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Abstract. Let A be a formula without implications, and Γ consist of formulas

containing disjunction and falsity only negatively and implication only posi-
tively. Orevkov (1968) and Nadathur (2000) proved that classical derivability

of A from Γ implies intuitionistic derivability, by a transformation of deriva-

tions in sequent calculi. We give a new proof of this result (for minimal rather
than intuitionistic logic), where the input data are natural deduction proofs in

long normal form (given as proof terms via the Curry-Howard correspondence)

involving stability axioms for relations; the proof gives a quadratic algorithm
to remove the stability axioms. This can be of interest for computational uses

of classical proofs. Keywords: Minimal logic, stability axioms, Glivenko-style

theorems, Orevkov, intuitionistic logic.

It is well-known that in certain situations classical provability implies construc-
tive provability. Glivenko proved in [5] that every negated propositional formula
provable in classical logic is provable intuitionistically. Another famous “Glivenko-
style” result is Barr’s theorem [1], which deals with geometric formulas ∃~x(B1 ∨
· · · ∨Bn) (Bi conjunctions of prime formulas) and geometric implications ∀~x(B →
∃~y(B1 ∨ · · · ∨ Bk)) (B, Bi conjunctions of prime formulas). Barr’s theorem says
that for Γ consisting of geometric implications and A a geometric formula, classical
derivability of A from Γ implies intuitionistic derivability. A systematic study of
such theorems has been undertaken by Orevkov [11] (cf. [7] for a good survey, [8]
for very clear proofs and [8, 9, 12] for related work). We consider one Glivenko-style
theorem of Orevkov, where the conclusion is →-free, and the premises contain →
only positively and ∨, ⊥ only negatively. We give a new proof of this result (for
minimal rather than intuitionistic logic), which is of interest when computational
uses of classical proofs are envisaged, as in [2]. Clearly model-theoretic arguments
do not help here; one needs proof transformations. But even that is not always
good enough: the way proofs are represented as input data matters. In [8, 9, 11]
proofs are given as derivations in a sequent calculus. However, for a computational
analysis natural deduction proofs are more appropriate, since by the Curry-Howard
correspondence they can directly be viewed as λ-terms. A proof of Orevkov’s theo-
rem in this setting then amounts to an analysis of possible occurrences of stability
axioms, and a method to eliminate them. This is what will be done in the present
paper.

In section 1 we fix our terminology for natural deduction proofs in minimal logic,
and describe the standard embedding of classical logic into its →,∀,∧-fragment.
To prepare for the proof of the main result in section 3, we recall in section 2 the
relevant notions, as far as they are necessary to follow the proof. Section 4 discusses
the algorithm provided by the proof, and the final section 5 gives an application1.

1. Minimal logic

Natural deduction is a distinguished logical system, since it allows to formalize
faithfully proofs done by a mathematician who wants to write out all details; this
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Derivation Term

u : A uA

[u : A]

|M
B →+u

A→ B

(λuAMB)A→B

|M
A→ B

| N
A →−

B

(MA→BNA)B

|M
A ∀+x (with var.cond.)
∀xA

(λxM
A)∀xA (with var.cond.)

|M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for → and ∀

was convincingly spelled out by Gentzen [4]. On the more technical side, natural
deduction corresponds closely to the simply typed λ-calculus (“Curry-Howard cor-
respondence”). This is particularly so if we define negation by ¬A := A→ ⊥ with
⊥ just a distinguished propositional symbol; the resulting system is minimal logic.
We then can add extra axioms for ⊥ (e.g., stability or ex-falso-quodlibet) to embed
classical or intuitionistic logic. In minimal logic, for each of the connectives →, ∀
and also ∃, ∨ and ∧ we have introduction and elimination rules (I-rules and E-rules)
given in tables 1 and 2. The left premise A → B in →− is called the major (or
main) premise, and the right premise A the minor (or side) premise. Similarly, in
each of the elimination rules ∨−, ∧− and ∃− the left premise is called major (or
main) premise, and the right premise is called the minor (or side) premise. We

define the weak variants ∃̃, ∨̃ of ∃,∨ by

∃̃xA := ¬∀x¬A and A ∨̃ B := ¬A→ ¬B → ⊥.

