
NEW DEVELOPMENTS IN PROOFS AND
COMPUTATIONS

HELMUT SCHWICHTENBERG

It is a tempting idea to use formal existence proofs as a means to pre-
cisely and verifiably express algorithmic ideas. This is clearly possible for
“constructive” proofs, which are informally understood via the Brouwer-
Heyting-Kolmogorov interpretation (BHK-interpretation for short). This
interpretation of intuitionistic (and minimal) logic explains what it means to
prove a logically compound statement in terms of what it means to prove its
components; the explanations use the notions of construction and construc-
tive proof as unexplained primitive notions. For prime formulas the notion
of proof is supposed to be given. The clauses of the BHK-interpretation are:

• p proves A ∧B if and only if p is a pair 〈p0, p1〉 and p0 proves A, p1

proves B;
• p proves A → B if and only if p is a construction transforming any

proof q of A into a proof p(q) of B;
• ⊥ is a proposition without proof;
• p proves ∀x∈DA(x) if and only if p is a construction such that for all

d ∈ D, p(d) proves A(d);
• p proves ∃x∈DA(x) if and only if p is of the form 〈d, q〉 with d an

element of D, and q a proof of A(d).

The problem with the BHK-interpretation is its reliance on the unexplained
concepts of construction and constructive proof. Gödel (1958) tried to re-
place the notion of constructive proof by something more definite, less ab-
stract, his principal candidate being a notion of “computable functional of
finite type” which is to be accepted as sufficiently well understood to justify
the axioms and rules of his system T, an essentially logic-free theory of func-
tionals of finite type. One only needs to know that certain basic functionals
are computable (including primitive recursion operators in finite types), and
that the computable functionals are closed under composition.

The general framework for proof interpretations as we understand it is to
assign to every formula A a new one ∃xA1(x) with A1(x) ∃-free. Then from a
derivation M : A we want to extract a “realizing” term r such that A1(r) can
be proved. The intention here is that its meaning should in some sense be
related to the meaning of the original formula A. The well-known (modified)
realizability interpretation and Gödel’s Dialectica interpretation both fall
under this scheme (cf. Oliva (2006)). However, Gödel explicitely states in
(1958, p.286) that his Dialectica interpretation is not the one intended by
BHK-interpretation.

One might think that from the informal idea of a particular constructive
proof it should be clear what its algorithmic content is. This, however, is
not always true. An example is Tait’s proof of the existence of normal forms

1

2 HELMUT SCHWICHTENBERG

for the simply typed λ-calculus, which uses so-called computability predi-
cates. Somewhat unexpectedly, it turns out that its computational content
is the normalization-by-evaluation algorithm. This has first been observed
by Berger (1993), and formally treated (including machine extraction of
programs) in Berger et al. (2006).

An even greater challenge is the task of finding computational content in
proofs of classical existence theorems, of the form ¬∀y¬A0(y) with A0(y)
quantifier-free; we use the shorthand ∃̃yA0(y) for such formulas. It is well-
known that we need to require that the kernel A0(y) is quantifier-free. Then
the whole proof can be seen as deriving falsity from the (false) assumption
∀y¬A0(y). Now consider the long normal form of this proof. In this long
normal form, each instance of the false assumption ∀y¬A0(y) must be ap-
plied to a closed term ri of type N, and for at least one of those ri the kernel
¬A0(ri) must be false and hence A0(ri) true. This “direct method” has been
described in Schwichtenberg (1993); in Berger and Schwichtenberg (1995) it
has been shown that it gives the same results as the so-called A-translation
of Friedman (1978) (and moreover, that we have the same algorithm in both
cases). A refined form of the A-translation has been introduced in Berger
et al. (2002), and further studied and applied in Berger et al. (2001); Seisen-
berger (2003).

An alternative to extract computational content from proofs of classical
existence theorems is Gödel’s Dialectica interpretation (1958), which is what
we want to concentrate on in the present paper. Gödel assigned to every
formula A a new one ∃~x∀~yAD(~x, ~y) with AD(~x, ~y) quantifier-free. Here ~x,
~y are lists of variables of finite types; the use of higher types is necessary
even when the original formula A was first-order. He did this in such a way
that whenever a proof of A say in constructive arithmetic was given, one
could produce closed terms ~r such that the quantifier-free formula AD(~r, ~y)
is provable in T.

In (1958) Gödel referred to a Hilbert-style proof calculus. However, since
the realizers will be formed in a λ-calculus formulation of system T, Gödel’s
interpretation becomes a lot more perspicious when it is done for a natu-
ral deduction calculus. Such a natural deduction based treatment of the
Dialectica interpretation has been given by Jørgensen (2001) and Hernest
(2006). Both authors use a formulation of natural deduction where open
assumptions are viewed as formulas, and consequently the necessity of con-
tractions arises when an application of the implication introduction rule →+

discharges more than one assumption formula. However, it seems to be more
in the spirit of the Curry-Howard correspondence (formulas correspond to
types, and proofs to terms) to view assumptions as assumption variables.
This is particularly important when – say in an implementation – one wants
to assign object terms (“realizers”, in Gödel’s T) to proof terms. To see
the point, notice that a proof term M may have many occurrences of a free
assumption variable uA. The associated realizer [[M]] then needs to contain
an object variable x

τ(A)
u uniquely associated with uA, again with many oc-

currences. To organize this in an appropriate way it seems mandatory to
be able to refer to an assumption A by means of its “label” u. The present
exposition differs from previous ones mainly in this respect.

PROOFS AND COMPUTATIONS 3

The rest of the paper is rather technical. We give a detailed natural
deduction based proof of the soundness theorem for the Dialectica interpre-
tation, and also extend it to the Dialectica interpretation with majorants
(or “monotone” Dialectica interpretation), introduced by Kohlenbach (1992,
1996).

The main motivation for this work has been the desire to have a clean
and explicit natural deduction based proof of the soundness theorem, for the
exact Dialectica interpretation as well as for its variant with majorants, in
such a way that this proof can be used as a template for an implementation.
For the very same reason we have added a simplified and implementation-
friendly proof of the fact – first observed by Kohlenbach (1992) – that WKL
can be formulated as a ∀∃≤∀-axiom, and hence is covered by the Dialectica
interpretation with majorants. However, it remains to be seen to what
extent such an implementation will succeed in producing informative and
usable realizers. A promising first step in this direction has been done by
Hernest (2006); particularly interesting is his successful integration of the
non-computational (“uniform”) quantifiers of Berger (1993, 2005).

We begin in Sec.1 with a description of the arithmetic HAω in finite types
that we consider. Sec.2 contains a proof of the Soundness Theorem for
Gödel’s Dialectica interpretation, and Sec.3 gives the majorant-based version
of it. The final subsection contains a proof that WKL can be formulated as
a ∀∃≤∀-axiom.

1. Arithmetic in Finite Types

1.1. Types. Our type system is defined by two type forming operations:
arrow types ρ → σ and the formation of inductively generated types µ~α~κ,
where ~α = (αj)j=1,...,N is a list of distinct “type variables”, and ~κ =
(κi)i=1,...,k is a list of “constructor types”, whose argument types contain
α1, . . . , αN in strictly positive positions only.

For instance, µα(α, α → α) is the type of natural numbers; here the list
(α, α → α) stands for two generation principles: α for “there is a natural
number” (the 0), and α → α for “for every natural number there is a next
one” (its successor).

Definition. Let ~α = (αj)j=1,...,N be a list of distinct type variables. Types
ρ, σ, τ, µ ∈ Ty and constructor types κ ∈ KT~α are defined inductively:

ρ, σ ∈ Ty
ρ → σ ∈ Ty

,
~ρ, ~σ1, . . . , ~σn ∈ Ty

~ρ → (~σ1 → αj1) → . . . → (~σn → αjn) → αj ∈ KT~α
(n ≥ 0),

~κ∈KT~α, ∀0<j≤N∃j1,...,jn<jκj = ~ρ → (~σ1 → αj1) → . . . → (~σn → αjn) → αj

(µ~α(κ1, . . . , κk))j ∈ Ty
,

with 1 ≤ N ≤ k; we call κ1, . . . , κN nullary constructor types.

