
LOGIC FOR EXACT REAL ARITHMETIC

HELMUT SCHWICHTENBERG

Abstract. The work reported in [7, 1] is extended in two directions.
(1) Instead of viewing the real numbers as abstractly given objects with
all the necessary properties assumed as axioms we now use concrete real
numbers (Cauchy sequences with moduli) and provide formal proofs in
the style of constructive analysis [3, 4]. Apart from being more com-
plete, this resolves the delicate issue which equality (for reals) is to be
used in the clauses of coinductively defined predicates. However, the
choice of our model for the reals does not influence the extracted (Gray
code based) algorithms, since quantifiers over real numbers are taken
as non-computational. (2) Following [5], we extract a Gray code based
algorithm for multiplication from a proof that the reals are closed under
times.

Keywords: Gray code, real number computation, inductive and coin-
ductive definitions, program extraction.

2010 Mathematics Subject Classification: 03D78, 03F60, 03B70, 03B35

1. Introduction

Real numbers in the exact (as opposed to floating-point) sense can be
given in different formats, for instance

(i) as Cauchy sequences (of rationals, with Cauchy modulus), or else
(ii) as infinite sequences (“streams”) of signed digits {−1, 0, 1} or
(iii) {−1, 1,⊥} containing at most one copy of ⊥ (meaning undefinedness),

so-called “Gray code” [6, 9].

We are interested in formally verified algorithms on real numbers given as
streams. To this end we consider formal existence proofs M and apply
a proof theoretic method (“realizability”) to extract their computational
content. We switch between different representations of reals by labelling
universal quantifiers on reals x as “non-computational” and then relativising
x to a predicate coI coinductively defined in such a way that the computa-
tional content of x ∈ coI is a stream representing x. The desired algorithm

This work was supported by the International Research Staff Exchange Scheme (IRSES)
Nr. 612638 CORCON.

1

2 HELMUT SCHWICHTENBERG

is obtained as the extracted term et(M) of the existence proof M , and the
required verification is provided by a formal soundness proof of the realiza-
bility interpretation.

The work reported in [7, 1] is extended in two directions. (1) Instead of
viewing the real numbers as abstractly given objects with all the necessary
properties assumed as axioms we now use concrete real numbers (Cauchy se-
quences with moduli) and provide formal proofs in the style of constructive
analysis [3, 4]. The equality used in the clauses of coinductively defined pred-
icates then is the defined equality on concrete reals. However, the choice of
our model for the reals does not influence the extracted (stream based) algo-
rithms, since quantifiers over real numbers are taken as non-computational.
(2) Following [5], we extract a stream based algorithm for multiplication
from a proof that the reals are closed under times.

The rest of the paper is organized as follows. In Section 2 we recall signed
digit and Gray code representations of real numbers. Sections 3 and 4 deal
with the average and multiplication functions for signed digit streams, and
Sections 5 and 6 do the same for pre-Gray code. In the final Sections 7 and
8 we give some details concerning formalization of the proofs in the Minlog
system. We also present the realizers machine extracted from the formalized
proofs and discuss the algorithms they represent.

2. Stream representations of real numbers

For simplicity we work in the interval [−1, 1]. Reals of the form∑
i<k

ai
2i+1

with ai ∈ {−1, 1}

are called dyadic rationals:

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

1̄ 1

1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1

1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1 1̄ 1

LOGIC FOR EXACT REAL ARITHMETIC 3

where 1̄ means −1. Note that adjacent dyadics can differ in many digits:

7

16
∼ 11̄11,

9

16
∼ 111̄1̄.

A possible cure is to flip after an occurrence of 1; the result is called binary
reflected (or Gray-) code.

0

−1
2

1
2

−3
4

3
4

−7
8

7
8

−15
16

15
16

L R

L R R L

L R R L L R R L

L R R L L R R L L R R L L R R L

Figure 1. Binary reflected (or Gray-) code

Then we have
7

16
∼ RRRL,

9

16
∼ RLRL.

However, a problem with “productivity” remains: we cannot determine
what the first digit of 1̄111 . . . + 11̄1̄1̄ . . . (or LRLL . . . + RRRL . . .) should
be. The cure is to add delay digits. For dyadic rationals we add the digit 0
and obtain signed digit code widely used in numerical computation:∑

i<k

di
2i+1

with di ∈ {−1, 0, 1}.

We have a lot of redundancy here: for instance 1̄1 and 01̄ both denote −1
4 .

For binary reflected code we first add digits U (for undefined), D (for
delay), FinL/R (for finally left / right) and obtain pre-Gray code. Then a
part of the last figure is expanded to Figure 2.

After computation in pre-Gray code, one can remove Fina by

U ◦ Fina 7→ a ◦ R, D ◦ Fina 7→ Fina ◦ L.

If we now pass to infinite sequences, another source of non-uniqueness arises:
RRRLLL . . . and RLRLLL . . . but also RUDDDD . . . all denote 1

2 . From
these three infinite sequences we can safely remove the former two and only
keep RUDDDD . . . to denote 1

2 . Then, generally,

4 HELMUT SCHWICHTENBERG

0

1
2

1
4

3
4

3
8

5
8

7
16

9
16

U

D

R

R L
U

FinR

U
R

FinR
D

FinL

R
U

U
L

FinR FinL
D U

L

Figure 2. Pre-Gray code

(i) U occurs in a context UDDDD . . . only, and
(ii) such an occurrence of U appears exactly in the representation of dyadic

rationals.

In this way we obtain a unique representation of real numbers by infinite
sequences (or streams), which we call pure Gray code.

3. Average for signed digit streams

We now tackle our goal to extract stream algorithms from proofs, and
as an example we consider a proof that the average of two real numbers
in [−1, 1] is in [−1, 1] again. We first deal with the representation of reals
as signed digit streams; in Section 5 we solve the corresponding problem
for pre-Gray code. To start, we need to accomodate streams in our logical
framework.

3.1. The predicates I and coI. We model infinite sequences of signed
digits (or streams for short) as objects1 in the (free) algebra I given by just
one constructor C: Sd→ I→ I, where Sd := {SdR,SdM, SdL} is a formal
representation of signed digits. Each such object can be decomposed into
its head (an object in Sd) and tail (another stream). Intuitively, the stream
d0, d1, d2 . . . represents the real number

∞∑
i=0

di
2i+1

with di ∈ {1, 0,−1}.

1More precisely, cototal ideals; cf. [8]

LOGIC FOR EXACT REAL ARITHMETIC 5

We inductively define a predicate I by the single clause

(1) ∀ncd,x′,x(d ∈ Sd→ x′ ∈ I → x =
x′ + d

2
→ x ∈ I).

Here (and later) x ranges over real numbers and d over integers. Sd is a
(formally inductive) predicate expressing that the integer d is a signed digit,
i.e., |d| ≤ 1.

We have chosen (1) rather than the simpler

(2) ∀ncd,x(d ∈ Sd→ x ∈ I → x+ d

2
∈ I),

since we want I to be compatible with the defined equality = on real numbers

(3) ∀ncx,y(x = y → x ∈ I → y ∈ I),

which easily follows from (1) (with reflexivity, symmetry and transitivity of
=). Using (3) we then obtain (2) from (1) as a lemma, called IClosure.

At this point the present paper deviates from [1]. In the latter work real
numbers including their equality were viewed as given axiomatically. Desired
well-known properties of reals were just taken as axioms, provided they have
no computational content and hence do not influence the terms extracted
from proofs. However, one also needs compatibilities like (3), which do have
computational content (in fact, identities). — In the formal development
the present paper is reporting on such axioms have been replaced by proofs.
This required a full develoment of the number systems (unary and binary
natural numbers, integers, rationals and reals). A real number x is taken
as a pair ((an)n∈N,M) with an ∈ Q and M : Z+ → N such that (an)n is a
Cauchy sequence with modulus M , that is

|an − am| ≤
1

2p
for n,m ≥M(p).

Two reals x := ((an)n,M), y := ((bn)n, N) are equal (written x = y) if

|aM(p+1) − bN(p+1)| ≤
1

2p
for all p ∈ Z+.

The “non-computational” (n.c.) universal quantifier ∀ncd,x,y deserves a spe-
cial comment. It has the effect that the type of the computational content
of this formula is independent of d, x, y and hence in particular of the con-
crete representations of integers and real numbers in the underlying theory.
Computational content only arises from inductive (and coinductive, see be-
low) predicates, here Sd and I. Therefore the type of I’s single clause is
Sd→ I→ I, i.e., the type of I’s constructor C.

6 HELMUT SCHWICHTENBERG

Dually to I we coinductively define a predicate coI whose clause is

(4) ∀ncx (x ∈ coI → ∃rd,x′,y(d ∈ Sd ∧ x′ ∈ coI ∧ y =
x′ + d

2
∧ x = y))

Here ∃rd,x′ is an (inductively defined) version of the existential quantifier with
the effect that again the computational content of the formula is independent
of d, x′.

Similar to what was done for I above we can simplify the original (auto-
matically obtained) CoIClause (4) to

Lemma 3.1 (CoIClosure).

∀ncx (x ∈ coI → ∃rd,x′(d ∈ Sd ∧ x′ ∈ coI ∧ x =
x′ + d

2
)).

Since the type of x ∈ coI is the same as the type of I, the type of coI’s
clause is I→ Sd× I, i.e., the type of an operator destructing a stream into
its head and its tail.

More formally, both I and coI are defined as fixed points of an operator

Φ(X) := {x | ∃rd,x′(d ∈ Sd ∧ x′ ∈ X ∧ x =
x′ + d

2
) }.

Then

I := µXΦ(X) least fixed point
coI := νXΦ(X) greatest fixed point

satisfy the (strengthened) axioms

Φ(I ∩X) ⊆ X → I ⊆ X induction

X ⊆ Φ(coI ∪X)→ X ⊆ coI coinduction

(they are called “strengthened” because their hypotheses are weaker than
the fixed point property Φ(X) = X).