Clearly ` ∃xA→ ∃̃xA and ` A∨B → A ∨̃ B, but not conversely; this is the reason
why ∃̃, ∨̃ are called “weak”.

The stability axioms are of the form ∀~x(¬¬P~x→ P~x ) with P a relation symbol
distinct from ⊥. It is easy to see that from the stability axioms we can derive
¬¬A → A for every formula A built with →, ∀, ∧ only. Let Stab denote the set
of all stability axioms. We write Γ `c B for Γ ∪ Stab ` B, and call B classically
derivable from Γ. Similarly, let Efq denote the set of all ex-falso-quodlibet axioms
∀~x(⊥ → P~x ). We write Γ `i B for Γ ∪ Efq ` B, and call B intuitionistically
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Derivation Term

|M
A ∨+0

A ∨B

|M
B ∨+1

A ∨B
(∨+0,BMA)A∨B (∨+1,AMB)A∨B

|M
A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C

(MA∨B(uA.NC , vB .KC))C

|M
A

| N
B ∧+

A ∧B
〈MA, NB〉A∧B

|M
A ∧B

[u : A] [v : B]

| N
C ∧− u, v

C

(MA∧B(uA, vB .NC))C

r

|M
A(r)

∃+∃xA(x)

(∃+x,ArMA(r))∃xA(x)

|M
∃xA

[u : A]

| N
B ∃−x, u (var.cond.)

B

(M∃xA(x, uA.NB))C (var.cond.)

Table 2. Derivation terms for ∨, ∧ and ∃

derivable from Γ. Recall the negative translation Ag of A (due to Gödel-Gentzen),
defined by

(i) ⊥g := ⊥;
(ii) P g := ¬¬P for prime formulas P 6= ⊥;
(iii) (B ∨ C)g := Bg ∨̃ Cg;
(iv) (∃xB)g := ∃̃xBg;
(v) (B ◦ C)g := Bg ◦ Cg for ◦ = →,∧;
(vi) (∀xB)g := ∀xBg.

It is well-known that Γ `c A implies Γg ` Ag. The converse clearly holds for Γ, A
without ∨,∃.



4 HELMUT SCHWICHTENBERG AND CHRISTOPH SENJAK

Remark. Notice that we deal with an extended classical logic here: in addition to
the weak (“classical”) connectives ∨̃, ∃̃ we also have the strong ones ∨,∃. Thus
` P ∨̃ ¬P , but 6`c P ∨ ¬P .

Traditional classical logic disregards the distinction between ∨̃, ∃̃ and ∨,∃, which
amounts to adding A ∨̃ B → A∨B and ∃̃xA→ ∃xA as axioms. Since one can easily
derive (in minimal logic) A ∨̃ B ↔ ¬¬(A ∨ B) and ∃̃xA ↔ ¬¬∃xA, adding these
axioms is the same thing as adding stability for disjunction ¬¬(A ∨ B) → A ∨ B
and for existence ¬¬∃xA→ ∃xA.

2. Normal derivations and their structure

The Curry-Howard correspondence allows us to transform concepts well-known
in λ-calculus to natural deduction proofs; this will be important later on. For the
convenience of the reader we recall in this section the relevant notions, as far as
they are necessary to follow the proof in section 3. For background and details we
refer the reader to [13, 16, 15].

Let us first restrict to the →,∀-fragment. By a β-redex (“reducible expression”)
we mean a (→ or ∀)-introduction immediately followed by a (→ or ∀)-elimination.
This “detour” can be simplified by a β-conversion:

[u : A]

|M
B →+u

A→ B

| N
A →−

B

7→β

| N
A

|M
B

or written as derivation terms

(λuM(uA)B)A→BNA 7→β M(NA)B .

Similarly we have for the universal quantifier

|M
A(x)

∀+x∀xA(x) r
∀−

A(r)

7→β
|M ′

A(r)

or written as derivation terms

(λxM(x)A(x))∀xA(x)r 7→β M(r).