Here ~ρ → σ means ρ1 → . . . → ρm → σ, associated to the right. We
reserve µ for types of the form (µ~α(κ1, . . . , κk))j . The parameter types of µ
are the members of all ~ρ appearing in its constructor types κ1, . . . , κk.

4 HELMUT SCHWICHTENBERG

In the present paper it suffices to only consider the µ-types
U := µαα,

B := µα(α, α),

N := µα(α, α → α),

bin := µα(α, α → α, α → α),

ρ ∧ σ := µα(ρ → σ → α).

A type is finitary if it is a µ-type with all its parameter types ~ρ finitary,
and all its constructor types are of the form ~ρ → αj1 → . . . → αjn → αj , so
the ~σ1, . . . , ~σn in the general definition are all empty. For example, U, B,
N, bin are finitary, and ρ ∧ σ is finitary provided its parameter types are.

1.2. Constants. For each of our base types we have constructors Cµ
i and

recursion operators Rτ
µ, as follows:

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : B → τ → τ → τ,

0N := CN
1 , SN→N := CN

2 ,

Rτ
N : N → τ → (N → τ → τ) → τ,

1bin := Cbin
1 , Sbin→bin

0 := Cbin
2 , Sbin→bin

1 := Cbin
3 ,

Rτ
bin : bin → τ → (bin → τ → τ) → (bin → τ → τ) → τ,(
∧+

ρσ

)ρ→σ→ρ∧σ := Cρ∧σ
1 ,

Rτ
ρ∧σ : ρ ∧ σ → (ρ → σ → τ) → τ.

1.3. Terms. Terms are inductively defined from typed variables xρ and the
constants, that is, constructors Cµ

i and recursion operators Rτ
µ, by abstrac-

tion (λxρMσ)ρ→σ and application (Mρ→σNρ)σ. It is well known that every
such term has a uniquely determined long normal form w.r.t. β- and R-
conversions and η-expansions. We consider two terms to be definitionally
equal if they have the same long normal form, and identify such terms.

Notice that in the more general setting of Schwichtenberg (2006), where
we also allow constants defined by computation rules, definitional equality
should mean that there is a purely equational proof of their equality based
on β- and R-conversions and η-expansions.

Notice also that the boolean “recursion” operator Rτ
B does not make any

recursive calls. We denoteRτ
Btrs by [if t then r else s] (which also indicates

that this term should be evaluated “lazily”).
Using the recursion operators we can define boolean-valued functions rep-

resenting (decidable) equality =µ : µ → µ → B for finitary base types µ, for
instance N:

(0 = 0) := tt,

(0 = S(n)) := ff,

(S(m) = 0) := ff,

(S(m) = S(n)) := (m = n).

The projections of a pair to its components can be defined easily:

r0 := Rρ
ρ∧σrρ∧σ(λxρ,yσxρ), r1 := Rρ

ρ∧σrρ∧σ(λxρ,yσyσ).

We also define the canonical inhabitant ερ of a type ρ:

εµj := C~µ
j ε~ρ(λ~x1

εµj1) . . . (λ~xnεµjn), ερ→σ := λxεσ.

PROOFS AND COMPUTATIONS 5

There are many canonical isomorphisms between types; (ρ ∧ σ → τ) ∼
(ρ → σ → τ) is an example. The isomorphism pairs can be constructed
explicitly from the functions above.

1.4. Formulas. Atomic formulas are atom(rB), indicating that the argu-
ment is true. We may also allow further predicate constants, for instance
inductively defined ones, like Leibniz equality.

Notice that there is no need for (logical) falsity ⊥, since we can take the
atomic formula F := atom(ff) – called arithmetical falsity – built from the
boolean constant ff instead.

The formulas of HAω are built from atomic ones by the connectives →,
∀, ∃ and ∧. We define negation ¬A by A → F .

1.5. Proof terms. We use Gentzen’s natural deduction calculus for logical
derivations consisting of the well-known rules →+, →−, ∀+ and ∀−. It will
be convenient to write derivations as terms, where the derived formula is
viewed as the type of the term. This representation is known under the
name Curry-Howard correspondence.

We give an inductive definition of derivation terms in Table 1, where for
clarity we have written the corresponding derivations to the left. For the
universal quantifier ∀ there is an introduction rule ∀+x and an elimination
rule ∀−, whose right premise is the term r to be substituted. The rule ∀+x
is subject to the following (Eigen-) variable condition: The derivation term
M of the premise A should not contain any open assumption with x as a
free variable.

1.6. Axioms. The logical axioms are the truth axiom Axtt : atom(tt), the
introduction and elimination axioms ∃+ and ∃− for existence and ∧+, ∧−
for conjunction:

∃+ : ∀z(A → ∃zA),

∃− : ∃zA → ∀z(A → B) → B (z /∈ FV(B)),

∧+ : A → B → A ∧B,

∧− : A ∧B → (A → B → C) → C,

and the induction axioms

Indp,A : ∀p

(
A(tt) → A(ff) → A(pB)

)
,

Indn,A : ∀m

(
A(0) → ∀n(A(n) → A(Sn)) → A(mN)

)
,

Indb,A : ∀b

(
A(1) → ∀b(A(b) → A(S0b)) → ∀b(A(b) → A(S1b)) → A(bbin)

)
,

Indx,A : ∀x

(
∀yρ,zσA(〈y, z〉) → A(xρ∧σ)

)
,

where 〈y, z〉 is shorthand for ∧+yz. The final axiom expresses that every
object of a pair type is a pair; it is sometimes called pair elimination axiom.

Using boolean induction Indp,A we can derive the arithmetical form of
ex-falso-quodlibet, that is, F → atom(pB) (recall F := atom(ff)), and then
F → A for arbitrary formulas A. Similarly – again using the fact that we
only have decidable atoms of the form atom(rB) – we can prove compatibility

x1 =µ x2 → A(x1) → A(x2) (µ finitary base type).

6 HELMUT SCHWICHTENBERG

derivation term

u : A uA

[u : A]
| M
B →+uA → B

(λuAMB)A→B

| M
A → B

| N
A →−

B

(MA→BNA)B

| M
A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

| M
∀xA(x) r

∀−
A(r)

(M∀xA(x)r)A(r)

Table 1. Derivation terms for →, ∀

Let HAω be the theory based on the axioms above including the induction
axioms, and MLω be the (many-sorted) minimal logic, where the induction
axioms are left out.

We define pointwise equality =ρ, by induction on the type. x =µ y for µ
a finitary base type is already defined, and

(x =ρ→σ y) := ∀z(xz =σ yz),

(x =ρ∧σ y) := (x0 =ρ y0) ∧ (x1 =σ y1).

The extensionality axioms are

y1 =ρ y2 → xρ→σy1 =σ xρ→σy2.

We write E-HAω when the extensionality axioms are present.
In Troelstra (1973), Howard proved that already the first non trivial in-

stance of the extensionality scheme

y1 =1 y2 → xy1 =N xy2

(with 1 := N → N) does not have a Dialectica realizer. In fact, he in-
troduced the majorizing relation as a tool to prove this result. This is in

PROOFS AND COMPUTATIONS 7

contrast to the realizability interpretation, where extensionality axioms are
unproblematic, since they are ∃-free.

As a substitute for extensionality one may add the weak extensionality
rule

A0 → r =ρ s

A0 → t(r) =σ t(s)
(A0 quantifier-free)

to the formal system considered. This “rule” is special in the sense that
its premise must have been derived without open assumptions. – Since the
conclusion is (equivalent to) a purely universal formula, adding the weak
extensionality rule does not change the behaviour of the formal system w.r.t.
the Dialectica interpretation.

We write WE-HAω when the weak extensionality rule is present, but not
the extensionality axioms.

