A direct proof of the equivalence between Brouwer's fan theorem and König's lemma with a uniqueness hypothesis

Helmut Schwichtenberg

Dedicated to Douglas Bridges on the occasion of his 60's birthday

Abstract

From results of Ishihara it is known that the weak (that is, binary) form of König's lemma (WKL) implies Brouwer's fan theorem (Fan). Moreover, Berger and Ishihara [MLQ 2005] have shown that a weakened form WKL! of WKL, where as an additional hypothesis it is required that in an effective sense infinite paths are unique, is equivalent to Fan. The proof that WKL! implies Fan is done explicitely. The other direction (Fan implies WKL!) is far less directly proved; the emphasis is rather to provide a fair number of equivalents to Fan, and to do the proofs economically by giving a circle of implications. Here we give a direct construction. Moreover, we go one step further and formalize the equivalence proof (in the Minlog proof assistant). Since the statements of both Fan and WKL! have computational content, we can automatically extract terms from the two proofs. It turns out that these terms express in a rather perspicuous way the informal constructions.

1 Introduction

In the framework of Bishop's constructive mathematics [4], Douglas Bridges and Fred Richman proved in [5] the equivalence of Brouwer's fan theorem with some other propositions, among them a positivity property, namely that every positively valued uniformly continuous function on [0,1] has a positive infimum. More recently, many other equivalents of the fan theorem have been found, most of them involving an effective uniqueness condition for potential solutions [1, 2].

From the results of [6] it is known that the weak (that is, binary) form of König's lemma (WKL for short) implies Brouwer's fan theorem (Fan for short); see below for precise formulations of these statements. Moreover, a direct proof of this implication has been given by Ishihara in 2002 (to appear in [7]). In [2], it is shown that a weakened form of WKL, where as an additional hypothesis it is required that in an effective sense infinite paths are unique, is equivalent to Fan.

Here we give a direct proof of the equivalence of Fan with WKL!. One direction (WKL! implies Fan) is essentially the proof in [7], enhanced by the additional requirement that the tree extension to be constructed satisfies the effective uniqueness condition (as in [2]). The other direction (Fan implies WKL!) is far less directly proved in [2], where the emphasis rather was to provide a fair number of equivalents to Fan, and to do the proof economically by giving a circle of implications. Hence it might be of interest to see a direct construction.

Moreover, in the appendix we go one step further and formalize the equivalence proof (in the Minlog proof assistant). Since the formulation of both Fan and WKL! has computational content (of types τ_F and τ_K , say), we can extract from the two proofs two terms t_{FK} and t_{KF} (of types $\tau_F \to \tau_K$ and $\tau_K \to \tau_F$, respectively). It turns out that both extracted terms express in a rather perspicuous way the informal constructions.

2 Basic definitions

Let N be the type of natural numbers, B the type of booleans tt, ff and L(B) the type of lists of booleans. It is convenient to write lists in reverse order, that is, add elements at the end. We fix the types of some variables and state their intended meaning:

a, b, c	of type $\mathbf{L}(\mathbf{B})$	for nodes,
r,s,t	of type $\mathbf{L}(\mathbf{B}) \to \mathbf{B}$	for decidable sets of nodes,
as, bs, cs	of type $\mathbf{N} \to \mathbf{L}(\mathbf{B})$	for sequences of nodes,
f,g,h	of type $\mathbf{N} \to \mathbf{B}$	for paths,
n,m,k,i,j	of type \mathbf{N}	for natural numbers,
p,q	of type ${f B}$	for booleans,
ns,ms,ks	of type $\mathbf{N} \to \mathbf{N}$	for sequences of natural numbers.