Every→,∀-proof can be reduced (by iterated conversions) to a normal form, i.e.,
a proof without β-redexes; this normal form is uniquely determined. To analyze
the structure of normal derivations, it is useful to introduce the notion of a track
in a proof tree, which makes sense for non-normal derivations as well. A track of a
derivation M is a sequence of formula occurrences (f.o.) A0, . . . , An such that

(a) A0 is a top f.o. in M (possibly discharged by an application of →−);
(b) Ai for i < n is not the minor premise of an instance of→−, and Ai+1 is directly

below Ai;
(c) An is either the minor premise of an instance of →−, or the conclusion of M .

The track of order 0, or main track , in a derivation is the (unique) track ending in
the conclusion of the whole derivation. A track of order n+ 1 is a track ending in
the minor premise of an →−-application, with major premise belonging to a track
of order n.

It is easy to see that each formula occurrence in a derivation belongs to some
track. Now consider a normal derivation M . Since by normality an E-rule cannot
have the conclusion of an I-rule as its major premise, the E-rules have to precede
the I-rules in a track, so the following is obvious: a track may be divided into an



MINIMAL FROM CLASSICAL PROOFS 5

E-part, say A0, . . . , Ai−1, a minimal formula Ai, and an I-part Ai+1, . . . , An. In the
E-part all rules are E-rules; in the I-part all rules are I-rules; Ai is the conclusion
of an E-rule and, if i < n, a premise of an I-rule. Tracks are pieces of branches
of the tree with successive f.o.’s in the subformula relationship: either Ai+1 is a
subformula of Ai or vice versa. As a result, all formulas in a track A0, . . . , An are
subformulas of A0 or of An; and from this, by induction on the order of tracks, we
see that every formula in M is a subformula either of an open assumption or of the
conclusion. To summarize: in a normal derivation each formula is a subformula of
either the end formula or else an assumption formula.

Notice that the minimal formula in a track can be an implication A→ B or gen-
eralization ∀xA. However, we can apply an η-expansion and replace the occurrence
of A→ B or ∀xA by

A→ B u : A →−
B →+u

A→ B

∀xA x
∀−

A ∀+x∀xA

Repeating this process we obtain a derivation in long normal form, all of whose
minimal formulas are neither implications nor generalizations.

When we proceed to the full language (including ∨,∧,∃), in addition to the
→,∀-conversions we must consider the following conversions:

∨-conversion.

|M
A ∨+0

A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C

7→

|M
A

| N
C

or as derivation terms (∨+0,BMA)A∨B(uA.N(u)C , vB .K(v)C) 7→ N(MA)C , and sim-

ilarly for ∨+1 with K instead of N .

∧-conversion.

|M
A

| N
B ∧+

A ∧B

[u : A] [v : B]

| K
C ∧− u, v

C

7→

|M
A

| N
B

| K
C

or 〈MA, NB〉A∧B(uA, vB .K(u, v)C) 7→ K(MA, NB)C .

∃-conversion.

r

|M
A(r)

∃+∃xA(x)

[u : A(x)]

| N
B
∃−x, u

B

7→

|M
A(r)

| N ′

B

or (∃+x,ArMA(r))∃xA(x)(uA(x).N(x, u)B) 7→ N(r,MA(r))B .
However, there is a difficulty: an introduced formula may be used as a minor

premise of an application of an elimination rule for ∨, ∧ or ∃, then stay the same
throughout a sequence of applications of these rules, being eliminated at the end.
This also constitutes a local maximum, which we should like to eliminate; permu-
tative conversions are designed for this situation. In a permutative conversion we
permute an E-rule upwards over the minor premises of ∨−, ∧− or ∃−. For ∨ we
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have

|M
A ∨B

| N
C

| K
C

C

| L
C ′

E-rule
D

7→

|M
A ∨B

| N
C

| L
C ′

E-rule
D

| K
C

| L
C ′

E-rule
D

D

or with for instance →− as E-rule

(MA∨B(uA.NC→D, vB .KC→D))C→DLC 7→
(MA∨B(uA.(NC→DLC)D, vB .(KC→DLC)D))D.