We will also consider some more axiom schemes. The axiom of choice
(AC) is the scheme

(1) ∀xρ∃yσA(x, y) → ∃fρ→σ∀xρA(x, f(x)).

Independence of premise (IP∀) is the scheme

(2) (A → ∃xρB) → ∃xρ(A → B) (x /∈ FV(A))

with A of the form ∀yσA0, A0 quantifier-free. Moreover, we need the (con-
structively doubtful) Markov principle (MP), for a higher type variable xρ

and quantifier-free formulas A0, B0:

(3) (∀xρA0 → B0) → ∃xρ(A0 → B0) (xρ /∈ FV(B0)).

2. Gödel’s Dialectica Interpretation

Gödel (1958) assigned to every formula A a new one ∃~x∀~yAD(~x, ~y) with
AD(~x, ~y) quantifier-free. Here ~x, ~y are lists of variables of finite types; the
use of higher types is necessary even when the original formula A was first-
order. He did this in such a way that whenever a proof of A say in con-
structive arithmetic was given, one could produce closed terms ~r such that
the quantifier-free formula AD(~r, ~y) is provable in T. Rather than working
with tupels of variables and terms, we prefer to work with product types, in
order to simplify the implementation. So we assign to every formula A its
Gödel translation ∃x∀y|A|xy , with |A|xy quantifier-free.

2.1. Positive and negative types. To determine the types of x and y, we
assign to every formula A objects τ+(A), τ−(A) (a type or the “nulltype”
symbol ε). τ+(A) is intended to be the type of a (Dialectica-)realizer to be
extracted from a proof of A, and τ−(A) the type of a challenge for the claim
that this term realizes A. The definition can be conveniently written if we
extend the use of ρ → σ and ρ ∧ σ to the nulltype symbol ε:

(ρ → ε) := ε,

(ε → σ) := σ,

(ε → ε) := ε,

(ρ ∧ ε) := ρ,

(ε ∧ σ) := σ,

(ε ∧ ε) := ε.

8 HELMUT SCHWICHTENBERG

With this understanding of ρ → σ and ρ ∧ σ we can simply write

τ+(P (~s)) := ε,

τ+(A ∧B) := τ+(A) ∧ τ+(B),

τ+(∀xρA) := ρ → τ+(A),

τ+(∃xρA) := ρ ∧ τ+(A),

τ−(P (~s)) := ε,

τ−(A ∧B) := τ−(A) ∧ τ−(B),

τ−(∀xρA) := ρ ∧ τ−(A),

τ−(∃xρA) := τ−(A).

and for implication

τ+(A → B) :=
(
τ+(A) → τ+(B)

)
∧

(
τ+(A) → τ−(B) → τ−(A)

)
,

τ−(A → B) := τ+(A) ∧ τ−(B).

In case τ+(A) (τ−(A)) is 6= ε we say that A has positive (negative) compu-
tational content . For formulas without positive or without negative content
one can give an easy characterization, involving the well-known notion of
positive or negative occurrences of quantifiers in a formula:

τ+(A) = ε ↔ A has no positive ∃ and no negative ∀,
τ−(A) = ε ↔ A has no positive ∀ and no negative ∃,
τ+(A) = τ−(A) = ε ↔ A is quantifier-free.

Examples. (a) For quantifier-free A0, B0,

τ+(∀xρA0) = ε, τ−(∀xρA0) = ρ,

τ+(∃xρA0) = ρ, τ−(∃xρA0) = ε,

τ+(∀xρ∃yσA0) = (ρ → σ), τ−(∀xρ∃yσA0) = ρ.

(b) For arbitrary A,B, writing τ±A for τ±(A)

τ+(∀zρ(A → B)) = ρ → (τ+A → τ+B) ∧ (τ+A → τ−B → τ−A),

τ+(∃zρA → B) = (ρ ∧ τ+A → τ+B) ∧ (ρ ∧ τ+A → τ−B → τ−A),

τ−(∀zρ(A → B)) = ρ ∧ (τ+A ∧ τ−B),

τ−(∃zρA → B) = (ρ ∧ τ+A) ∧ τ−B.

It is interesting to note that for an existential formula with a quantifier-
free kernel the positive and negative type is the same, irrespective of the
choice of the existential quantifier, constructive or classical.

Lemma. τ±(∃̃xA0) = τ±(∃xA0) for A0 quantifier-free. In more detail,
(a) τ+(∃̃xA) = τ+(∃xA) = ρ ∧ τ+(A) provided τ−(A) = ε,
(b) τ−(∃̃xA) = τ−(∃xA) = τ−(A) provided τ+(A) = ε.

Proof. For an arbitrary formula A we have

τ+(∀xρ(A → ⊥) → ⊥)

= τ+(∀xρ(A → ⊥)) → τ−(∀xρ(A → ⊥))

= (ρ → τ+(A → ⊥)) → (ρ ∧ τ−(A → ⊥))

= (ρ → τ+(A) → τ−(A)) → (ρ ∧ τ+(A)),

τ+(∃xρA) = ρ ∧ τ+(A).

PROOFS AND COMPUTATIONS 9

Both types are equal if τ−(A) = ε. Similarly

τ−(∀xρ(A→⊥) → ⊥) = τ+(∀xρ(A→⊥)) = τ+(A→⊥) = τ+(A) → τ−(A),

τ−(∃xρA) = τ−(A).

Both types are = τ−(A) if τ+(A) = ε. �

2.2. Gödel translation. For every formula A and terms r of type τ+(A)
and s of type τ−(A) we define a new quantifier-free formula |A|rs by induction
on A.

|P (~s)|rs := P (~s),

|∀xA(x)|rs := |A(s0)|r(s0)
s1 ,

|∃xA(x)|rs := |A(r0)|r1s ,

|A ∧B|rs := |A|r0s0 ∧ |B|r1s1,

|A → B|rs := |A|s0r1(s0)(s1) → |B|r0(s0)s1 .

The formula ∃x∀y|A|xy is called the Gödel translation of A and is often de-
noted by AD. Its quantifier-free kernel |A|xy is called Gödel kernel of A; it
is denoted by AD.

For readability we sometimes write terms of a pair type in pair form:

|∀zA|fz,y := |A|fz
y ,

|∃zA|z,x
y := |A|xy ,

|A ∧B|x,z
y,u := |A|xy ∧ |B|zu,

|A → B|f,g
x,u := |A|xgxu → |B|fx

u .

Examples. (a) For quantifier-free formulas A0, B0 with xρ /∈ FV(B0)

τ+(∀xρA0 → B0) = τ−(∀xρA0) = ρ,

τ+(∃xρ(A0 → B0)) = ρ,

τ−(∀xρA0 → B0) = ε,

τ−(∃xρ(A0 → B0)) = ε.

Then

|∀xρA0 → B0|xε = |∀xρA0|εx → |B0|εε = A0 → B0,

|∃xρ(A0 → B0)|xε = A0 → B0.

(b) For A with τ+(A) = ε and z /∈ FV(A), and arbitrary B

τ+(A → ∃zρB) = (ρ ∧ τ+(B)) ∧ (τ+(B) → τ−(A)),

τ+(∃zρ(A → B)) = ρ ∧ (τ+(B) ∧ (τ+(B) → τ−(A))),

τ−(A → ∃zρB) = τ−(B),

τ−(∃zρ(A → B)) = τ−(B).

Then

|A → ∃zρB|〈z,y〉,g
v = |A|εgv → |∃zρB|z,y

v = |A|εgv → |B|yv,

|∃zρ(A → B)|z,〈y,g〉
v = |A → B|y,g

v = |A|εgv → |B|yv.

(c) For arbitrary A,B

τ+(∀xρ∃yσA(x, y)) = (ρ → σ ∧ τ+(A)),

τ+(∃fρ→σ∀xρA(x, fx)) = (ρ → σ) ∧ (ρ → τ+(A)),

τ−(∀xρ∃yσA(x, y)) = ρ ∧ τ−(A),

τ−(∃fρ→σ∀xρA(x, fx)) = ρ ∧ τ−(A).

