 < h~k general properties ofQuot andRem ensure

a1 = q · h~k + r, r < h~k.

From this we obtain

r = |Step(a1, a2, k1, k2, q)︸ ︷︷ ︸
=:l1

a1 − qk2︸︷︷︸
=:l2

a2| = h~l < h~k,

where

Step(a1, a2, k1, k2, q) :=

{
qk1 − 1 if k2a2 < k1a1 and0 < q,

qk1 + 1 otherwise.

Assume0 < h~l. Thenh~l | a1, a2 by u1. Now u applied to~l givesF . Therefore0 < h~l → F and henceh~l = 0.
Now r = h~l givesr = 0, as desired.
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3.2 Formalization

The informal proof has been given in such detail that it is now easy to formalize it completely. Let

M := λ~aλv0<a2
0 λu∀~k;0<h~k

(h~k|a1,a2→F ).

u01v0

(
GInd∀~a,µ,~k

(Progµ→∀~k;0<µ~k
µ~k|a1,a2)~ah01MProgv0

)
where

MProg := λ~kλu
∀~l;0<h~l<h~k

h~l|a1,a2

1 λu0<h~k
2 〈Mh~k|a1

,Mh~k|a2
〉,

Mh~k|a1
:= L1r1

(
h~l1

)
Mr1=h~l1

1,= M0<h~l1→F
1, 6< ,

M1,= := LS1~a~kq1r1(LQa1(h~k)u2),

M1, 6< := λw0<h~l1 .u~l1wM
h~l1|a1,a2
1,div ,

M1,div := u1
~l1w

(
L2r1(h~l1)(h~k)M1,=(LRa1(h~k)u2)

)
and similarlyMh~k|a2

, M2,=, M2, 6<, M2,div. We have used abbreviations

qi := Quot(ai, h~k) (i = 1, 2),

ri := Rem(ai, h~k) (i = 1, 2),

~l1 := (Step(a1, a2, k1, k2, q1), q1k2),

~l2 := (q2k1,Step(a2, a1, k2, k1, q2))

and lemmata

L1 : ∀r,l(r = l → (0 < l → F ) → r = 0),

L2 : ∀r,l,k(r = l → r < k → l < k),

LQ : ∀a,b(0 < b → a = Quot(a, b) · b + Rem(a, b)),

LR : ∀a,b(0 < b → Rem(a, b) < b),

LS1 : ∀~a,~k,q,r(a1 = q · h~k + r → r = h~l1),

LS2 : ∀~a,~k,q,r(a2 = q · h~k + r → r = h~l2).

3.3 Term extraction for MProg

We begin with some observations concerning special situations of extraction of terms from proofs, as treated
generally in the proof of the Soundness Theorem.

1. Lemmata without positive content – for instance, purely universal ones – can be added as axioms in the
statement of the Soundness Theorem, both in the premise and the conclusion.

2. Abstraction of an assumption variable for a quantifier-free formula does not affect the positive or negative
content.

We now compute the Dialectica realizers and challenges for the derivations above.M1,= has neither positive nor
negative content.Mh~k|a1

, M1, 6<, M1,div all have no positive content, and their negative content w.r.t. the free

assumptionsu and/oru1 are always~l1. 〈Mh~k|a1
,Mh~k|a2

〉 again has no positive content. Its negative content w.r.t.
the shared assumptionu1 is to be formed by contraction:

[if 0 < h~l1 → h~l1 < h~k → h~l1 | a1, a2 then~l2 else~l1]
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and the negative content w.r.t. the shared assumptionu is

[if 0 < h~l1 → h~l1 | a1, a2 → F then~l2 else~l1].

Therefore forMProg we obtain

t := [[MProg]]+ = λ~k[if 0<h~l1 → h~l1<h~k → h~l1 | a1, a2 then~l2 else~l1],

r(~k) := [[MProg]]− = [if 0 < h~l1 → h~l1 | a1, a2 → F then~l2 else~l1]

[if 0 < h~l1 ∧ h~l1 | a1, a2 then~l1 else~l2].

3.4 Term extraction for GInd~ah01MProg

We now specialize the general term extraction procedure for well-founded induction (cf. 2.5) to the present case.
From the definition ofProgh in (8) it is easy to see thatτ+(Progh) = N×N → N×N andτ−(Progh) = N×N.
Using the notation form 2.5,f, z are not present here, and we have derived

|Progh
~k

A(~k)|t~k =
(
h(t~k) < h~k → A(t~k)

)
→ A(~k) from |C|ε

r(~k)
.

HereC := ∀~k;0<h~k(h~k | a1, a2 → F ) is the formula of the assumption variableu. Note that

|C|ε
r(~k)

= (0 < h(r(~k)) → h(r(~k)) | a1, a2 → F ),

¬|C|ε
r(~k)

↔ 0 < h(r(~k)) ∧ h(r(~k)) | a1, a2.

ThereforeA(~k) is derivable from|C|ε
r̃~k

, with r̃ defined by well-founded recursion:

r̃~k =

{
r(~k) if 0 < h(r(~k)) ∧ h(r(~k)) | a1, a2

[r̃]<h~k(t~k) otherwise.

According to the general definition we have[[GInd~ah~kMProg]]− = r̃~k.

3.5 Term extraction for M

Sinceu has another occurrence outsideMProg, a further contraction is necessary. We obtain

[[u01v0

(
GInd~ah01MProgv0

)
]]− =

[if 0 < h〈0, 1〉 → h〈0, 1〉 | a1, a2 → F then r̃〈0, 1〉 else〈0, 1〉] =

[if 0 < h〈0, 1〉 ∧ h〈0, 1〉 | a1, a2 then 〈0, 1〉 elser̃〈0, 1〉]

and finally

[[M ]]+ = λ~a.[if 0 < h〈0, 1〉 ∧ h〈0, 1〉 | a1, a2 then 〈0, 1〉 elser̃〈0, 1〉].

To understand how[[M ]]+ operates, recall the abbreviations~l1, ~l2 (which use theStep function) andh~k :=
|k1a1 − k2a2|. After an initial check whether0, 1 are already the desired coefficients,[[M ]]+ calls r̃ with 〈0, 1〉.
r̃~k checks whetherr(~k) (which is one of~l1 and~l2) are the coefficients needed, and if not, steps down viat~k

(which again is one of~l1 and~l2) and then recursively calls itself.
This extracted algorithm is rather close to Euclid’s. The difference is that[[M ]]+ keepsa1 and a2 fixed,

whereas in Euclid’s algorithma1 anda2 are replaced bya2 and the remainder of dividinga1 by a2. The gcd is
not affected by this change, but the numbers get smaller, which helps for calculations.

Copyright line will be provided by the publisher



mlq header will be provided by the publisher 11

Acknowledgements Critical comments of Simon Huber, Diana Ratiu, Trifon Trifonov and an anonymous referee have
contributed a lot to the present paper. By incorporating well-founded recursion and induction into an implementation of
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