For ∧,∃ there are similar permutative conversion rules.
We further need simplification conversions. These are somewhat trivial conver-

sions, which remove unnecessary applications of the elimination rules for ∨, ∧ and
∃. For ∨ we have

|M
A ∨B

[u : A]

| N
C

[v : B]

| K
C ∨−u, v

C

7→ | N
C

if u : A is not free in N , or (MA∨B(uA.NC , vB .KC))C 7→ NC ; similarly for the
second component. For ∧,∃ there are similar simplification conversions. Again one
can show that every derivation term can be reduced to a (uniquely determined)
normal form where none of these conversions can be performed.

Let us now analyze the structure of normal derivations in the full language. It
will be useful to introduce the notion of a segment and to modify accordingly the
notion of a track in a proof tree. Both make sense for non-normal derivations
as well. A segment (of length n) in a derivation M is a sequence A0, . . . , An of
occurrences of the same formula A such that

(a) for 0 ≤ i < n, Ai is a minor premise of an application of ∨−, ∧− or ∃−, with
conclusion Ai+1;

(b) An is not a minor premise of ∨−, ∧− or ∃−.
(c) A0 is not the conclusion of ∨−, ∧− or ∃−.

Notice that a formula occurrence (f.o.) which is neither a minor premise nor the
conclusion of an application of ∨−, ∧− or ∃− always constitutes a segment of length
1. A segment is maximal or a cut (segment) if An is the major premise of an E-rule,
and either n > 0, or n = 0 and A0 = An is the conclusion of an I-rule. We use σ, σ′

for segments. σ is called a subformula of σ′ if the formula A in σ is a subformula
of B in σ′.

Notice that only ∨− is responsible for a possible branching of a segment. Seg-
ments will be linear if no ∨− is present.

The notion of a track is designed to retain the subformula property in case one
passes through the major premise of an application of a ∨−,∧−,∃−-rule. In a track,
when arriving at an Ai which is the major premise of an application of such a rule,
we take for Ai+1 a hypothesis discharged by this rule. More precisely, a track of a
derivation M is a sequence of f.o.’s A0, . . . , An such that

(a) A0 is a top f.o. in M not discharged by an application of a ∨−,∧−,∃−-rule;
(b) Ai for i < n is not the minor premise of an instance of →−, and either
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(i) Ai is not the major premise of an instance of a ∨−,∧−,∃−-rule and Ai+1

is directly below Ai, or
(ii) Ai is the major premise of an instance of a ∨−,∧−,∃−-rule and Ai+1 is

an assumption discharged by this instance;
(c) An is either

(i) the minor premise of an instance of →−, or
(ii) the end formula of M , or

(iii) the major premise of an instance of a ∨−,∧−,∃−-rule in case there are no
assumptions discharged by this instance.

It is easy to see that in a derivation each formula occurrence belongs to some track.
A track of order 0, or main track, in a derivation is a track ending either in the
end formula of the whole derivation or in the major premise of an application of
a ∨−, ∧− or ∃−-rule, provided there are no assumption variables discharged by
the application. A track of order n + 1 is a track ending in the minor premise of
an →−-application, with major premise belonging to a track of order n. A main
branch of a derivation is a branch π (i.e., a linearly ordered subtree) in the proof
tree such that π passes only through premises of I-rules and major premises of
E-rules, and π begins at a top node and ends in the end formula.

Since by simplification conversions we have removed every application of an ∨−,
∧− or ∃−-rule that discharges no assumption variables, each track of order 0 in a
normal derivation is a track ending in the end formula of the whole derivation. Note
also that if we search for a main branch going upwards from the end formula, the
branch to be followed is unique as long as we do not encounter an ∧+-application.

Instead of a minimal formula we now have a minimal segment on a track. Again
by appropriate η-expansions we can transform each normal derivation into a long
normal form, where each minimal segment has an atomic formula.

3. Removing stability axioms

Theorem 3.1. Assume Γ `c A, where Γ, A are such that

(i) A is →-free, and
(ii) Γ has only positive occurrences of →, and only negative occurrences of ∨ and

of ⊥.