10 HELMUT SCHWICHTENBERG

Then

|∀xρ∃yσA(x, y)|λx〈fx,z〉
x,u = |∃yσA(x, y)|fx,z

u = |A(x, fx)|zu,

|∃fρ→σ∀xρA(x, fx)|f,λxz
x,u = |∀xρA(x, fx)|λxz

x,u = |A(x, fx)|zu.

(d) For arbitrary A, writing τ±A for τ±(A)

τ+(∀zρ(A → ∃zρA)) = ρ → (τ+A → ρ ∧ τ+A) ∧ (τ+A → τ−A → τ−A),

τ−(∀zρ(A → ∃zρA)) = ρ ∧ (τ+A ∧ τ−A).

Then

|∀zρ(A → ∃zρA)|λz〈λx〈z,x〉,λx,w w〉
z,〈x,w〉 = |A → ∃zρA|λx〈z,x〉,λx,w w

x,w

= |A|xw → |∃zρA|z,x
w

= |A|xw → |A|xw.

2.3. Characterization. We consider the question when the Gödel transla-
tion of a formula A is equivalent to the formula itself.

Theorem (Characterization).

AC + IP∀ + MP ` A ↔ ∃x∀y |A|xy .

Proof. Induction on A; we only treat one case.

(A → B) ↔ (∃x∀y |A|xy → ∃v∀u |B|vu) by IH

↔ ∀x(∀y |A|xy → ∃v∀u |B|vu)

↔ ∀x∃v(∀y |A|xy → ∀u |B|vu) by (IP∀)

↔ ∀x∃v∀u(∀y |A|xy → |B|vu)

↔ ∀x∃v∀u∃y(|A|xy → |B|vu) by (MP)

↔ ∃f∀x∀u∃y(|A|xy → |B|fx
u) by (AC)

↔ ∃f,g∀x,u(|A|xgxu → |B|fx
u) by (AC)

↔ ∃f,g∀x,u|A → B|f,g
x,u

where the last step is by definition. �

Without the Markov principle one can still prove some relations between
A and its Gödel translation. This, however, requires conditions G+(A),
G−(A) on A, defined inductively by

G±(P (~s)) := >,

G+(A → B) := (τ−(A) = ε) ∧G−(A) ∧G+(B),

G−(A → B) := G+(A) ∧G−(B),

G±(A ∧B) := G±(A) ∧G±(B),

G±(∀xA) := G±(A), G±(∃xA) := G±(A).

Proposition.

AC ` ∃x∀y |A|xy → A if G−(A),(4)

AC ` A → ∃x∀y |A|xy if G+(A).(5)

Proof. Both directions are proved simultaneously, by induction on A. �

PROOFS AND COMPUTATIONS 11

2.4. Soundness. We prove soundness of the Dialectica interpretation, for
our natural deduction formulation of the underlying logic.

We first treat some axioms, and show that each of them has a “logical
Dialectica realizer”, that is, a term t such that ∀y|A|ty can be proved logically.

For (∃+) this was proved in Example (d) of 2.2. Conjunction introduction
(∧+) and elimination (∧−) have obvious Dialectica realizers.

The axioms (∃−), (MP), (IP∀) and (AC) all have the form C → D where
τ+(C) ∼ τ+(D) and τ−(C) ∼ τ−(D), with ρ ∼ σ indicating that ρ and σ
are canonically isomorphic. This has been verfied

• for the existence elimination axiom – written in the equivalent form
∀zρ(A → B) → ∃zρA → B – in Example (b) of 2.1;

• for (MP), (IP∀) and (AC) in Examples (a)-(c) of 2.2, respectively.
Such canonical isomorphisms can be expressed by λ-terms

f+ : τ+(C) → τ+(D),

g+ : τ+(D) → τ+(C),

f− : τ−(C) → τ−(D),

g− : τ−(D) → τ−(C).

(they have been written explicitely in Examples (a)-(c) of 2.2). It is easy
to check that the Gödel translations |C|ug−v and |D|f

+u
v are equal (modulo

β-conversion). But then 〈f+, λu g−〉 is a Dialectica realizer for the axiom
C → D, because

|C → D|f+,λu g−
u,v = |C|ug−v → |D|f+u

v .

Theorem (Soundness). Let M be a derivation

WE-HAω + AC + IP∀ + MP + Ax∀ ` A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables
for realizers of the assumptions, and y be a variable of type τ−(A) for a
challenge of the goal. Then we can find terms [[M]]+ =: t of type τ+(A) with
y /∈ FV(t) and [[M]]−i =: ri of type τ−(Ci), and a derivation µ(M)

WE-HAω + Ax∀ ` |A|ty
from assumptions ūi : |Ci|xi

ri
.

Proof. Induction on M . We begin with the logical rules and leave treatment
of the axioms for the end. The axioms (∧±), (∃±), (MP), (IP∀) and (AC)
have just been dealt with, so we will only need to consider induction, Ax∀
and the weak extensionality rule.

Case u : A. Let x of type τ+(A) be a variable for a realizer of the as-
sumption u. Define [[u]]+ := x and [[u]]− := y.

Case λuAMB. By IH we have a derivation of |B|tz from ū : |A|xr and
ūi : |Ci|xi

ri
, where ū : |A|xr may be absent. Substitute y0 for x and y1 for z. By

(→+) we obtain |A|y0
r[x,z:=y0,y1] → |B|t[x:=y0]

y1 , which is (up to β-conversion)

|A → B|λxt,λx,zr
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Here r is the canonical inhabitant of the type τ−(A) in case ū : |A|xr is absent.
Hence we can define the required terms by (assuming that uA is u1)

[[λuM]]+ := (λx[[M]]+, λx,z[[M]]−1),

12 HELMUT SCHWICHTENBERG

[[λuM]]−i := [[M]]−i+1[x, z := y0, y1].

Case MA→BNA. By IH we have a derivation of

|A → B|tx = |A|x0
t1(x0)(x1) → |B|t0(x0)

x1 from |Ci|xi
pi

, |Ck|xk
pk

, and of

|A|sz from |Cj |
xj
qj , |Ck|xk

qk
.

Substituting 〈s, y〉 for x in the first derivation and of t1sy for z in the second
derivation gives

|A|st1sy → |B|t0s
y from |Ci|xi

p′i
, |Ck|xk

p′k
, and

|A|st1sy from |Cj |
xj

q′j
, |Ck|xk

q′k
.

Now we contract |Ck|xk

p′k
and |Ck|xk

q′k
: since |Ck|xk

w is quantifier-free, there is a
boolean-valued term rCk

such that

(6) |Ck|xk
w ↔ rCk

w = tt.

Hence with rk := [if rCk
p′k then q′k else p′k] we can derive both |Ck|xk

p′k
and

|Ck|xk

q′k
from |Ck|xk

rk
. The derivation proceeds by cases on the boolean term

rCk
p′k. If it is true, then rk converts into q′k, and we only need to derive

|Ck|xk

p′k
. But this follows by substituting p′k for w in (6). If rCk

p′k is false,
then rk converts into p′k, and we only need to derive |Ck|xk

q′k
, from |Ck|xk

p′k
.

But the latter implies ff = tt (substitute again p′k for w in (6)) and therefore
every quantifier-free formula, in particular |Ck|xk

q′k
.

Using (→−) we obtain

|B|t0s
y from |Ci|xi

p′i
, |Cj |

xj

q′j
, |Ck|xk

rk
.

Let [[MN]]+ := t0s and [[MN]]−i := p′i, [[MN]]−j := q′j , [[MN]]−k := rk.
Case λxMA(x). By IH we have a derivation of |A(x)|tz from ūi : |Ci|xi

ri
.

Substitute y0 for x and y1 for z. We obtain |A(y0)|t[x:=y0]
y1 , which is (up to

β-conversion)

|∀xA(x)|λxt
y , from ū′i : |Ci|xi

ri[x,z:=y0,y1].