3.2. Realizability. The realizability extensions Ir and (coI)r are binary
predicates on streams v of signed digits (coming from d ∈ Sd in the definition
of Φ(X)) and real numbers x. Consider the operator

Φr(Y) := { (v, x) | ∃ncv′,d,x′(d ∈ Sd ∧ (v′, x′) ∈ Y ∧ x =
x′ + d

2
∧ v = Cd(v

′)) }

(the nc in ∃nc indicates that neither the quantified variables nor the kernel
has computational significance). Since Φr(Y) is strictly positive in Y , again

LOGIC FOR EXACT REAL ARITHMETIC 7

our underlying theory provides us with binary predicates (or relations) Ir

and (coI)r for the least and greatest fixed point of Φr:

Ir := µY Φr(Y) least fixed point

(coI)r := νY Φr(Y) greatest fixed point

satisfying the (strengthened) axioms

Φr(Ir ∩ Y) ⊆ Y → Ir ⊆ Y induction

Y ⊆ Φr((coI)r ∪ Y)→ Y ⊆ (coI)r coinduction.

3.3. Informal proof. Consider the problem to compute the average of two
real numbers coded by streams. To this end we will prove

(5) ∀ncx,x′(x, x′ ∈ coI → x+ x′

2
∈ coI),

and the computational content of this proof will be the desired algorithm.
We give an informal proof, following [2]. Consider two sets of averages,

the second one with a “carry” i ∈ Z

P := { x+ y

2
| x, y ∈ coI }, Q := { x+ y + i

4
| x, y ∈ coI, i ∈ Sd2 },

where Sd2 is a (formally inductive) predicate expressing that the integer i
is an extended signed digit, i.e., |i| ≤ 2.

Recall that coI is a fixed point of Φ. Hence coI ⊆ Φ(coI), which is
Lemma 3.1 (CoIClosure). It suffices to show that Q satisfies CoIClosure

∀ncx (x ∈ Q→ ∃rd,x′(d ∈ Sd ∧ x′ ∈ Q ∧ x =
x′ + d

2
)),

for then by the greatest-fixed-point axiom for coI we have Q ⊆ coI. Since we
also have P ⊆ Q we then obtain P ⊆ coI, which is our claim.

Lemma 3.2 (CoIAvToAvc).

∀ncx,y(x, y ∈ coI → ∃ri,x′,y′(i ∈ Sd2 ∧ x′, y′ ∈ coI ∧ x+ y

2
=
x′ + y′ + i

4
)).

Proof. By Lemma 3.1 (CoIClosure) we can write x = x′+d
2 and y = y′+e

2
with d, e ∈ Sd and x′, y′ ∈ coI. Then

x+ y

2
=
x′ + y′ + d+ e

4
. �

8 HELMUT SCHWICHTENBERG

Implicit algorithm. finit : I→ I→ Sd2 × I× I defined by2

finit(Cd(u),Ce(v)) = (d+ e, u, v).

Throughout this paper we will use functions J,K : Z→ Z such that

(6) ∀i(i = J(i) + 4K(i)) (with ∀i(|J(i)| ≤ 2), ∀i(|i| ≤ 6→ |K(i)| ≤ 1)).

Lemma 3.3 (CoIAvcSatCoICl).

∀nci,x,y(i ∈ Sd2 → x, y ∈ coI →

∃rj,d,x′,y′(j ∈ Sd2 ∧ d ∈ Sd ∧ x′, y′ ∈ coI ∧ x+ y + i

4
=

x′+y′+j
4 + d

2
).

Proof. By Lemma 3.1 (CoIClosure) we can write x = x′+d
2 and y = y′+e

2
with d, e ∈ Sd and x′, y′ ∈ coI. Then

x+ y + i

4
=
x′ + y′ + d+ e+ 2i

8
.

Since |d + e + 2i| ≤ 6 we can write d + e + 2i = j + 4k with |j| ≤ 2 and
|k| ≤ 1 by the JK-property (6). Therefore

x+ y + i

4
=
x′ + y′ + j + 4k

8
=

x′+y′+j
4 + k

2
. �

Implicit algorithm. f : Sd2 → I→ I→ Sd2 × Sd× I× I defined by

f(i,Cd(u),Ce(v)) = (J(d+ e+ 2i),K(d+ e+ 2i), u, v).

By coinduction from Lemma 3.3 we obtain

Lemma 3.4 (CoIAvcToCoI).

∀ncz (∃ri,x,y(i ∈ Sd2 ∧ x, y ∈ coI ∧ z =
x+ y + i

4
)→ z ∈ coI).

Proposition 3.5 (CoIAverage).

∀ncx,y(x, y ∈ coI → x+ y

2
∈ coI).

Proof. Immediate from Lemmata 3.2 and 3.4. �

2We use Sd2 := {RT,RR,MT,LT,LL} as a formal representation of the set Sd2 of
extended signed digits. – Formally Cd(u) (:= C(d, u)) is not correct: we have d ∈ Z, but
the constructor C has type Sd → I → I. First d has to be converted (by IntToSd) into
an element of Sd := {SdR,SdM,SdL}. For readability such conversions are suppressed.
However, they will show up in the extracted terms in Section 7.

LOGIC FOR EXACT REAL ARITHMETIC 9

Implicit algorithm. f : Sd2 × I× I→ I defined corecursively by

f(i,Cd(v),Ce(w)) = CK(d+e+2i)(f(J(d+ e+ 2i), v, w)).

More precisely, finit (from Lemma 3.2 (CoIAvToAvc)) computes the first
“carry” i ∈ Sd2 and the tails of the inputs. Then f is called repeatedly,
computing the average step by step.

4. Multiplication for signed digit streams

Next we consider a proof that [−1, 1] is closed under multiplication,
w.r.t. the representation of reals as signed digit streams. Here we follow
Ciaffaglione and Di Gianantonio [5], who found a nice way to reduce this
problem to the one for the average function. Correspondingly our treatment
uses material from Section 3.

4.1. Informal proof. Our goal this time is to prove

(7) ∀ncx,x′(x, x′ ∈ coI → x · x′ ∈ coI).

Again the computational content of this proof will be the desired algorithm.
Consider the two sets

P := {x · y | x, y ∈ coI }, Q := { x · y + z + i

4
| x, y, z ∈ coI, i ∈ Sd2 }.

It again suffices to show that Q satisfies Lemma 3.1 (CoIClosure)

∀ncx (x ∈ Q→ ∃rd,x′(d ∈ Sd ∧ x′ ∈ Q ∧ x =
x′ + d

2
)),

for then by the greatest-fixed-point axiom for coI we have Q ⊆ coI. Since we
also have P ⊆ Q we obtain P ⊆ coI, which is our claim.

For P ⊆ Q — which is Lemma 4.4 (CoIMultToMultc) below — we need
some auxiliary lemmata.

Lemma 4.1 (CoIUMinus). ∀ncx (−x ∈ coI → x ∈ coI).

Proof. By coinduction, using properties of the unary minus functions. �

Lemma 4.2 (CoIZero). 0 ∈ coI.

Proof. Let P := {x | x = 0 }. It suffices to show that P satisfies Lemma 3.1
(CoIClosure)

∀ncx (x ∈ P → ∃rd,x′(d ∈ Sd ∧ x′ ∈ P ∧ x =
x′ + d

2
)),

for then by the greatest-fixed-point axiom for coI we have P ⊆ coI and hence
0 ∈ coI. Assume x ∈ P . Choose d = 0 and x′ = 0. Then d ∈ Sd, x′ ∈ P and
also x = x′+d

2 , since 0 is the only element of P . �

10 HELMUT SCHWICHTENBERG

Lemma 4.3 (CoISdTimes). ∀ncx,d(d ∈ Sd→ x ∈ coI → dx ∈ coI).

Proof. By the definition of Sd, using Lemma 4.1 (CoIUMinus) and in the
zero case Lemma 4.2 (CoIZero). �

Lemma 4.4 (CoIMultToMultc).

∀ncx,y∈coI∃ry′∈coI∃ri∈Sd2∃
r
x′,z∈coI(xy =

x′y′ + z + i

4
).

Proof. By Lemma 3.1 (CoIClosure) we can write

x =
x′ + d

2
y =

y′ + e

2
with x′, y′ ∈ coI and d, e ∈ Sd.

Then
ex′ + dy′

2
∈ coI

using Proposition 3.5 (CoIAverage) and Lemma 4.3 (CoISdTimes). Now
again from Lemma 3.1 (CoIClosure) we obtain z, d0 such that

ex′ + dy′

2
=
z + d0

2
.

Therefore

(x′ + d)(y′ + e)

4
=
x′y′ + (ex′ + dy′) + de

4
=
x′y′ + z + (d0 + de)

4
,

which is of the required form. �

Lemma 4.5 (CoIMultcSatCoICl).

∀ncy∈coI∀nci∈Sd2∀
nc
x,z∈coI∃rd∈Sd∃rj∈Sd2∃

r
x′,z′∈coI(

xy + z + i

4
=

x′y+z′+j
4 + d

2
).

Proof. By Lemma 3.1 (CoIClosure) we can write

x =
x1 + d1

2
z =

z0 + d0
2

with x1, z1 ∈ coI and d1, d0 ∈ Sd.

Then

xy + z + i

4
=

(x1 + d1)y + (z0 + d0) + 2i

8
=
x1y + (z0 + d1y + i) + d0 + i

8
.

We have d1y ∈ coI by Lemma 4.3 (CoISdTimes) and z0+d1y+i
4 := v ∈ coI by

Lemma 3.4 (CoIAvcToCoI). Hence we can continue the chain of equations
by

=
x1y + 4v + d0 + i

8
.