Then Γ ` A.

Proof. We can assume that the given proof is in long normal form.
First observe that it suffices to prove the claim for a prime formula Q as goal.

To see this, consider a main branch of the derivation. Its minimum segment has a
prime formula, and the following introduction part has by assumption no→+-rules
but ∀+, ∃+, ∨+ and ∧+-rules only, which do not bind assumption variables.

Now use induction on the number of occurrences of stability axioms. Since the
proof is in long normal form, each stability axiom must be fully eliminated, that is,
it occurs in a context

(1)
StabP : ∀~x(¬¬P~x→ P~x ) ~r

¬¬P~r → P~r

|M
⊥ →+u¬¬P~r
| S

¬¬P~r →−
P~r

| K
Q
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with a unique →+u, because the segment tree S is linear (since it cannot contain
∨−, as it would lead to a positive occurrence of ∨ in Γ). Call an application of a
rule →+u proper if its premise has a free occurrence of u. Call an occurrence of a
stability axiom proper if its associated →+u is proper.

Case 1. There is a proper occurrence of a stability axiom. Pick a topmost one.
It appears in a context

(2)

StabP : ∀~x(¬¬P~x→ P~x ) ~r

¬¬P~r → P~r

u : ¬P~r
| N
P~r

⊥
|M
⊥ →+u¬¬P~r
| S

¬¬P~r →−
P~r

| K
Q

Since the proof is in long normal form, each leaf u : ¬P~r must be the main premise
of a rule →−, i.e., be in a context uN with N : P~r. Pick an uppermost bound
occurrence of u, i.e., a subproof uN where N has no free occurrence of u.

Let u1, . . . , un be the assumption variables of N bound in M or S (by→+, ∃− or
∧−; ∨− would again lead to a positive occurrence of ∨ in Γ). Any such→+ must be
in M , and the path through its conclusion A→ B must end in the side premise of
an→− (since M ends with ⊥). Its main premise contains A→ B negatively. Since
A1, . . . , An contain no negative implications, our →+ occurs as →+v in a context

StabQ : ∀~x(¬¬Q~x→ Q~x ) ~r

¬¬Q~r → Q~r

|
⊥ →+v¬¬Q~r

→−
Q~r

|

and hence is an improper application, since we picked StabP as a topmost proper
occurrence of a stability axiom. Therefore u1, . . . , un must all be bound by ∃− or
∧−. Consider the main parts of these ∃−, ∧−. We push them all up to the end
of N , i.e., leave the main parts as they are, but use them with a new side part,
each with side formula P~r. This new side formula does not affect the validity of
the variable condition at any such ∃−, since in each of them u : ¬P~r was an open
assumption. Thus all u1, . . . , un get bound, and u has disappeared. Let N̂ be this
extension of N . The result is

| N̂
P~r

| K
Q

We have removed one occurrence of a stability axiom and can apply the induction
hypothesis.

Case 2. There are only improper occurrences of stability axioms. Assume there
is one. It must appear in a context (1). Let A be the formula of a topmost node in
a path through the end formula ⊥ of M ; it has ⊥ as a strictly positive part. Since
we are in case 2, this topmost node cannot be bound by →+. Hence ⊥ must be a
strictly positive part of a formula in Γ, which contradicts our assumptions. �
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None of the assumptions on A, Γ in Theorem 3.1 can be omitted:

(i) “A is →-free”. The Peirce formula provides a countererample: we have `c
((P → Q)→ P )→ P , but 6`i ((P → Q)→ P )→ P .

(ii) “Γ has only positive occurrences of→”. Again we can use the Peirce formula:
(P → Q)→ P `c P , but (P → Q)→ P 6`i P .

(iii) “Γ has only negative occurrences of ∨”. This example is due to Nadathur [8].

∀xPx→ Q,∀x(Px ∨Q) `c Q, but ∀xPx→ Q,∀x(Px ∨Q) 6`i Q.