Hence we can define the required terms by

[[λxM]]+ := λx[[M]]+,

[[λxM]]−i := [[M]]−i [x, z := y0, y1].

Case M∀xA(x)s. By IH we have a derivation of |∀xA(x)|tz = |A(z0)|t(z0)
z1

from |Ci|xi
ri

. Substituting 〈s, y〉 for z gives

|A(s)|tsy from |Ci|xi

ri[z:=〈s,y〉].

Let [[Ms]]+ := ts and [[Ms]]−i := ri[z := 〈s, y〉].
We now come to induction, Ax∀ and the weak extensionality rule. For

induction, consider for instance the algebra of natural numbers, given by
constructors 0 and S. The induction schema then reads

(7) ∀n

(
A(0) → ∀m(A(m) → A(m + 1)) → A(n)

)
.

PROOFS AND COMPUTATIONS 13

Let B(n) := A(0) → ∀m(A(m) → A(m+1)) → A(n). Clearly we can derive
B(0) and B(n) → B(n + 1). By those parts of the proof of the Soundness
Theorem that we have dealt with already, we obtain realizing terms s and
t, r and derivations of |B(0)|sy and of |B(n) → B(n + 1)|t,rx,u, hence of

|B(n)|xrxu → |B(n + 1)|txu
∀y |B(n)|xy → |B(n + 1)|txu
∀y |B(n)|xy → ∀y |B(n + 1)|txy .

So if we define g(0) := s and g(n + 1) := t(g(n)), then we have proved by
induction that ∀y |B(n)|g(n)

y , hence that ∃g∀y |∀nB(n)|gy.
Now consider a purely universal formula B = ∀xA0, with A0 quantifier-

free. Then τ+(B) = ε, and moreover |B|εy = A0. Hence such axioms are
interpreted by themselves. The weak extensionality rule can be dealt with
in the same way. �

2.5. Practical aspects of constructing Dialectica realizers. In the
proof of the Soundness Theorem above, at two points we have made (im-
plicit) use of Dialectica realizers for logically derivable formulas:

• In the treatment of ∃−, the equivalence of ∃zρA → ∀zρ(A → B) → B
with ∀zρ(A → B) → ∃zρA → B, and

• for induction, that we can derive B(0) and B(n) → B(n + 1), for
B(n) := A(0) → ∀m(A(m) → A(m + 1)) → A(n).

Although these logical derivations are very easy, the fact that the formulas
involved contain nested implications makes their Dialectica realizers com-
plex. This shows up drastically in an implementation of the Dialectica in-
terpretation. Two such implementations are presently available, both in
the proof assistant and program extraction system Minlog1: one by Hernest
(2006), and another one by the author, following the present paper.

Much more perspicious Dialectica realizers are obtained if one replaces the
existence elimination and induction axioms by their equivalent rule formu-
lations. Technically in our natural deduction setting with derivation terms
this means that the derivation constants ∃− and Ind appear with sufficiently
many arguments. Clearly this can always be assumed (use η-expansion).
Then Dialectica realizers are constructed as follows.

Case Indn,AmM
A(0)
0 M

∀n(A(n)→A(n+1))
1 By IH we have derivations of

|∀n(A(n) → A(n + 1))|tn,f,y =

|A(n) → A(n + 1)|tnf,y =

|A(n)|ftn1fy → |A(n + 1)|tn0f
y from |Ci|xi

ri1(n,f,y)

and of

|A(0)|t0x0
from |Ci|xi

ri0(x0).

1See http://www.minlog-system.de

14 HELMUT SCHWICHTENBERG

i ranges over all assumption variables in Indn,AmM0M1 (if necessary choose
canonical terms ri0 and ri1). It suffices to construct terms (involving recur-
sion operators) t̃, r̃i with free variables among ~x such that

(8) ∀m,y

(
(|Ci|xi

r̃imy)i → |A(m)|t̃my
)
.

For then we can define [[Indn,AmM0M1]]+ := t̃m and [[Indn,AmM0M1]]−i :=
r̃imy. The recursion equations for t̃ are

t̃0 = t0, t̃(n + 1) = tn0(t̃n)

and for r̃i

r̃i0y = ri0, r̃i(n + 1)y =

{
ri1(n, t̃n, y) =: s if ¬|Ci|xi

s ,
r̃in(tn1(t̃n)y) otherwise.

t̃, r̃i can be written explicitely with recursion operators:

t̃m = Rmt0(λn(tn0)),

r̃im = Rm(λyri0)
(
λn,p,y[if rCis then p(tn1(t̃n)y) else s]

)
with s as above. It remains to prove (8). We only consider the successor case.
Assume |Ci|xi

r̃i(n+1)y for all i. We must show |A(n + 1)|t̃(n+1)
y . If ¬|Ci|xi

s for
some i, then by definition r̃i(n+1)y = s and we have |Ci|xi

s , a contradiction.
Hence |Ci|xi

s for all i, and therefore r̃i(n + 1)y = r̃in(tn1(t̃n)y). The IH (8)
with y := tn1(t̃n)y gives |A(n)|t̃n

tn1(t̃n)y
. Recall that the global IH (for the

step derivation) gives with f := t̃n

(|Ci|xi
s)i → |A(n)|t̃n

tn1(t̃n)y
→ |A(n + 1)|tn0(t̃n)

y

and we are done.
Case ∃−x,A,BM∃xAN∀x(A→B). We proceed similar to the treatment of

(→−) above. By IH we have a derivation of

|∀x(A(x) → B)|tx = |A(x0) → B|t(x0)
x1

= |A(x0)|x10
t(x0)1(x10)(x11) → |B|t(x0)0(x10)

x11

from |Ci|xi
pi

, |Ck|xk
pk

, and of

|∃xA(x)|sz = |A(s0)|s1z from |Cj |
xj
qj , |Ck|xk

qk
.

Substituting 〈s0, 〈s1, y〉〉 for x in the first derivation and of t(s0)1(s1)y for
z in the second derivation gives

|A(s0)|s1t(s0)1(s1)y → |B|t(s0)0(s1)
y from |Ci|xi

p′i
, |Ck|xk

p′k
, and

|A(s0)|s1t(s0)1(s1)y from |Cj |
xj

q′j
, |Ck|xk

q′k
.

Now we contract |Ck|xk

p′k
and |Ck|xk

q′k
as in case (→−) above; with rk :=

[if rCk
p′k then q′k else p′k] we can derive both |Ck|xk

p′k
and |Ck|xk

q′k
from |Ck|xk

rk
.

Using (→−) we obtain

|B|t(s0)0(s1)
y from |Ci|xi

p′i
, |Cj |

xj

q′j
, |Ck|xk

rk
.

PROOFS AND COMPUTATIONS 15

So [[∃−MN]]+ := t(s0)0(s1) and

[[∃−MN]]−i := p′i, [[∃−MN]]−j := q′j , [[∃−MN]]−k := rk.

2.6. A unified treatment of modified realizability and the Dialec-
tica interpretation. Following Oliva (2006), we show that modified real-
izability can be treated in such a way that similarities with the Dialectica
interpretation become visible. To this end, one needs to change the defi-
nitions of τ+(A) and τ−(A) and also of the Gödel translation |A|xy in the
implicational case, as follows.

τ+
mr(A → B) := τ+

mr(A) → τ+
mr(B),

τ−mr(A → B) := τ+
mr(A) ∧ τ−mr(B),

||A → B||fx,u := ∀y||A||xy → ||B||fx
u .

Notice that the (changed) Gödel translation ||A||xy is not quantifier-free any
more, but only ∃-free. – Then the standard definition of modified realizabil-
ity mr (cf. Troelstra (1973)) can be expressed in terms of the (new) ||A||xy :

` r mr A ↔ ∀y||A||ry.
This is proved by induction on A. For prime formulas the claim is obvious.
Case A → B, with τ+

mr(A) 6= ε, τ−mr(A) 6= ε.

r mr (A → B) ↔ ∀x(x mr A → rx mr B) by definition

↔ ∀x(∀y ||A||xy → ∀u ||B||rx
u) by IH

↔ ∀x,u(∀y ||A||xy → ||B||rx
u)

= ∀x,u ||A → B||rx,u by definition.