LOGIC FOR EXACT REAL ARITHMETIC 11

Because of v ∈ coI we can write

v =
z1 + e0

2
=

z2+e
2 + e0

2
with z1, z2 ∈ coI and e0, e ∈ Sd.

Therefore

=
x1y + (z2 + e+ 2e0) + d0 + i

8
.

Using again the functions J,K with the JK-property (6) we can write e +
2e0+d0+i as j+4d with j := J(e+2e0+d0+i) and d := K(e+2e0+d0+i).
Hence

=
x1y + z2 + j + 4d

8
=

x1y+z2+j
4 + d

2
. �

Implicit algorithm. f : I→ Sd2 × I× I→ Sd× Sd2 × I× I defined by

fv(i,Cd1(u),Cd0(w)) = (K(e+ 2e0 + d0 + i), J(e+ 2e0 + d0 + i), u, w′)

where e, e0, w
′ are obtained as follows. Let g := cCoIAvcToCoI and f∗ :=

cCoISdTimes. Then g(i, f∗(d, v), w) ∈ coI by Lemma 3.4 (CoIAvcToCoI),
and hence can be destructed into Ce0(Ce(w

′)).

By coinduction from Lemma 4.5 we obtain

Lemma 4.6 (CoIMultcToCoI).

∀ncz (∃ri,x,y,z0(i ∈ Sd2 ∧ x, y, z0 ∈ coI ∧ z =
xy + z0 + i

4
)→ z ∈ coI).

Proposition 4.7 (CoIMult).

∀ncx,y(x, y ∈ coI → xy ∈ coI).

Proof. Immediate from Lemmata 4.4 and 4.6. �

Implicit algorithm. Lemma 4.4 (CoIMultToMultc) computes from the two

inputs an initial quadruple i, x, y, z such that xy+z+i
4 is the product of the

inputs. Fix y. Then fy : Sd2 × I× I→ I is defined corecursively by

fy(i,Cd1(u),Cd0(w)) = CK(e+2e0+d0+i)(fy(J(e+ 2e0 + d0 + i), u, w′)).

Here w′ (∼ z2) and e, e0 are computed from the stream representation of y
and d1, w as described in the proof. Then fy is called repeatedly, computing
step by step the digits representing the product of the original inputs.

12 HELMUT SCHWICHTENBERG

5. Average for pre-Gray code

We now consider the problem to compute the average of two real numbers
given in pre-Gray code. The method is essentially the same as for signed
digit streams; we only need to insert a different computational content to
the predicates expressing how a real x is given. Instead of coI for signed
digit streams we now need two such predicates coG and coH, corresponding
to the two “modes” we have in pre-Gray codes.

5.1. The predicates G,H and coG, coH. We model pre-Gray codes as ob-
jects in the (simultaneously defined free) algebras G and H given by the
constructors Lr : B → G → G, U: H → G for G and Fin: B → G → H,
D: H→ H for H, with B = {tt, ff}. We write Lr1(p) for Lr(tt, p) and Lr−1(p)
for Lr(ff, p), and similarly for Fin. The predicates G,H and coG, coH are de-
fined as fixed points of the operators

Γ(X,Y) := {x | ∃ra,x′(a ∈ Psd ∧ x′ ∈ X ∧ x = −ax
′ − 1

2
) ∨

∃rx′(x′ ∈ Y ∧ x =
x′

2
) },

∆(X,Y) := {x | ∃ra,x′(a ∈ Psd ∧ x′ ∈ X ∧ x = a
x′ + 1

2
) ∨

∃rx′(x′ ∈ Y ∧ x =
x′

2
) }

Psd is a (formally inductive) predicate expressing that the integer a is a
proper signed digit, i.e., |a| = 1. We will only need the greatest fixed point

(coG, coH) := ν(X,Y)(Γ(X,Y),∆(X,Y)),

which is expressed by the (strengthened) simultaneous coinduction axiom

(X,Y) ⊆ (Γ(coG∪X, coH∪Y),∆(coG∪X, coH∪Y))→ (X,Y) ⊆ (coG, coH),

where inclusion ⊆ is meant component-wise.
Similarly to what was done for coI above we have compatibility of coG and

coH with =, and can simplify the their clauses to

Lemma 5.1 (CoGClosure, CoHClosure).

∀ncx (x ∈ coG→ ∃ra,x′(a ∈ Psd ∧ x′ ∈ coG ∧ x = −ax
′ − 1

2
) ∨

∃rx′(x′ ∈ coH ∧ x =
x′

2
)),

LOGIC FOR EXACT REAL ARITHMETIC 13

∀ncx (x ∈ coH → ∃ra,x′(a ∈ Psd ∧ x′ ∈ coG ∧ x = a
x′ + 1

2
) ∨

∃rx′(x′ ∈ coH ∧ x =
x′

2
)).

We also have their inverses

Lemma 5.2.

CoGClosureInvLr ∀nca,x(a ∈ Psd→ x ∈ coG→ −ax− 1

2
∈ coG),

CoGClosureInvU ∀ncx (x ∈ coH → x

2
∈ coG),

CoHClosureInvFin ∀nca,x(a ∈ Psd→ x ∈ coG→ a
x+ 1

2
∈ coH),

CoHClosureInvD ∀ncx (x ∈ coH → x

2
∈ coH).

5.2. Realizability. The realizability extensions (coG)r and (coH)r are bi-
nary predicates on cototal ideals p in G or q in H (respectively) and real
numbers x. Consider the operators

Γr(Z,W) := { (p, x) |

∃a,p′,x′(a ∈ Psd ∧ (p′, x′) ∈ Z ∧ x = −ax
′ − 1

2
∧ p = Lra(p

′))

∨nc ∃q′,x′((q′, x′) ∈W ∧ x =
x′

2
∧ p = U(q′)) },

∆r(Z,W) := { (q, x) |

∃a,p′,x′(a ∈ Psd ∧ (p′, x′) ∈ Z ∧ x = a
x′ + 1

2
∧ q = Fina(p

′))

∨nc ∃q′,x′((q′, x′) ∈W ∧ x =
x′

2
∧ q = D(q′)) }

(the nc in ∨nc indicates that the disjunction has no computational content).
Since both Γr(Z,W) and ∆r(Z,W) are strictly positive in Z,W , our under-
lying theory provides us with a pair of binary predicates (coG)r, (coH)r for
the greatest fixed point of (Γr,∆r):

((coG)r, (coH)r) := ν(Z,W)(Γ
r(Z,W),∆r(Z,W))

satisfying the (strengthened) simultaneous coinduction axiom

(Z,W) ⊆ (Γr((coG)r ∪ Z, (coH)r ∪W),∆r((coG)r ∪ Z, (coH)r ∪W))→
(Z,W) ⊆ ((coG)r, (coH)r)

where again inclusion ⊆ is meant component-wise.

14 HELMUT SCHWICHTENBERG

5.3. Informal proof. We now consider the problem to compute the average
of two real numbers given in pre-Gray code.

As a preparation we treat the unary minus function. Here we make use
of the fact that our coinduction axioms are in strengthened form (that is
X ⊆ Φ(coI ∪X)→ X ⊆ coI instead of X ⊆ Φ(X)→ X ⊆ coI, for example).

Lemma 5.3 (CoGUMinus, CoHUMinus).

∀ncx (−x ∈ coG→ x ∈ coG),

∀ncx (−x ∈ coH → x ∈ coH).

Proof. For P := {x | −x ∈ coG) } and Q := {x | −x ∈ coH) } we show
P ⊆ coG simultaneously with Q ⊆ coH. By coinduction it suffices to prove
(i) P ⊆ Γ(coG ∪ P, coH ∪ Q) and (ii) Q ⊆ ∆(coG ∪ P, coH ∪ Q). For (i), let
x1 ∈ P . We show x1 ∈ Γ(coG ∪ P, coH ∪Q):

(8) ∃rx∈coG∪P∃a(x1 = −ax− 1

2
) ∨ ∃rx∈coH∪Q(x1 =

x

2
).

The coG-clause applied to −x1 ∈ coG gives us

∃rx∈coG∃a(−x1 = −ax− 1

2
) ∨ ∃rx∈coH(−x1 =

x

2
).

In the first case we have x2 ∈ coG and a with −x1 = −ax2−12 . Then the
left hand side of (8) holds for x2 and −a (here we use that our coinduction
axiom is in strengthened form). In the second case we have x2 ∈ coH with
−x1 = x2

2 . Then the right hand side of (8) holds for −x2. This finishes the
proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. f : G→ G and f ′ : H→ H defined by

f(Lra(u)) = Lr−a(u), f ′(Fina(u)) = Fin−a(u),

f(U(v)) = U(f ′(v)), f ′(D(v)) = D(f ′(v)).

Using Lemma 5.3 we prove that coG and coH are in fact equivalent.

Lemma 5.4 (CoHToCoG, CoGToCoH).

∀ncx (x ∈ coH → x ∈ coG),

∀ncx (x ∈ coG→ x ∈ coH).

Proof. We show coH ⊆ coG simultaneously with coG ⊆ coH. By coinduction
it suffices to prove (i) coH ⊆ Γ(coG ∪ coH, coH ∪ coG) and (ii) coG ⊆ ∆(coG ∪
coH, coH ∪ coG). For (i), let x1 ∈ coH. We show x1 ∈ Γ(coG ∪ coH, coH ∪ coG):

(9) ∃rx∈coG∪coH∃a(x1 = −ax− 1

2
) ∨ ∃rx∈coH∪coG(x1 =

x

2
).

LOGIC FOR EXACT REAL ARITHMETIC 15

The coH-clause applied to x1 ∈ coH gives us

∃rx∈coG∃a(x1 = a
x+ 1

2
) ∨ ∃rx∈coH(x1 =

x

2
).