To see where the argument above breaks down, consider the derivation from
StabQ and the consequence EfqP of StabP :

StabQ : ¬¬Q→ Q

|M
⊥ →+u¬¬Q

Q

where M is

u:¬Q
∀xPx→ Q

∀x(Px ∨Q) x

Px ∨Q v:Px

EfqP :

∀x(⊥ → Px) x

⊥ → Px

u:¬Q w:Q

⊥
Px
∨−v, w

Px
∀xPx

Q

⊥
Here we cannot push up ∨− changing its side formula to Q, since it has two
side premises.

(iv) “Γ has only negative occurrences of ⊥”. ⊥ `c P , but ⊥ 6` P .

A special case of Theorem 3.1 was proved in [14], with a similar method. Define
a generalized definite Horn formula to be ∀~x(C1 → · · · → Cn → B) with Ci of the
form ∀~yiBi and Bi, B prime formulas with B distinct from ⊥. The proof in [14]
shows that for Γ consisting of generalized definite Horn formulas and A a prime
formula, Γ `c A implies Γ ` A. Related extensions of logic programming have been
studied in detail by Dale Miller [6].

4. An algorithm to remove stability axioms

We describe the algorithm contained in the proof of Theorem 3.1. Recall that
the input has to be a derivation tree in long normal form. The algorithm essen-
tially consists in two depth-first passes through the derivation tree. The outer one
identifies proper applications of stability axioms, which must be of the form (2).
Let u be the assumption variable bound by the associated →+u. Then a second
depth-first pass (depending on u) through the side premise (ending in ¬¬P~r ) of its
→− is done, resulting in a derivation tree for P~r with no free occurrence of u. Thus
we get rid of all proper applications of stability axioms, and as argued in case 2
of the proof no improper occurrences of stability axioms remain. Thus we have
one primitive recursion inside another one, and hence the algorithm is quadratic
relative to the length of the proof tree.

We now give a more detailed description. Clearly we can assume that all bound
assumption variables in the given derivation are distinct. In a first step we mark
each subderivation with its free assumption variables, and also one bit indicat-
ing whether or not we have a proper application of a stability axiom. Given this
data we recursively define a reduction function eliminating all proper applications
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of stability. If the derivation does not end with a proper application of stability,
take the same rule and recursively apply the reduction function to the subderiva-
tions. Hence we can assume that our derivation ends with a proper application of
a stability axiom

StabP : ∀~x(¬¬P~x→ P~x ) ~r

¬¬P~r → P~r

| L
¬¬P~r →−

P~r

Hence L must be of the form
|
⊥ →+u¬¬P~r
| S

¬¬P~r
with a segment S, and we can read off u from L. Mark each subderivation of L
according to whether it contains u (a) neither free nor bound, (b) free or (c) bound.
We define a second reduction function Redu(L) depending on u by recursion on L
(using notation from (2)).

(i) Redu(L) := L if u is neither free nor bound in L.
(ii)

u : ¬P~r
| L
P~r →−⊥

7→Redu

| Redu(L)

P~r

if u is neither free nor bound in L.
(iii)

|
∃xA

| L
⊥
∃−⊥

7→Redu

|
∃xA

| Redu(L)

P~r
∃−

P~r

if u is free in L. Similarly for ∧−.
(iv)

| L
⊥ →+u¬¬P~r

7→Redu

| Redu(L)

P~r

if u is free in L.
(v)

|
∃xA

| L
¬¬P~r

∃−¬¬P~r
7→Redu

|
∃xA

| Redu(L)

P~r
∃−

P~r

if u is bound in L. Similarly for ∧−.
(vi)

StabP : ∀~x(¬¬P~x→ P~x ) ~r

¬¬P~r → P~r

| L
¬¬P~r →−

P~r

7→Redu

| Redu(L)

P~r

if u is bound in L.

5. An application in algebra

For applications of Theorem 3.1 we need a formalization of the proposition at
hand in first order logic, in the form Γ `c A with Γ, A satisfying the restrictions of
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Theorem 3.1. A good candidate for inclusion in Γ is the theory Axring of commu-
tative rings, in the language given by function symbols +,×,− and constants 0, 1
and with axioms (writing xy for x× y)

x+ (y + z) = (x+ y) + z, x+ y = y + x, x+ 0 = x, x+ (−x) = 0,

x(yz) = (xy)z, xy = yx, x1 = x, x(y + z) = xy + xz.