The other cases are similar (even easier).

2.7. Extraction. As a consequence of the Soundness and Characterization
Theorems we obtain

Theorem (Extraction). Assume

WE-HAω + AC + IP∀ + MP + Ax∀ ` ∀x∃yA(x, y)

with A arbitrary. Then we can find a closed HAω-term t such that

WE-HAω + AC + IP∀ + MP + Ax∀ ` ∀xA(x, tx).

Moreover, in case the condition G−(A) is satisfied we even have

WE-HAω + AC + Ax∀ ` ∀xA(x, tx).

Proof. Recall that

|∀x∃yA(x, y)|λx〈fx,gx〉
x,b = |∃yA(x, y)|fx,gx

b = |A(x, fx)|gx
b .

By the Soundness Theorem we obtain closed terms t, s such that

WE-HAω + Ax∀ ` ∀x,b|A(x, tx)|sxb
and hence

WE-HAω + Ax∀ ` ∀x∃a∀b|A(x, tx)|ab .
By the Characterization Theorem we have

AC + IP∀ + MP ` ∃a∀b |A(x, tx)|ab → A(x, tx).

By (4), (IP∀) and (MP) are not needed here provided the condition G−(A)
is satisfied. Therefore the claim follows. �

16 HELMUT SCHWICHTENBERG

Theorem (Extraction from classical proofs). Assume

WE-HAω + AC + IP∀ + MP + Ax∀ ` ∀x∃̃yA0(x, y),

A0(x, y) a quantifier-free formula with at most the displayed variables free.
Then we can find a closed HAω-term t such that

WE-HAω + Ax∀ ` ∀xA0(x, tx).

Proof. This follows from the Soundness Theorem in 2.4 and

|∀x∃̃yA0(x, y)|tx = |∃̃yA0(x, y)|txε = ¬¬A0(x, tx). �

3. Gödel’s Dialectica Interpretation With Majorants

Generally, the Dialectica interpretation has a strong tendency to produce
complex extracted terms, as opposed to the realizability interpretation. This
is partially due to contraction (necessary in the →−-rule). Therefore it is
advisable (even more so than for the realizability interpretation) to

• consider derivations from lemmata (whose proofs are not analyzed),
and

• try to simplify extracted terms by only aiming at majorants.
This has led Kohlenbach (1992, 1996) to develop his “monotone Dialectica
interpretation”, where one only looks for bounds of realizers rather than
exact realizers.

An essential point observed by Kohlenbach (1996) is that when one re-
stricts attention to bounds rather than exact realizers, then one can conve-
niently deal with additional assumptions Ax∀∃≤∀ of the form

∀xρ∃y≤σrx∀zτ A0(x, y, z) (A0 quantifier-free),

with r a closed term of type ρ → σ. We then need to consider strenghtened
versions Ax′∀∃≤∀ of these assumptions as well:

∃Y≤ρ→σr∀xρ,zτ A0(x, Y x, z).

Note that with (AC) one can prove the strenghtened version from the original
one.

3.1. Majorization. We define pointwise majorization ≥ρ, by induction on
the type. x ≥µ y for µ s finitary base type is already defined, and

(x ≥ρ→σ y) := ∀z(xz ≥σ yz),

(x ≥ρ∧σ y) := (x0 ≥ρ y0) ∧ (x1 ≥ρ y1),

For simplicity we treat the majorization relation of Howard (1973) just
for types built from the base type N by ρ → σ. We extend ≥N to higher
types, in a pointwise fashion (as we did for =µ in 1.6 above)

(x1 ≥ρ→σ x2) := ∀y(x1y ≥σ x2y).

Following Howard (1973), we define a relation x∗ majρ x (x∗ hereditarily
majorizes x) for x∗, x ∈ Gρ, by induction on the type ρ:

(x∗ majµ x) := (x∗ ≥µ x),

(x∗ majρ→σ x) := ∀y∗,y(y∗ majρ y → x∗y∗ majσ xy).

Lemma.

PROOFS AND COMPUTATIONS 17

(a) ` x∗ =ρ x̃∗ → x =ρ x̃ → x∗ majρ x → x̃∗ majρ x̃.
(b) ` x∗ majρ x → x ≥ρ x̃ → x∗ majρ x̃.

Proof. Induction on ρ. We argue informally, and only treat (b). Case ρ →
σ. Assume y∗ majρ y. Then x∗y∗ majσ xy and xy ≥σ x̃y, hence by IH
x∗y∗ majσ x̃y. �

3.2. Majorization of closed HAω-terms. Let 1 denote the type N →
N. Clearly, for every monotone function D of type 1 we have D maj D.
Moreover, Rτ

µ is hereditarily majorizable:

Lemma (Majorization). (a) Define M : (µ → τ) → µ → τ with τ = ~ρ → µ′

by
Mfn~x := max

i≤n
fi~x.

Then HAω ` ∀nf̄n maj fn → Mf̄ maj f .
(b) HAω ` f∗, g∗ maj f, g → Rµf∗g∗n maj Rµfgn.
(c) Define R∗

µfg := M(Rµfg). Then HAω ` R∗
µ maj Rµ.

Proof. We argue informally.
(a) Let n∗ ≥ n and ~x∗ maj ~x; we must show Mf̄n∗~x∗ ≥ fn~x.

Mf̄n∗~x∗ = max
i≤n∗

f̄ i~x∗ ≥ f̄n~x∗ ≥ fn~x.

(b) Induction on n; for simplicity we assume µ = N. For 0 the claim is
obvious, and in the step we have by IH Rf∗g∗(Sn) := g∗n(Rf∗g∗n) maj
gn(Rfgn) := Rfg(Sn), where := is definitional equality.

(c) Let f∗, g∗ maj f, g. We must show M(Rf∗g∗) maj Rfg. By (a) it
suffices to prove ∀nRf∗g∗n maj Rfgn. But this holds by (b). �

The following theorem is due to Howard (1973).

Theorem. Let r(~x) be a HAω-term with free variables among ~x. Assume
that HAω ` c∗ maj c for all constants c in r. Let r∗ be r with all constants
c replaced by c∗. Then HAω ` ~x∗ maj ~x → r∗(~x∗) maj r(~x).

Proof. Induction on r. Case λy r(y, ~x). We argue informally. Assume
~x∗ maj ~x. We must show y∗ maj y → (λy r∗(y, ~x∗))y∗ maj (λy r(y, ~x))y. So
assume y∗ maj y. Then by IH r∗(y∗, ~x∗) maj r(y, ~x), which is our claim. �

Hence every closed term r of HAω is hereditarily majorizable. In fact, we
have constructed a closed term r∗ of HAω such that r∗ maj r.

3.3. Soundness with majorants.

Theorem (Soundness with majorants). Let M be a derivation

WE-HAω + AC + IP− + MP + Ax∀∃≤∀ ` A

from assumptions ui : Ci (i = 1, . . . , n). Let xi of type τ+(Ci) be variables for
realizers of the assumptions, and y of type τ−(A) be a variable for a challenge
of the goal. Let ~z of type ~ρ be the variables free in M . Then we can find closed
terms [[λ~z,~u M]]∗+ =: T ∗ of type τ+(C1) → . . . → τ+(Cn) → ~ρ → τ+(A) and
[[λ~z,~u M]]∗−i =: R∗

i of type τ+(C1) → . . . → τ+(Cn) → ~ρ → τ−(A) → τ−(Ci),
and a derivation µ(M) in

WE-HAω + Ax′∀∃≤∀

18 HELMUT SCHWICHTENBERG

of the formula

∃T,R1,...,Rn

(
T ∗ maj T ∧R∗

1 maj R1 ∧ · · · ∧R∗
n maj Rn ∧

∀~x,~z,y(|C1|x1
R1~x~zy → · · · → |Cn|xn

Rn~x~zy → |A|T~x~z
y)

)
.