In the first case we have x2 ∈ coG and a with x1 = ax2+1
2 . Then the left

hand side of (9) holds for −x2 and a, using Lemma 5.3 and (again) that
our coinduction axiom is in strengthened form. In the second case we have
x2 ∈ coH with x1 = x2

2 . Then the right hand side of (8) holds for x2. This
finishes the proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. g : H→ G and h : G→ H:

g(Fina(u)) = Lra(f
−(u)), h(Lra(u)) = Fina(f

−(u)),

g(D(v)) = U(v), h(U(v)) = D(v)

where f− := cCoGUMinus (cL denotes the function extracted from the
proof of a lemma L). Notice that no corecursive call is involved.

The proof of the existence of the average w.r.t. Gray-coded reals is similar
to the proof in Section 3.3 of the existence of the average w.r.t. signed digit
stream coded reals. It proceeds as follows. To prove

∀ncx,y(x ∈ coG→ y ∈ coG→ x+ y

2
∈ coG)

consider again two sets of averages, the second one with a “carry”:

P := { x+ y

2
| x, y ∈ coG }, Q := { x+ y + i

4
| x, y ∈ coG, i ∈ Sd2 }.

It suffices to show that Q satisfies CoGClosure in Lemma 5.1, for then by
the greatest-fixed-point axiom for coG we have Q ⊆ coG. Since we also have
P ⊆ Q we obtain P ⊆ coG, which is our claim.

For P ⊆ Q — which is Lemma 5.6 (CoGAvToAvc) below — we need

Lemma 5.5 (CoGPsdTimes). ∀nca,x(a ∈ Psd→ x ∈ coG→ ax ∈ coG).

Proof. By the definition of Psd, using Lemma 5.3 (CoGUMinus). �

Lemma 5.6 (CoGAvToAvc).

∀ncx,y∈coG∃ri∈Sd2∃
r
x′,y′∈coG(

x+ y

2
=
x′ + y′ + i

4
).

Proof. Let x, y ∈ coG. By Lemma 5.1 (CoGClosure) there are two cases (Lr
and U) for each of x, y. With CoHToCoG the argument is easy. �

16 HELMUT SCHWICHTENBERG

Implicit algorithm. We use f∗ for cCoGPsdTimes and s for cCoHToCoG.

f(Lra(u),Lra′(u
′)) = (a+ a′, f∗(−a, u), f∗(−a′, u′)),

f(Lra(u),U(v)) = (a, f∗(−a, u), s(v)),

f(U(v),Lra(u)) = (a, s(v), f∗(−a, u)),

f(U(v),U(v′)) = (0, s(v), s(v′)).

Lemma 5.7 (CoGAvcSatCoICl).

∀nci∈Sd2∀
nc
x,y∈coG∃rj∈Sd2∃

r
d∈Sd∃rx′,y′∈coG(

x+ y + i

4
=

x′+y′+j
4 + d

2
).

Proof. Let x, y ∈ coG. Again by Lemma 5.1 (CoGClosure) there are two
cases (Lr and U) for each of x, y. As in the proof of Lemma 3.3 we need the
functions J,K defined there. �

Implicit algorithm.

f(i,Lra(u),Lra′(u
′)) = (J(a+a′+2i),K(a+a′+2i), f∗(−a, u), f∗(−a′, u′)),

f(i,Lra(u),U(v)) = (J(a+ 2i),K(a+ 2i), f∗(−a, u), s(v)),

f(i,U(v),Lra(u)) = (J(a+ 2i),K(a+ 2i), s(v), f∗(−a, u)),

f(i,U(v),U(v′)) = (J(2i),K(2i), s(v), s(v′)).

By coinduction from Lemma 5.7 we obtain

Lemma 5.8 (CoGAvcToCoG).

∀ncz (∃ri∈Sd2∃
r
x,y∈coG(z =

x+ y + i

4
)→ z ∈ coG),

∀ncz (∃ri∈Sd2∃
r
x,y∈coG(z =

x+ y + i

4
)→ z ∈ coH).

Proof. We show Q ⊆ coG simultaneously with Q ⊆ coH. By coinduction it
suffices to prove (i) Q ⊆ Γ(coG∪Q, coH∪Q) and (ii) Q ⊆ ∆(coG∪Q, coH∪Q).
For (i), let z1 ∈ Q. We show z1 ∈ Γ(coG ∪Q, coH ∪Q):

(10) ∃rz∈coG∪Q∃ra∈Psd(z1 = −az − 1

2
) ∨ ∃rz∈coH∪Q(z1 =

z

2
).

Lemma 5.7 applied to z1 ∈ Q gives us x1, y1 ∈ coG and i1, d1 such that

z1 =
x1+y1+i1

4 + d1

2
.

Case d1 = 0. Go for the right hand side of (10) with z := (x1 + y1 + i1)/4 ∈
Q. Case d1 = ±1. Go for the left hand side of (10) with a := d1 and

LOGIC FOR EXACT REAL ARITHMETIC 17

z := (−ax1 − ay1 − ai1)/4 ∈ Q. Then

−az − 1

2
= −a4z − 4

8
=
x1 + y1 + i1 + 4a

8
= z1.

This finishes the proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm. In the proof we used a lemma:

SdDisj : ∀ncd∈Sd(d = 0 ∨r ∃ra∈Psd(d = a)).

Here ∨r is an (inductively defined) variant of ∨ where only the content of
the right hand side is kept.

g(i, u, u′) = let (i1, d, u1, u
′
1) = cCoGAvcSatCoICl(i, u, u′) in

case cSdDisj(d) of

0→ U(h(i, u1, u
′
1))

a→ Lra(g(−ai, f∗(−a, u1), f∗(−a, u′1))),

h(i, u, u′) = let (i1, d, u1, u
′
1) = cCoGAvcSatCoICl(i, u, u′) in

case cSdDisj(d) of

0→ D(h(i, u1, u
′
1))

a→ Fina(g(−ai, f∗(−a, u1), f∗(−a, u′1))).

Proposition 5.9 (CoGAverage).

∀ncx,y(x ∈ coG→ y ∈ coG→ x+ y

2
∈ coG).

Proof. Compose Lemmata 5.6 and 5.8. �

6. Multiplication for pre-Gray code

Finally we consider a proof that [−1, 1] is closed under multiplication,
w.r.t. the representation of reals in pre-Gray code. We will make use of
material from Section 5.

6.1. Informal proof. Our goal is to find a proof of

(11) ∀ncx,x′(x, x′ ∈ coG→ x · x′ ∈ coG),

which will give us the desired algorithm. Consider the two sets

P := {x · y | x, y ∈ coG }, Q := { x · y + z + i

4
| x, y, z ∈ coG, i ∈ Sd2 }.

18 HELMUT SCHWICHTENBERG

It again suffices to show that Q satisfies Lemma 5.1 (CoGClosure), for then
by the greatest-fixed-point axiom for coG we have Q ⊆ coG. Since we also
have P ⊆ Q we obtain P ⊆ coG, which is our claim.

We need an auxiliary lemma

Lemma 6.1 (CoGZero). 0 ∈ coG.

Proof. By coinduction. The proof is similar to the one for Lemma 4.2
(CoIZero), but we must prove the claim 0 ∈ coG simultaneously with 0 ∈ coH.
However, since in both cases we can use the second alternative in Lemma 5.1
(CoGClosure and CoHClosure), the proof is even simpler. �

Lemma 6.2 (CoGMultToMultc).

∀ncx,y∈coG∃ri∈Sd2∃
r
x′,y′,z∈coG(xy =

x′y′ + z + i

4
).

Proof. We distinguish cases on x ∈ coG and y ∈ coG according to the dis-
junction in Lemma 5.1 (CoGClosure).

Case Lrx, Lry. Then we can write

x = −ax
′ − 1

2
y = −by

′ − 1

2
with x′, y′ ∈ coG and a, b ∈ Psd.

By Proposition 5.9 (CoGAverage) and Lemma 5.5 (CoGPsdTimes) we have

−abx′ − aby′

2
=: z ∈ coG

We again need to distinguish cases according to the disjunction in Lemma 5.1
(CoGClosure). Subcase Lrz. Then we can write

z = −cz
′ − 1

2
with z′ ∈ coG and c ∈ Psd.

Therefore xy =

(ax′ − a)(by′ − b)
4

=
ax′by′ − ab(x′ + y′) + ab

4
=
ax′by′ − cz′ + (c+ ab)

4
,

which is of the required form. Subcase Uz. Then we can write

z =
z′

2
with z′ ∈ coH.

Therefore

xy =
(ax′ − a)(by′ − b)

4
=
ax′by′ − ab(x′ + y′) + ab

4
=
ax′by′ + z′ + ab

4
,

which is of the required form because of Lemma 5.4 (CoHToCoG).

LOGIC FOR EXACT REAL ARITHMETIC 19

Case Lrx, Uy. Then we can write

x = −ax
′ − 1

2
y =

y′

2
with x′ ∈ coG, y′ ∈ coH and a ∈ Psd.

Therefore

xy =
(−ax′ + a)y′

4
=
−ax′y′ + ay′

4
,

which is of the required form because of Lemma 5.4 (CoHToCoG).
Case Ux, Lry. Then we can write

x =
x′

2
y = −by

′ − 1

2
with x′ ∈ coH, y′ ∈ coG and b ∈ Psd.

Therefore

xy =
x′(−by′ + b)

4
=
−bx′y′ + bx′

4
,

which is of the required form because of Lemma 5.4 (CoHToCoG).
Case Ux, Uy. Then we can write

x =
x′

2
y =

y′

2
with x′, y′ ∈ coH.