Notice that the theory of integral rings with the additional axiom

xy = 0→ x = 0 ∨ y = 0

does not qualify, because of the positive occurrence of ∨.
In spite of the fact that many concepts and proof methods common in alge-

bra (Noetherian rings, Zorn’s lemma etc.) go beyond first order logic, recent work
of Coquand, Lombardi and others has revealed that in many cases one can find
substitutes allowing a formalization in first order logic. We have to refer to the
literature (in particular [3]) for background and definitions, and restrict ourselves
to a discussion of one example in [3], a non-Noetherian version of Swan’s theorem.
It is written in a purely first order way as an implication

(3) Axring → HdimR < n→ ∆n(F ) = 1→ ∃X,Y (1 = XFY )

where X is a row vector, Y a column vector and F a matrix of fixed size. We refer
to [3] for how HdimR < n (the Heitmann dimension of a ring R is < n) can be
written as a first-order formula; for n = 1 it means

∀x∃a∀y∃b(1 = b(1− yx(1− ax))).

The logical complexity increases with n, but HdimR < n (for a given n) can still be
written as a prenex formula with alternating quantifiers and an equational kernel,
and hence is →-free. ∆n(F ) is the ideal generated from all minors of F of order n.
Hence ∆n(F ) = 1 is an existential formula with an equational kernel. The same
is true for the conclusion ∃X,Y (1 = XFY ). Therefore Theorem 3.1 applies, telling
us how to remove stability axioms (for atomic formulas, i.e., equations). Thus we
obtain a proof of (3) in minimal logic.

References

[1] M. Barr. Toposes without points. J. Pure and Applied Algebra, 5:265–280, 1974.
[2] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extraction from classical

proofs. Annals of Pure and Applied Logic, 114:3–25, 2002.

[3] T. Coquand and H. Lombardi. A logical approach to abstract algebra. Math. Struct. in Comp.
Science, 16:885–900, 2006.

[4] G. Gentzen. Untersuchungen über das logische Schließen I, II. Mathematische Zeitschrift,

39:176–210, 405–431, 1935.
[5] V. Glivenko. Sur quelques points de la logique de M. Brouwer. Bull. Soc. Math. Belg., 15:183–

188, 1929.

[6] D. Miller. A logic programming language with lambda–abstraction, function variables and
simple unification. Journal of Logic and Computation, 2(4):497–536, 1991.

[7] G. Mints. Proof theory in the USSR 1925–1969. The Journal of Symbolic Logic, 56(2):385–
424, 1991.

[8] G. Nadathur. Correspondence between classical, intuitionistic and uniform provability. The-

oretical Computer Science, 232(1–2):273–298, 2000.
[9] S. Negri. Contraction-free sequent calculi for geometric theories with an application to Barr’s

theorem. Archive for Mathematical Logic, 42:389–401, 2003.

[10] V. P. Orevkov, editor. Logical and logico-mathematical calculi. I. English translation, The
calculi of symbolic logic. I, Proceedings of the Steklov Institute of Mathematics, vol. 98 (1971).

Trudy Matematicheskogo Instituta imeni V.A. Steklova, 1968.

[11] V. P. Orevkov. On Glivenko sequent classes. In Logical and logico-mathematical calculi [10],
pages 131–154 (Russian), 147–173 (English).

[12] E. Palmgren. An intuitionistic axiomatization of real closed fields. Math Log. Quart.,

48(2):297–299, 2002.



12 HELMUT SCHWICHTENBERG AND CHRISTOPH SENJAK

[13] D. Prawitz. Ideas and results in proof theory. In J. Fenstad, editor, Proceedings of the Second

Scandinavian Logic Symposium, pages 235–307. North-Holland, Amsterdam, 1971.

[14] H. Schwichtenberg. Minimal from classical proofs. In E. Börger, G. Jäger, H. Kleine-Büning,
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