Proof. Induction on M .
Case u : A. Let x of type τ+(A) be a variable for a realizer of the as-

sumption u. We need T ∗ and R∗ such that

∃T,R

(
T ∗ maj T ∧R∗ maj R ∧ ∀x,y(|A|xRxy → |A|Tx

y)
)
.

We can take Tx := x and Rxy := y, which both majorize themselves.
Case c : A, c an axiom. Consider an axiom

∀xρ∃y≤σrx∀zτ A0(x, y, z) (A0 quantifier-free),

with r a closed term of type ρ → σ. We have to find a majorant of some T
such that the following holds:

∀x,z|∀xρ∃y≤σrx∀zτ A0(x, y, z)|Tx,z

∀x,z|∃y≤σrx∀zτ A0(x, y, z)|Tx
z

∀x,z(Tx ≤ rx ∧ |∀zτ A0(x, Tx, z)|z)
∀x,z(Tx ≤ rx ∧A0(x, Tx, z)).

We now use the corresponding axiom in Ax′∀∃≤∀:

∃Y≤ρ→σr∀xρ,zτ A0(x, Y x, z).

Pick this Y as the desired T . Then as a majorant for Y we can take a closed
term r∗ majorizing r.

For the other axioms we have already constructed a Dialectica realizer,
and we can take an arbitrary majorant of it. However, we can also directly
provide a majorant of some Dialectica realizer.

Case λuAMB. By IH we have a derivation of

∃T,R1,...,Rn,R

(
T ∗ maj T ∧R∗

1 maj R1 ∧ · · · ∧R∗
n maj Rn ∧R∗ maj R ∧

∀x1,...,xn,x,z(|C1|x1
R1x1...xnxz → · · · → |Cn|xn

Rnx1...xnxz →

|A|xRx1...xnxz → |B|Tx1...xnx
z)

)
.

We argue informally. Instantiating x with y0 and z with y1 gives

∀x1,...,xn,y(|C1|x1

R1x1...xn(y0)(y1) → · · · → |Cn|xn

Rnx1...xn(y0)(y1) →

|A|y0
Rx1...xn(y0)(y1) → |B|Tx1...xn(y0)

z),

which is
∀x1,...,xn,y(|C1|x1

R1x1...xn(y0)(y1) → · · · → |Cn|xn

Rnx1...xn(y0)(y1) →

|A → B|Tx1...xn,Rx1...xn
y .

Therefore we can define the required T̃ ∗, R̃∗
i by

T̃ ∗~x := 〈T ∗~x,R∗~x 〉, R̃∗
i ~xy := R∗

i ~x(y0)(y1).

Case MA→BNA. We argue informally. By IH we have

|A→B|T~xi~xk
x = |A|x0

T~xi~xk1(x0)(x1) → |B|T~xi~xk0(x0)
x1 from |Ci|xi

Pi~xi~xkx, |Ck|xk
Pk~xi~xkx

PROOFS AND COMPUTATIONS 19

|A|S~xj~xk
z from |Cj |

xj

Qj~xj~xkz, |Ck|xk
Qk~xj~xkz.

Instantiating x with 〈S~xj~xk, y〉 in the first and z with T~xi~xk1(S~xj~xk)y in
the second derivation gives

|A|S~xj~xk

T~xi~xk1(S~xj~xk)y → |B|T~xi~xk0(S~xj~xk)
y from |Ci|xi

p′i
, |Ck|xk

p′k
, and

|A|S~xj~xk

T~xi~xk1(S~xj~xk)y from |Cj |
xj

q′j
, |Ck|xk

q′k
,

with

p′i := Pi~xi~xk〈S~xj~xk, y〉, p′k := Pk~xi~xk〈S~xj~xk, y〉,
q′j := Qj~xj~xk(T~xi~xk1(S~xj~xk)y), q′k := Qk~xj~xk(T~xi~xk1(S~xj~xk)y).

Hence we can take

T̃ ∗~xi~xj~xk := T ∗~xi~xk0(S∗~xj~xk),

R∗
i ~xi~xj~xky := P ∗

i ~xi~xk〈S∗~xj~xk, y〉,
R∗

j~xi~xj~xky := Q∗
j~xj~xk(T ∗~xi~xk1(S∗~xj~xk)y),

R∗
k~xi~xj~xky := max(P ∗

k ~xi~xk〈S∗~xj~xk, y〉, Q∗
k~xj~xk(T ∗~xi~xk1(S∗~xj~xk)y)).

For the verifying derivation we again need to contract |Ck|xk

p′k
and |Ck|xk

q′k
:

since |Ck|xk
w is quantifier-free, there is a boolean-valued term rCk

such that

|Ck|xk
w ↔ rCk

w = tt.

Hence with rk := [if rCk
p′k then q′k else p′k] we can derive both |Ck|xk

p′k
and

|Ck|xk

q′k
from |Ck|xk

rk
. Using (→−) we obtain

|B|T~xi~xk0(S~xj~xk)
y from |Ci|xi

p′i
, |Cj |

xj

q′j
, |Ck|xk

rk
.

Case λx MA(x). By IH we have a derivation of |A(x)|Tx1...xnx
z from |Ci|xi

Rix1...xnxz.

Instantiating x with y0 and z with y1 gives |A(y0)|Tx1...xn(y0)
y1 , which is

|∀xA(x)|Tx1...xn
y , from |Ci|xi

Rix1...xn(y0)(y1).

Hence we can take

T̃ ∗x1 . . . xn := T ∗x1 . . . xn,

R̃∗
i x1 . . . xny := R∗

i x1 . . . xn(y0)(y1).

Case M∀xA(x)s. By IH we have a derivation of |∀xA(x)|Tx1...xn
z , which is

|A(z0)|Tx1...xn(z0)
z1 , from |Ci|xi

Rix1...xnz. Instantiating z with 〈s, y〉 gives

|A(s)|Tx1...xns
y from |Ci|xi

Rix1...xn〈s,y〉.

Assume for simplicity that s is closed. Then we can take

T̃ ∗x1 . . . xn := T ∗x1 . . . xns∗,

R̃∗
i x1 . . . xny := R∗

i x1 . . . xn〈s∗, y〉. �

20 HELMUT SCHWICHTENBERG

3.4. The weak Lemma of König as a ∀∃≤∀-Axiom. We show that the
“weak” (that is, binary) Lemma of König WKL can be brought into the
form of an axiom in Ax∀∃≤∀. This has been observed by Kohlenbach (1992).
Here we give a somewhat simplified proof of this fact; it is based on ideas of
Ishihara (2006).

WKL says that every infinite binary tree has an infinite path. When
we try to directly formalize it in our (functional) language, it does not
quite have the required form, since the assumption that the given tree is
infinite needs an additional ∀ in the premise. However, one can easily find
an equivalent statement of the required form. To this end, we define the
“infinite extension” of a given tree, and let WKL′ say that for every t, the
infinite extension I(t̂) of its “associated tree” t̂ has an infinite path. It then
is easy to see that WKL and WKL′ are equivalent.

Let us first introduce some basic definitions. Let N be the type of unary
and bin the type of binary natural numbers. It is convenient here to view
binary numbers as lists of booleans tt, ff, and to write these lists in reverse
order, that is, add elements at the end. We fix the types of some variables
and state their intended meaning:

a, b, c of type bin for nodes,
r, s, t of type bin → B for decidable sets of nodes,
f, g, h of type N → B for paths,
n, m, k, i, j of type N for natural numbers,
p, q of type B for booleans.