Therefore

xy =
x′y′

4
,

which is of the required form because of Lemma 6.1 (CoGZero). �

Implicit algorithm. We use s for cCoHToCoG. For brevity from now on we
omit f∗ (for cCoGPsdTimes) and simply write au for f∗(a, u).

g(Lra(u),Lrb(v)) = case cCoGAverage(−abu,−abv) of

Lrc(w)→ (c+ ab, au, bv,−cw)

U(w)→ (ab, au, bv, s(w))

g(Lra(u),U(v))) = (0,−au, s(v), as(v))

g(U(u),Lrb(v)) = (0, s(u),−bv, bs(u))

g(U(u),U(v)) = (0, s(u), s(v), cCoGZero).

Lemma 6.3 (CoGMultcSatCoICl).

∀ncy∈coG∀nci∈Sd2∀
nc
x,z∈coG∃rd∈Sd∃rj∈Sd2∃

r
x′,z′∈coG(

xy + z + i

4
=

x′y+z′+j
4 + d

2
).

20 HELMUT SCHWICHTENBERG

Proof. We distinguish cases on x ∈ coG and z ∈ coG according to the dis-
junction in Lemma 5.1 (CoGClosure).

Case Lrx, Lrz. We can write

x = −a1
x1 − 1

2
z = −a0

z1 − 1

2
with x1, z1 ∈ coG and a1, a0 ∈ Psd.

Then

xy + z + i

4
=

(−a1x1 + a1)y − a0z1 + a0 + 2i

8

=
−a1x1y + (a1y − a0z1 + i) + a0 + i

8
.

We have a1y,−a0z1 ∈ coG by Lemma 5.5 (CoGPsdTimes) and a1y−a0z1+i
4 =:

v ∈ coG by Lemma 5.8 (CoGAvcToCoG). Hence we can continue

=
−a1x1y + 4v + a0 + i

8
=
−a1x1y

4 + v + a0+i
4

2
=
−a1x1y+z+j

4 + d

2

with z ∈ coG, j ∈ Sd2 and d ∈ Sd, by Lemma 6.4 (JKLr).
Case Lrx, Uz. We can write

x = −a1
x1 − 1

2
z =

z1
2

with x1 ∈ coG, z1 ∈ coH and a1 ∈ Psd.

Then

xy + z + i

4
=

(−a1x1 + a1)y + z1 + 2i

8
=
−a1x1y + (a1y + z1 + i) + i

8
.

We have a1y ∈ coG by Lemma 5.5 (CoGPsdTimes), z1 ∈ coG by Lemma 5.4

(CoHToCoG) and a1y+z1+i
4 =: v ∈ coG by Lemma 5.8 (CoGAvcToCoG).

Hence we can continue

=
−a1x1y + 4v + i

8
=
−a1x1y

4 + v + i
4

2
=
−a1x1y+z+j

4 + d

2

with z ∈ coG, j ∈ Sd2 and d ∈ Sd, by Lemma 6.5 (JKU).
Case Ux, Lrz. We can write

x =
x1
2

z = −a0
z1 − 1

2
with x1 ∈ coH, z1 ∈ coG and a0 ∈ Psd.

Then

xy + z + i

4
=
x1y − a0z1 + a0 + 2i

8
=
x1y + (0− a0z1 + i) + a0 + i

8
.

LOGIC FOR EXACT REAL ARITHMETIC 21

We have 0 ∈ coG by Lemma 6.1 (CoGZero), −a0z1 ∈ coG by Lemma 5.5
(CoGPsdTimes) and 0−a0z1+i

4 =: v ∈ coG by Lemma 5.8 (CoGAvcToCoG).
Hence we can continue

=
x1y + 4v + a0 + i

8
=

x1y
4 + v + a0+i

4

2
=

x1y+z+j
4 + d

2

with z ∈ coG, j ∈ Sd2 and d ∈ Sd, by Lemma 6.4 (JKLr).
Case Ux, Uz. We can write

x =
x1
2

z =
z1
2

with x1, z1 ∈ coH.

Then
xy + z + i

4
=
x1y + z1 + 2i

8
=
x1y + (0 + z1 + i) + i

8
.

We have 0 ∈ coG by Lemma 6.1 (CoGZero), z1 ∈ coG by Lemma 5.4 (CoH-
ToCoG) and 0+z1+i

4 =: v ∈ coG by Lemma 5.8 (CoGAvcToCoG). Hence we
can continue

=
x1y + 4v + i

8
=

x1y
4 + v + i

4

2
=

x1y+z+j
4 + d

2

with z ∈ coG, j ∈ Sd2 and d ∈ Sd, by Lemma 6.5 (JKU). �

Implicit algorithm. We use w0 for cCoGZero and s for cCoHToCoG.

g(v, i,Lra(u),Lrc(w1)) =

let (j, d, w) = cJKLr(i, c, cCoGAvcToCoG(i, av,−cw1)) in (d, j,−au,w)

g(v, i,Lra(u),U(w1)) =

let (j, d, w) = cJKU(i, cCoGAvcToCoG(i, av, s(w1))) in (d, j,−au,w)

g(v, i,U(u),Lrc(w1)) =

let (j, d, w) = cJKLr(i, c, cCoGAvcToCoG(i, w0,−cw1)) in (d, j, s(u), w)

g(v, i,U(u),U(w1)) =

let (j, d, w) = cJKU(i, cCoGAvcToCoG(i, w0, s(w1))) in (d, j, s(u), w)

Lemma 6.4 (JKLr).

∀nci∈Sd2∀
nc
a∈Psd∀ncv∈coG∃rj∈Sd2∃

r
d∈Sd∃rz∈coG(v +

a+ i

4
=
z + j

4
+ d).

Proof. We distinguish cases on v ∈ coG according to the disjunction in
Lemma 5.1 (CoGClosure).

Case Lrv. Then v = −b0w−12 with w ∈ coG and b0 ∈ Psd.

22 HELMUT SCHWICHTENBERG

Subcase Lrw. Then we can write

v = −b0
w − 1

2
= −b0

−b z−12 − 1

2
with w, z ∈ coG and b0, b ∈ Psd.

Hence

v +
a+ i

4
=
b0bz − b0b+ 2b0 + a+ i

4
.

Using the functions J,K with the JK-property (6) we can write −b0b+2b0+
a+ i as j+4d with j := J(−b0b+2b0 +a+ i) and d := K(−b0b+2b0 +a+ i).
Hence

=
b0bz + j + 4d

4
=
b0bz + j

4
+ d.

Subcase Lrv, Uw. Then we can write

v = −b0
w − 1

2
= −b0

z
2 − 1

2
with w ∈ coG, z ∈ coH and b0 ∈ Psd.

Hence

v +
a+ i

4
=
−b0z + 2b0 + a+ i

4
.

Using the functions J,K with the JK-property (6) we can write 2b0 + a+ i
as j + 4d with j := J(2b0 + a+ i) and d := K(2b0 + a+ i). Hence

=
−b0z + j + 4d

4
=
−b0z + j

4
+ d.

Because of Lemma 5.4 (CoHToCoG) we obtain the required form.
Subcase Uv, Finw. Then we can write

v =
w

2
=
b z+1

2

2
with w ∈ coH, z ∈ coG and b ∈ Psd.

Hence

v +
a+ i

4
=
bz + b+ a+ i

4
.

Using the functions J,K with the JK-property (6) we can write b+ a+ i as
j + 4d with j := J(b+ a+ i) and d := K(b+ a+ i). Hence

=
bz + j + 4d

4
=
bz + j

4
+ d.

Subcase Uv, Dw. Then we can write

v =
w

2
=

z
2

2
with w, z ∈ coH.

Hence

v +
a+ i

4
=
z + a+ i

4
.

LOGIC FOR EXACT REAL ARITHMETIC 23

Using the functions J,K with the JK-property (6) we can write a + i as
j + 4d with j := J(a+ i) and d := K(a+ i). Hence

=
z + j + 4d

4
=
z + j

4
+ d.

Because of Lemma 5.4 (CoHToCoG) we obtain the required form. �

Implicit algorithm. We use s for cCoHToCoG.

g(i, a,Lrb0(Lrb(w))) = (J(−b0b+ 2b0 + a+ i),K(−b0b+ 2b0 + a+ i), b0bw)

g(i, a,Lrb0(U(w))) = (J(2b0 + a+ i),K(2b0 + a+ i),−b0s(w))

g(i, a,U(Lrb(w))) = (J(b+ a+ i),K(b+ a+ i), bw)

g(i, a,U(U(w))) = (J(a+ i),K(a+ i), s(w))

Lemma 6.5 (JKU).

∀nci∈Sd2∀
nc
v∈coG∃rj∈Sd2∃

r
d∈Sd∃rz∈coG(v +

i

4
=
z + j

4
+ d)

Proof. As in the previous lemma we need to consider four subcases, this
time with a missing. In detail: we distinguish cases on v ∈ coG according to
the disjunction in Lemma 5.1 (CoGClosure).

Case Lrv. Then v = −b0w−12 with w ∈ coG and b0 ∈ Psd.
Subcase Lrw. Then we can write

v = −b0
w − 1

2
= −b0

−b z−12 − 1

2
with w, z ∈ coG and b0, b ∈ Psd.

Hence

v +
i

4
=
b0bz − b0b+ 2b0 + i

4
.

Using the functions J,K with the JK-property (6) we can write −b0b+2b0+i
as j + 4d with j := J(−b0b+ 2b0 + i) and d := K(−b0b+ 2b0 + i). Hence

=
b0bz + j + 4d

4
=
b0bz + j

4
+ d.

Subcase Lrv, Uw. Then we can write

v = −b0
w − 1

2
= −b0

z
2 − 1

2
with w ∈ coG, z ∈ coH and b0 ∈ Psd.

Hence

v +
i

4
=
−b0z + 2b0 + i

4
.

24 HELMUT SCHWICHTENBERG

Using the functions J,K with the JK-property (6) we can write 2b0 + i as
j + 4d with j := J(2b0 + i) and d := K(2b0 + i). Hence

=
−b0z + j + 4d

4
=
−b0z + j

4
+ d.

Because of Lemma 5.4 (CoHToCoG) we obtain the required form.
Subcase Uv, Finw. Then we can write

v =
w

2
=
b z+1

2

2
with w ∈ coH, z ∈ coG and b ∈ Psd.

Hence

v +
i

4
=
bz + b+ i

4
.

Using the functions J,K with the JK-property (6) we can write b + i as
j + 4d with j := J(b+ i) and d := K(b+ i). Hence

=
bz + j + 4d

4
=
bz + j

4
+ d.

Subcase Uv, Dw. Then we can write

v =
w

2
=

z
2

2
with w, z ∈ coH.

Hence

v +
i

4
=
z + i

4
.

Using the functions J,K with the JK-property (6) we can write i as j + 4d
with j := J(i) and d := K(i). Hence

=
z + j + 4d

4
=
z + j

4
+ d.

Because of Lemma 5.4 (CoHToCoG) we obtain the required form. �

Implicit algorithm. We use s for cCoHToCoG.

g(i,Lrb0(Lrb(w))) = (J(−b0b+ 2b0 + i),K(−b0b+ 2b0 + i), b0bw)

g(i,Lrb0(U(w))) = (J(2b0 + i),K(2b0 + i),−b0s(w))

g(i,U(Lrb(w))) = (J(b+ i),K(b+ i), bw)

g(i,U(U(w))) = (J(i),K(i), s(w))

By coinduction from Lemma 6.3 (CoGMultcSatCoICl) we obtain

LOGIC FOR EXACT REAL ARITHMETIC 25

Lemma 6.6 (CoGMultcToCoG).

∀ncz0 (∃ri∈Sd2∃
r
x,y,z∈coG(z0 =

xy + z + i

4
)→ z0 ∈ coG),

∀ncz0 (∃ri∈Sd2∃
r
x,y,z∈coG(z0 =

xy + z + i

4
)→ z0 ∈ coH).

Proof. We show Q ⊆ coG simultaneously with Q ⊆ coH. By coinduction it
suffices to prove (i) Q ⊆ Γ(coG∪Q, coH∪Q) and (ii) Q ⊆ ∆(coG∪Q, coH∪Q).
For (i), let z0 ∈ Q. We show z0 ∈ Γ(coG ∪Q, coH ∪Q):

(12) ∃rz∈coG∪Q∃ra∈Psd(z0 = −az − 1

2
) ∨ ∃rz∈coH∪Q(z0 =

z

2
).

Lemma 6.3 applied to z0 ∈ Q gives us x1, y1, z1 ∈ coG and i1, d1 such that

z0 =
x1y1+z1+i1

4 + d1

2
.

Case d1 = 0. Go for the right hand side of (12) with z := (x1y1+z1+i1)/4 ∈
Q. Case d1 = ±1. Go for the left hand side of (12) with a := d1 and
z := (−ax1y1 − az1 − ai1)/4 ∈ Q. Then

−az − 1

2
= −a4z − 4

8
=
x1y1 + z1 + i1 + 4a

8
= z0.

This finishes the proof of (i). The proof of (ii) is similar, and we omit it. �

Implicit algorithm.

g(i, u, u′, u′′) = let (d, j, u1, u
′
1) = cCoGMultcSatCoICl(u′, i, u, u′′) in

case cSdDisj(d) of

0→ U(h(j, u1, u
′, u′1))

a→ Lra(g(−aj, u1, f∗(−a, u′), f∗(−a, u′1))),

h(i, u, u′, u′′) = let (d, j, u1, u
′
1) = cCoGMultcSatCoICl(u′, i, u, u′′) in

case cSdDisj(d) of

0→ D(h(j, u1, u
′, u′1))

a→ Fina(g(aj, u1, f
∗(a, u′), f∗(a, u′1))).

Proposition 6.7 (CoGMult).

∀ncx,y(x ∈ coG→ y ∈ coG→ xy ∈ coG).

Proof. Compose Lemmata 6.2 and 6.6. �

26 HELMUT SCHWICHTENBERG

7. Formalization and extraction for signed digits

All proofs in the previous sections have been formalized in the proof
assistant Minlog. The formalization closely follows the informal proofs, and
is not spelled out in detail here3. We present the realizers machine extracted
from the formalized proofs and discuss the algorithms they represent. They
involve recursion and corecursion operators where the original proofs used
induction or coinduction axioms, and the conversion rules for these operators
determine how the extracted terms can be used as programs. The results of
such an analysis have been shown in the previous sections under the label
“implicit algorithm”.

7.1. Corecursion. Recall the type of the corecursion operator for I:

(13) coRτI : τ → (τ → Sd× (I + τ))→ I.

The type Sd× (I + τ) appears since I has the single constructor C of type
Sd→ I→ I. The meaning of coRτINM is defined by the conversion rule

coRτINM 7→ Cπ1(MN)([id
I→I, λy(

coRτIyM)]π2(MN)).

We have used π1, π2 for the two projections of type ρ× σ, and the notation
[f, g] : ρ+ σ → τ (for f : ρ→ τ and g : σ → τ) defined by

[f, g](z) :=

{
f(x) if z = inl(x),

g(y) if z = inr(y).

7.2. Notational conventions of Minlog. Types:

iv base type for the algebra I

rho=>sigma function type

rho yprod sigma product type

rho ysum sigma sum type

Variables (with fixed types)

d, e of type Z
v of type I

dv of type Sd× I

ivw of type Sd2 × I× I

3See http://www.minlog-system.de/, which gives instructions on how to download (or
clone) the system and the necessary software (Scheme in this case). The formalizations
can be found in the directory minlog/examples/analysis/grayrealeq.scm.

LOGIC FOR EXACT REAL ARITHMETIC 27

viuw of type I× Sd2 × I× I

diuw of type Sd× Sd2 × I× I

If for a given type no specific variable names are provided, Minlog uses the
name of the type as default variable name. For instance, ag and ah are
variable names for the types G and H, respectively. Constants

Rec, CoRec recursion, corecursion

DesYprod destructor for products

cL realizer for lemma L

Terms

[x]r lambda abstraction λxr

r pair s product term

clft r, crht r components (prefix, binding strongest)

InL, InR injections into a sum type

[v,v0][let ivw

(IntToSdtwo(SdToInt clft(cCoIClosure v)+

SdToInt clft(cCoIClosure v0))pair

crht(cCoIClosure v)pair crht(cCoIClosure v0))

((CoRec sdtwo yprod iv yprod iv=>iv)ivw

([ivw0][let jdvw

(IntToSdtwo

(J(SdToInt clft(cCoIClosure clft crht ivw0)+

SdToInt clft(cCoIClosure crht crht ivw0)+

SdtwoToInt clft ivw0*2))pair

IntToSd

(K(SdToInt clft(cCoIClosure clft crht ivw0)+

SdToInt clft(cCoIClosure crht crht ivw0)+

SdtwoToInt clft ivw0*2))pair

crht(cCoIClosure clft crht ivw0)pair

crht(cCoIClosure crht crht ivw0))

(clft crht jdvw pair

InR(clft jdvw pair crht crht jdvw))]))]

Figure 3. Extracted term for CoIAverage.

28 HELMUT SCHWICHTENBERG

7.3. Average for signed digit streams. We analyze the term in Figure 3
extracted from CoIAverage. First the arguments v, v0 are destructed into
their components (d, v), (e, w) and from these the triple ivw := (d+e, v, w) is
formed, which is the first argument N of the corecursion operator. The step
function M , when applied to an argument ivw0 of type τ = Sd2 × I × I,
operates as follows. It destructs ivw0 into the form (i, (d, v), (e, w)), and
builds jdvw as the quadruple (J(d + e + 2i),K(d + e + 2i), v, w). Then it
returns d (the first digit), and continues with a corecursive call to (j, v, w).

[v,v0][let viuw (cCoIMultToMultc v v0)

((CoRec iv yprod sdtwo yprod iv yprod iv=>iv)viuw

([viuw0][let diuw

(cCoIMultcSatCoICl clft viuw0 crht viuw0)

(clft diuw pair

InR(clft viuw0 pair crht diuw))]))]

Figure 4. Extracted term for CoIMult.

[v,v0][let dv (cCoIClosure

(cCoIAverage

(cCoISdTimes clft(cCoIClosure v0)crht(cCoIClosure v))

(cCoISdTimes clft(cCoIClosure v)crht(cCoIClosure v0))))

(crht(cCoIClosure v0)pair

cIntPlusSdToSdtwo clft dv(cIntTimesSdToSd

clft(cCoIClosure v)

clft(cCoIClosure v0))pair

crht(cCoIClosure v)pair

crht dv)]

Figure 5. Extracted term for CoIMultToMultc.