Let lh(a) be the length of a (viewed as list of booleans). Let ā(n) denote
the initial segment of a of length n, if n ≤ lh(a), and a otherwise. Simi-
larly let f̄(n) denote the initial segment of f of length n, that is, the list
(f(0), f(1), . . . , f(n−1)). Let (a)n denote the n-th element of a, if n < lh(a),
and tt otherwise. f is a path in t if all its initial segments f̄(n) are in t. Call
t infinite if for every n there is a node of length n in t. Call t a tree if it is
downwards closed, i.e., ∀a∀n≤lh(a)(a ∈ t → ā(n) ∈ t). So WKL says that

∀t

(
∀a∀n≤lh(a)(a ∈ t → ā(n) ∈ t) → (t is a tree)

∀n∃a∈tlh(a) = n → (t is infinite)

∃f∀nf̄(n) ∈ t
)

(t has an infinite path),

which – because of the two premises saying that t is an infinite tree – is not
of the required logical form.

To obtain an equivalent formulation in the required form, we introduce
some further notions.

t̂ := { a | ∀n<lh(a)ā(n) ∈ t } the associated tree t̂ for t,

b = a ∗ ttlh(b)−lh(a) b is the tt-extension of a,

∀c;lh(c)=lh(b)c /∈ t̂ b is t-big;

here ∗ denotes concatenation of lists. Let minlex denote the minimum of
a set of nodes w.r.t. the lexicographical ordering, and maxlen<n(t) be the
maximal length of all nodes of t of length < n. Then lln(t) is the leftmost
largest node in t of length < n:

maxlen<n(t) := max{ lh(a) | a ∈ t ∧ lh(a) < n },

PROOFS AND COMPUTATIONS 21

lln(t) := minlex{ c ∈ t | lh(c) = maxlen<n(t) }.

We can now define the infinite extension I(t) of a tree t:

I(t) := { b | b ∈ t ∨ (b is t-big ∧ b is the tt-extension of lllh(b)) }.

All these notions are definable in HAω. They clearly have the following
properties:

t̂ is a tree;

if t is a tree, then t̂ = t;

if t is a tree, then I(t) is an infinite tree extending t;

if t is an infinite tree, then I(t) = t.

Then WKL is equivalent (provably in HAω) to

WKL′ := ∀t∃f∀nf̄(n) ∈ I(t̂).

To see this, assume WKL, and let t be arbitrary. Then I(t̂) is an infinite
tree extending t. By WKL applied to I(t̂), ∃f∀nf̄(n) ∈ I(t̂). Conversely, let
t be an infinite tree. Then I(t̂) = t and therefore ∃f∀nf̄(n) ∈ t.

Remark. From the results of Ishihara (1990) it is known WKL implies
Brouwer’s fan theorem. Moreover, a direct proof of this implication has
been given by Ishihara in 2002 (published in (2006)). In Berger and Ishi-
hara (2005), it is shown that a weakened form WKL! of WKL, where as an
additional hypothesis it is required that in an effective sense infinite paths
are unique, is equivalent to Fan. One direction (WKL! implies Fan) is essen-
tially the proof by Ishihara (2006), enhanced by the additional requirement
that the tree extension to be constructed satisfies the effective uniqueness
condition (as in Berger and Ishihara (2005)). The main tool of this proof is
the construction of I(t̂) described above. The other direction (Fan implies
WKL!) is far less directly proved in Berger and Ishihara (2005), where the
emphasis rather was to provide a fair number of equivalents to Fan, and
to do the proof economically by giving a circle of implications. A direct
proof of the equivalence of Fan with WKL! is in Schwichtenberg (2005).
The latter paper also reports on a formalization in the Minlog proof assis-
tant, and gives rather short and perspicious realizing terms (w.r.t. modified
realizability) machine-extracted from each of the two directions of this proof.

References

J. Berger and H. Ishihara. Brouwer’s fan theorem and unique existence in
constructive analysis. Mathematical Logic Quarterly, 51(4):360–364, 2005.

U. Berger. Program extraction from normalization proofs. In M. Bezem and
J. Groote, editors, Typed Lambda Calculi and Applications, volume 664
of LNCS, pages 91–106. Springer Verlag, Berlin, Heidelberg, New York,
1993.

U. Berger. Uniform Heyting Arithmetic. Annals Pure Applied Logic, 133:
125–148, 2005.

U. Berger, S. Berghofer, P. Letouzey, and H. Schwichtenberg. Program
extraction from normalization proofs. Studia Logica, 82:27–51, 2006.

22 HELMUT SCHWICHTENBERG

U. Berger, W. Buchholz, and H. Schwichtenberg. Refined program extrac-
tion from classical proofs. Annals of Pure and Applied Logic, 114:3–25,
2002.

U. Berger and H. Schwichtenberg. Program development by proof transfor-
mation. In H. Schwichtenberg, editor, Proof and Computation, volume
139 of Series F: Computer and Systems Sciences, pages 1–45. NATO
Advanced Study Institute, International Summer School held in Mark-
toberdorf, Germany, July 20 – August 1, 1993, Springer Verlag, Berlin,
Heidelberg, New York, 1995.

U. Berger, H. Schwichtenberg, and M. Seisenberger. The Warshall Algorithm
and Dickson’s Lemma: Two Examples of Realistic Program Extraction.
Journal of Automated Reasoning, 26:205–221, 2001.

H. Friedman. Classically and intuitionistically provably recursive functions.
In D. Scott and G. Müller, editors, Higher Set Theory, volume 669 of
Lecture Notes in Mathematics, pages 21–28. Springer Verlag, Berlin, Hei-
delberg, New York, 1978.

K. Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunkts. Dialectica, 12:280–287, 1958.

M.-D. Hernest. Feasible programs from (non-constructive) proofs by the light
(monotone) Dialectica interpretation. PhD thesis, Ecole Polytechnique
Paris and LMU München, 2006.

W. A. Howard. Hereditarily majorizable functionals of finite type. In
A. Troelstra, editor, Mathematical Investigation of Intuitionistic Arith-
metic and Analysis, volume 344 of Lecture Notes in Mathematics, pages
454–461. Springer Verlag, Berlin, Heidelberg, New York, 1973.

H. Ishihara. An omniscience principle, the König lemma and the Hahn-
Banach theorem. Zeitschr. f. math. Logik und Grundlagen d. Math., 36:
237–240, 1990.

H. Ishihara. Weak König lemma implies Brouwer’s fan theorem: a direct
proof. Notre Dame J. Formal Logic, 47:249–252, 2006.

K. F. Jørgensen. Finite type arithmetic. Master’s thesis, University of
Roskilde, 2001.

U. Kohlenbach. Effective bounds from ineffective proofs in analysis: an
application of functional interpretation and majorization. The Journal of
Symbolic Logic, 57(4):1239–1273, 1992.

U. Kohlenbach. Analysing proofs in analysis. In W. Hodges, M. Hyland,
C. Steinhorn, and J. Truss, editors, Logic: from Foundations to Applica-
tions. European Logic Colloquium (Keele, 1993), pages 225–260. Oxford
University Press, 1996.

P. Oliva. Unifying functional interpretations. Notre Dame J. Formal Logic,
47:262–290, 2006.

H. Schwichtenberg. Proofs as programs. In P. Aczel, H. Simmons, and
S. Wainer, editors, Proof Theory. A selection of papers from the Leeds
Proof Theory Programme 1990, pages 81–113. Cambridge University
Press, 1993.

H. Schwichtenberg. A direct proof of the equivalence between Brouwer’s
fan theorem and König’s lemma with a uniqueness hypothesis. Journal of
Universal Computer Science, 11(12):2086–2095, 2005. http://www.jucs.

PROOFS AND COMPUTATIONS 23

org/jucs_11_12/a_direct_proof_of.
H. Schwichtenberg. Recursion on the partial continuous functionals. In

C. Dimitracopoulos, L. Newelski, D. Normann, and J. Steel, editors, Logic
Colloquium ’05, volume 28 of Lecture Notes in Logic, pages 173–201. As-
sociation for Symbolic Logic, 2006.

M. Seisenberger. On the Constructive Content of Proofs. PhD thesis, Ma-
thematisches Institut der Universität München, 2003.

A. S. Troelstra, editor. Metamathematical Investigation of Intuitionistic
Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics.
Springer Verlag, Berlin, Heidelberg, New York, 1973.