7.4. Multiplication for signed digit streams. We analyze the term in
Figure 4 extracted from CoIMult. First the arguments v, v0 are destruc-
ted into their components (d, v), (e, w) and from these the initial quadru-

ple viuw is formed such that xy+z+i
4 is the product of the inputs, with

u, v, w representing x, y, z. This is done by Lemma 4.4 (CoIMultToMultc)
whose extracted term is shown in Figure 5. It is here where the we make
use of Proposition 3.5 (CoIAverage), whose extracted term shows up as

LOGIC FOR EXACT REAL ARITHMETIC 29

[v,ivw]

[let dv (cCoIClosure clft crht ivw)

[let dv0 (cCoIClosure crht crht ivw)

[let vde [let dv1 (cCoIClosure

(cCoIAvcToCoI(clft ivw pair

crht dv0 pair

cCoISdTimes clft dv v)))

(crht(cCoIClosure crht dv1)pair

clft(cCoIClosure crht dv1)pair

clft dv1)]

(IntToSd(K(SdToInt clft crht vde+

2*SdToInt crht crht vde+

SdToInt clft dv0+

SdtwoToInt clft ivw))pair

IntToSdtwo(J(SdToInt clft crht vde+

2*SdToInt crht crht vde+

SdToInt clft dv0+

SdtwoToInt clft ivw))pair

crht dv pair

clft vde)]]]

Figure 6. Extracted term for CoIMultcSatCoICl.

cCoIAverage. This initial quadruple is the first argument N of the core-
cursion operator in Figure 4. The step function M , when applied to an
argument viuw0 of type τ = I×Sd2× I× I, operates as follows. Let viuw0
represent (y, i, x, z). Destruct x, z and build (i, (d1, x1), y, (d0, z0)). Then
z0+d1y+i

4 ∈ coI by Lemma 3.4 (CoIAvcToCoI), hence can be destructed into
(e0, (e, z2)). This is done via Lemma 4.5 (CoIMultcSatCoICl), which yields a
quadruple (d, j, u, w) with d := K(e+2e0+d0+i) and j := J(e+2e0+d0+i).
Then it returns d (the first digit), and continues with a corecursive call to
(j, u, w). The way CoIMultcSatCoICl operates can be seen from its ex-
tracted term in Figure 6. Note that it essentially relies on Proposition 3.5
(CoIAverage) again, since it calls its main auxiliary Lemma 3.3 (CoIAvc-
SatCoICl).

8. Formalization and extraction for Gray code

We extend what was done in Section 7 for Gray code. Here we essentially
restrict ourselves to a display of the extracted terms.

30 HELMUT SCHWICHTENBERG

8.1. Simultaneous corecursion. We will now need the simultaneous core-
cursion operators coR(G,H),(σ,τ)

G and coR(G,H),(σ,τ)
H for G, H, of type

coR(G,H),(σ,τ)
G : σ → δG → δH → G

coR(G,H),(σ,τ)
H : τ → δG → δH → H

(14)

with step types

δG := σ → B× (G + σ) + (H + τ),

δH := τ → B× (G + σ) + (H + τ).

The type B× (G + σ) + (H + τ) appears since G has the two constructors
Lr : B→ G→ G and U: H→ G, and H has the two constructors Fin: B→
G → H and D: H → H. Omitting the upper indices of coR, the terms
coRGNMM ′ and coRHN

′MM ′ are defined by the conversion rules

coRGNMM ′ 7→

{
Lrπ1(u)([id, λy(

coRGyMM ′)]π2(u)) if MN = inl(u)

U([id, λz(
coRHzMM ′)]v) if MN = inr(v)

coRHN
′MM ′ 7→

{
Finπ1(u)([id, λy(

coRGyMM ′)]π2(u)) if M ′N ′ = inl(u)

D([id, λz(
coRHzMM ′)]v) if M ′N ′ = inr(v)

8.2. Notational conventions of Minlog (continued). Types:

ag, ah base types for the algebras G, H

Variables (with fixed types)

btgh of type B×G + H

bg of type B×G

gg of type G×G

igg of type Sd2 ×G×G

dgg of type Sd×G×G

jdgg of type Sd2 × Sd×G×G

idg of type Sd2 × Sd×G

iggg of type Sd2 ×G×G×G

djgg of type Sd× Sd2 ×G×G

LOGIC FOR EXACT REAL ARITHMETIC 31

8.3. Average for pre-Gray code. From the proof of Lemma 5.3 (CoGU-
Minus) we obtain the extracted term shown in Figure 7. It uses the simulta-

neous corecursion operators coR(G,H),(σ,τ)
G , coR(G,H),(σ,τ)

H . By analyzing the
particular step functions M,M ′ extracted from our proof we see that we can
write λy

coRGyMM ′ and λz
coRHzMM ′ as the two functions f : σ → G and

f ′ : τ → H shown as informal algorithm in Section 5.3. Note that the con-
tent cCoHCompat of Lemma CoHCompat : ∀ncx,y(x = y → x ∈ coH → y ∈ coH)
is (essentially) the identity and can be ignored. – An easy consequence of
Lemma 5.3 (CoGUMinus) is a lemma CoGPsdTimes : ∀ncx,d(x ∈ coG → d ∈
Psd → xd ∈ coG) whose extracted term in shown in Figure 8. Here again
cCoGCompat is the identity and can be ignored.

Another consequence of CoGUMinus was the equivalence of coG and coH
proved in Lemma 5.4 (CoHToCoG); its extracted term is shown in Figure 9.
Its operation clearly is described by the informal algorithm above.

Next Lemma 5.6 (CoGAvToAvc) gives us the term in Figure 10. Again
its operation is described by the informal algorithm above.

For Lemma 5.7 (CoGAvcSatCoICl) we get the term in Figure 11, opera-
tion is described by the informal algorithm above.

By coinduction from Lemma 5.7 we obtained Lemma 5.8 (CoGAvcToCoG),
whose extracted term is shown in Figure 12. It clearly describes the implicit
algorithm above, using the Lemma SdDisj: ∀ncd∈Sd(d = 0 ∨r ∃ra∈Psd(d = a)).

Finally for Proposition 5.9 (CoGAverage) we just need to compose the
extracted terms for Lemma 5.6 (CoGAvToAvc) and Lemma 5.8 (CoGAvc-
ToCoG). The extracted term is

[ag,ag0]cCoGAvcToCoG(cCoGAvToAvc ag ag0).

8.4. Multiplication for pre-Gray code. Here we restrict ourselves to
just printing the extracted terms.

References

[1] U. Berger, K. Miyamoto, H. Schwichtenberg, and H. Tsuiki. Logic for Gray-code com-
putation. In D. Probst and P. Schuster, editors, Concepts of Proof in Mathematics,
Philosophy, and Computer Science, pages 69–110. De Gruyter, 2016.

[2] U. Berger and M. Seisenberger. Proofs, programs, processes. In F. Ferreira et al.,
editors, Proceedings CiE 2010, volume 6158 of LNCS, pages 39–48. Springer Verlag,
Berlin, Heidelberg, New York, 2010.

[3] E. Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
[4] E. Bishop and D. Bridges. Constructive Analysis, volume 279 of Grundlehren der

mathematischen Wissenschaften. Springer Verlag, Berlin, Heidelberg, New York,
1985.

32 HELMUT SCHWICHTENBERG

[5] A. Ciaffaglione and P. D. Gianantonio. A certified, corecursive implementation of
exact real numbers. Theoretical Computer Science, 351:39–51, 2006.

[6] P. D. Gianantonio. An abstract data type for real numbers. Theoretical Computer
Science, 221(1-2):295–326, 1999.

[7] K. Miyamoto and H. Schwichtenberg. Program extraction in exact real arithmetic.
Mathematical Structures in Computer Science, 25:1692–1704, 2015.

[8] H. Schwichtenberg and S. S. Wainer. Proofs and Computations. Perspectives in Logic.
Association for Symbolic Logic and Cambridge University Press, 2012.

[9] H. Tsuiki. Real number computation through Gray code embedding. Theoretical
Computer Science, 284:467–485, 2002.

[10] T. Überrück Fries. Program extraction for exact real numbers: Stream multiplication.
Bachelorarbeit, Mathematisches Institut der LMU, 2016.

[ag](CoRec ag=>ag ah=>ah)ag

([ag0][case (DesYprod ag0)

(InL bg -> [case bg (boole pair ag1 ->

InL(cPsdUMinus boole pair InL ag1))])

(InR ah -> InR(InR(cCoHCompat ah)))])

([ah][case (cCoHClosure ah)

(InL bg -> [case bg (boole pair ag0 ->

InL(cPsdUMinus boole pair InL ag0))])

(InR ah0 -> InR(InR(cCoHCompat ah0)))])

Figure 7. Extracted term for CoGUMinus.

[ag,boole][if boole

(cCoGCompat ag)

(cCoGCompat(cCoGUMinus(cCoGCompat(cCoGCompat ag))))]

Figure 8. Extracted term for CoGPsdTimes.

LOGIC FOR EXACT REAL ARITHMETIC 33

[ah](CoRec ah=>ag ag=>ah)ah

([ah0][case (DesYprod ah0)

(InL bg -> InL(clft bg pair

InL(cCoGUMinus(cCoGCompat crht bg))))

(InR ah1 -> InR(InL ah1))])

([ag][case (DesYprod ag)

(InL bg -> InL(clft bg pair

InL(cCoGUMinus(cCoGCompat crht bg))))

(InR ah0 -> InR(InL ah0))])

Figure 9. Extracted term for CoHToCoG.

[ag,ag0][case (DesYprod ag)

(InL bg -> [case (DesYprod ag0)

(InL bg0 ->

cIntPlusPsdToSdtwo clft bg clft bg0 pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

cCoGPsdTimes crht bg0(cPsdUMinus clft bg0))

(InR ah ->

cPsdToSdtwo clft bg pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair cCoHToCoG ah)])

(InR ah -> [case (DesYprod ag0)

(InL bg ->

cPsdToSdtwo clft bg pair

cCoHToCoG ah pair cCoGPsdTimes crht bg(cPsdUMinus clft bg))

(InR ah0 -> MT pair cCoHToCoG ah pair cCoHToCoG ah0)])]

Figure 10. Extracted term for CoGAvToAvc.

34 HELMUT SCHWICHTENBERG

[sdtwo,ag,ag0][case (DesYprod ag)

(InL bg -> [case (DesYprod ag0)

(InL bg0 -> IntToSdtwo(J(BooleToInt clft bg+

BooleToInt clft bg0+

SdtwoToInt sdtwo*2))pair

IntToSd(K(BooleToInt clft bg+

BooleToInt clft bg0+

SdtwoToInt sdtwo*2))pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

cCoGPsdTimes crht bg0(cPsdUMinus clft bg0))

(InR ah -> cSdtwoPsdToSdtwoJ sdtwo clft bg pair

cSdtwoPsdToSdK sdtwo clft bg pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

cCoHToCoG ah)])

(InR ah -> [case (DesYprod ag0)

(InL bg -> cSdtwoPsdToSdtwoJ sdtwo clft bg pair

cSdtwoPsdToSdK sdtwo clft bg pair

cCoHToCoG ah pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg))

(InR ah0 -> cSdtwoToSdtwoJ sdtwo pair

cSdtwoToSdK sdtwo pair

cCoHToCoG ah pair

cCoHToCoG ah0)])]

Figure 11. Extracted term for CoGAvcSatCoICl.

LOGIC FOR EXACT REAL ARITHMETIC 35

[igg](CoRec sdtwo yprod ag yprod ag=>ag

sdtwo yprod ag yprod ag=>ah)igg

([igg0][let jdgg

(cCoGAvcSatCoICl clft igg0 clft crht igg0 crht crht igg0)

[case (cSdDisj clft crht jdgg)

(DummyL -> InR(InR(clft jdgg pair crht crht jdgg)))

(Inr boole -> InL(boole pair InR

(cIntTimesSdtwoPsdToSdtwo clft jdgg(cPsdUMinus boole)pair

cCoGPsdTimes clft crht crht jdgg(cPsdUMinus boole)pair

cCoGPsdTimes crht crht crht jdgg(cPsdUMinus boole))))]])

([igg0][let jdgg

(cCoGAvcSatCoICl clft igg0 clft crht igg0 crht crht igg0)

[case (cSdDisj clft crht jdgg)

(DummyL -> InR(InR(clft jdgg pair crht crht jdgg)))

(Inr boole ->

InL(boole pair InR

(cIntTimesSdtwoPsdToSdtwo clft jdgg boole pair

cCoGPsdTimes clft crht crht jdgg boole pair

cCoGPsdTimes crht crht crht jdgg boole)))]])

Figure 12. Extracted term for CoGAvcToCoG.

36 HELMUT SCHWICHTENBERG

[ag,ag0][case (DesYprod ag)

(InL bg -> [case (DesYprod ag0)

(InL bg0 -> [case (DesYprod(cCoGAverage

(cCoGPsdTimes crht bg

(cPsdUMinus(cIntTimesPsdToPsd clft bg clft bg0)))

(cCoGPsdTimes crht bg0

(cPsdUMinus(cIntTimesPsdToPsd clft bg clft bg0)))))

(InL bg1 ->

cIntPlusPsdToSdtwo

clft bg1(cIntTimesPsdToPsd clft bg clft bg0)pair

cCoGPsdTimes crht bg clft bg pair

cCoGPsdTimes crht bg0 clft bg0 pair

cCoGPsdTimes crht bg1(cPsdUMinus clft bg1))

(InR ah ->

cPsdToSdtwo(cIntTimesPsdToPsd clft bg clft bg0)pair

cCoGPsdTimes crht bg clft bg pair

cCoGPsdTimes crht bg0 clft bg0 pair

cCoHToCoG ah)])

(InR ah -> MT pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

cCoHToCoG ah pair

cCoGPsdTimes(cCoHToCoG ah)clft bg)])

(InR ah -> [case (DesYprod ag0)

(InL bg -> MT pair

cCoHToCoG ah pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

cCoGPsdTimes(cCoHToCoG ah)clft bg)

(InR ah0 -> MT pair

cCoHToCoG ah pair

cCoHToCoG ah0 pair

cCoGZero)])]

Figure 13. Extracted term for CoGMultToMultc.

LOGIC FOR EXACT REAL ARITHMETIC 37

[sdtwo,boole,ag]

[case (DesYprod ag)

(InL bg -> [case (DesYprod crht bg)

(InL bg0 -> IntToSdtwo(J(~(BooleToInt clft bg0*

BooleToInt clft bg)+

2*BooleToInt clft bg+

BooleToInt boole+

SdtwoToInt sdtwo))pair

IntToSd(K(~(BooleToInt clft bg0*

BooleToInt clft bg)+

2*BooleToInt clft bg+

BooleToInt boole+

SdtwoToInt sdtwo))pair

cCoGPsdTimes(cCoGPsdTimes crht bg0 clft bg0)

clft bg)

(InR ah -> IntToSdtwo(J(2*BooleToInt clft bg+

BooleToInt boole+

SdtwoToInt sdtwo))pair

IntToSd(K(2*BooleToInt clft bg+

BooleToInt boole+

SdtwoToInt sdtwo))pair

cCoGPsdTimes(cCoHToCoG ah)

(cPsdUMinus clft bg))])

(InR ah -> [case (DesYprod ah)

(InL bg -> IntToSdtwo(J(BooleToInt clft bg+

BooleToInt boole+

SdtwoToInt sdtwo))pair

IntToSd(K(BooleToInt clft bg+

BooleToInt boole+

SdtwoToInt sdtwo))pair

cCoGPsdTimes crht bg clft bg)

(InR ah0 -> IntToSdtwo(J(BooleToInt boole+

SdtwoToInt sdtwo))pair

IntToSd(K(BooleToInt boole+

SdtwoToInt sdtwo))pair

cCoHToCoG ah0)])]

Figure 14. Extracted term for JKLr.

38 HELMUT SCHWICHTENBERG

[sdtwo,ag][case (DesYprod ag)

(InL bg -> [case (DesYprod crht bg)

(InL bg0 -> IntToSdtwo(J(~(BooleToInt clft bg0*

BooleToInt clft bg)+

2*BooleToInt clft bg+

SdtwoToInt sdtwo))pair

IntToSd(K(~(BooleToInt clft bg0*

BooleToInt clft bg)+

2*BooleToInt clft bg+

SdtwoToInt sdtwo))pair

cCoGPsdTimes

(cCoGPsdTimes crht bg0 clft bg0)clft bg)

(InR ah -> IntToSdtwo(J(2*BooleToInt clft bg+

SdtwoToInt sdtwo))pair

IntToSd(K(2*BooleToInt clft bg+

SdtwoToInt sdtwo))pair

cCoGPsdTimes(cCoHToCoG ah)

(cPsdUMinus clft bg))])

(InR ah -> [case (DesYprod ah)

(InL bg -> IntToSdtwo(J(BooleToInt clft bg+

SdtwoToInt sdtwo))pair

IntToSd(K(BooleToInt clft bg+

SdtwoToInt sdtwo))pair

cCoGPsdTimes crht bg clft bg)

(InR ah0 -> IntToSdtwo(J(SdtwoToInt sdtwo))pair

IntToSd(K(SdtwoToInt sdtwo))pair

cCoHToCoG ah0)])]

Figure 15. Extracted term for JKU.

LOGIC FOR EXACT REAL ARITHMETIC 39

[ag,sdtwo,ag0,ag1][case (DesYprod ag0)

(InL bg -> [case (DesYprod ag1)

(InL bg0 -> [let idg (cJKLr sdtwo clft bg0

(cCoGAvcToCoG(sdtwo pair

cCoGPsdTimes ag clft bg pair

cCoGPsdTimes crht bg0(cPsdUMinus clft bg0))))

(clft crht idg pair

clft idg pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

crht crht idg)])

(InR ah -> [let idg

(cJKU sdtwo

(cCoGAvcToCoG(sdtwo pair

cCoGPsdTimes ag clft bg pair

cCoHToCoG ah)))

(clft crht idg pair

clft idg pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg)pair

crht crht idg)])])

(InR ah -> [case (DesYprod ag1)

(InL bg -> [let idg (cJKLr sdtwo clft bg

(cCoGAvcToCoG(sdtwo pair

cCoGZero pair

cCoGPsdTimes crht bg(cPsdUMinus clft bg))))

(clft crht idg pair

clft idg pair

cCoHToCoG ah pair

crht crht idg)])

(InR ah0 -> [let idg

(cJKU sdtwo(cCoGAvcToCoG(sdtwo pair

cCoGZero pair

cCoHToCoG ah0)))

(clft crht idg pair

clft idg pair

cCoHToCoG ah pair

crht crht idg)])])]

Figure 16. Extracted term for CoGMultcSatCoICl.

40 HELMUT SCHWICHTENBERG

[iggg](CoRec sdtwo yprod ag yprod ag yprod ag=>ag

sdtwo yprod ag yprod ag yprod ag=>ah)iggg

([iggg0][let djgg (cCoGMultcSatCoICl

clft crht crht iggg0 clft iggg0

clft crht iggg0 crht crht crht iggg0)

[case (cSdDisj clft djgg)

(DummyL -> InR(InR(clft crht djgg pair

clft crht crht djgg pair

clft crht crht iggg0 pair

crht crht crht djgg)))

(Inr boole -> InL(boole pair

InR(cIntTimesSdtwoPsdToSdtwo

clft crht djgg(cPsdUMinus boole)pair

clft crht crht djgg pair

cCoGPsdTimes clft crht crht iggg0

(cPsdUMinus boole)pair

cCoGPsdTimes crht crht crht djgg

(cPsdUMinus boole))))]])

([iggg0][let djgg (cCoGMultcSatCoICl

clft crht crht iggg0 clft iggg0

clft crht iggg0 crht crht crht iggg0)

[case (cSdDisj clft djgg)

(DummyL -> InR(InR(clft crht djgg pair

clft crht crht djgg pair

clft crht crht iggg0 pair

crht crht crht djgg)))

(Inr boole -> InL(boole pair

InR(cIntTimesSdtwoPsdToSdtwo clft crht djgg boole pair

clft crht crht djgg pair

cCoGPsdTimes clft crht crht iggg0 boole pair

cCoGPsdTimes crht crht crht djgg boole)))]])

Figure 17. Extracted term for CoGMultcToCoG.