Let |a| be the *length* of a. Let $\bar{a}(n)$ denote the initial segment of a of length n, if $n \leq |a|$, and a otherwise. Similarly let $\bar{f}(n)$ denote the initial segment of f of length n, that is, the list $:f(0) :: f(1) \cdots :: f(n-1)$. Let $(a)_n$ denote the *n*-th element of a, if n < |a|, and the otherwise. Clearly

$$|a| = n + 1 \to \overline{a}(n) :: (a)_n = a, \tag{1}$$

$$n < m < |a| \to \bar{a}(m)(n) = \bar{a}(n).$$

$$\tag{2}$$

We will also need to deal with lists of pairs of booleans, using variables

bc	of type $\mathbf{L}(\mathbf{B} \times \mathbf{B})$	for pair nodes,
ss	of type $\mathbf{L}(\mathbf{B} \times \mathbf{B}) \to \mathbf{B}$	for decidable sets of pair nodes,
gh	of type $\mathbf{N} \to \mathbf{B} \times \mathbf{B}$	for paths, w.r.t. pair nodes,
pq	of type ${\bf B} \times {\bf B}$	for pairs of booleans.

To switch from $\mathbf{L}(\mathbf{B} \times \mathbf{B})$ to $\mathbf{L}(\mathbf{B})$ and back we use Zip and Unzip:

$$\begin{split} \operatorname{Zip}(bc :: pq) &:= \operatorname{Zip}(bc) :: \operatorname{Lft}(pq) :: \operatorname{Rht}(pq), \quad \operatorname{Zip}(\operatorname{Nil}) := \operatorname{Nil}\\ \operatorname{Unzip}(n+1, a :: p :: q) &:= \operatorname{Unzip}(n, a) :: (p, q),\\ \operatorname{Unzip}(n+1, :p) &:= \operatorname{Unzip}(n+1, \operatorname{Nil}) := \operatorname{Unzip}(0, a) := \operatorname{Nil}. \end{split}$$

Here Lft, Rht: $\mathbf{B} \times \mathbf{B}$ denote the two projections. When in a context containing gh we use g or h, we mean Lft $\circ gh$ or Rht $\circ gh$. Using this notation, for $\mathbf{N} \to \mathbf{B} \times \mathbf{B}$ and $\mathbf{N} \to \mathbf{B}$ we similarly define Fzip and Funzip, by

$$Fzip(gh, 2i) := g(i), \quad Fzip(gh, 2i+1) := h(i),$$

Funzip(f, i) := (f(2i), f(2i+1)).

Clearly Fzip(Funzip(f)) = f and Funzip(Fzip(gh)) = gh. Moreover,

$$\text{Unzip}(|bc|, \text{Zip}(bc)) = bc, \tag{3}$$

$$|\operatorname{Zip}(bc)| = 2|bc|,\tag{4}$$

$$\operatorname{Zip}(\operatorname{Funzip}(f)(m)) = \overline{f}(2m).$$
(5)

f is a path in t if all its initial segments $\bar{f}(n)$ are in t. Call t infinite if for every n there is a node of length n in t. Call t a tree if it is downwards closed, i.e., $\forall_a \forall_{n \leq |a|} . a \in t \rightarrow \bar{a}(n) \in t$. Call s a bar if each path hits s, that is, $\forall_f \exists_m \bar{f}(m) \in s$. Call s a uniform bar if, for some k, each path hits sbefore k, that is, $\exists_k \forall_f \exists_{m \leq k} \bar{f}(m) \in s$. We say that t has at most one path if it satisfies the following effective uniqueness condition:

EffUniq_t: for any g, h and n with $\bar{g}(n) \neq h(n)$, there is an m such that it is impossible that both $\bar{g}(m)$ and $\bar{h}(m)$ are in t.

We can now formulate the two statements whose equivalence we prove:

Fan: Every bar is uniform.

WKL!: Every infinite tree with at most one path has a path.

3 WKL! implies Fan

Let s be given and assume $\operatorname{Bar}(s)$: $\forall_f \exists_m \bar{f}(m) \in s$. We need to construct a uniform bound, that is, some k such that each path hits s before k, that is, $\forall_f \exists_{m \leq k} \bar{f}(m) \in s$. Let $r := \{ a \mid \exists_{n \leq |a|} \bar{a}(n) \in s \}$ be the upwards closure of s.

Call n big if every node of length n is in r. It suffices to construct a big k.

We extend the complement of r to an infinite tree t satisfying EffUniq_t, so that WKL! can be applied. The idea is that for r finite we extend the leftmost of its longest nodes by tt's.

More precisely, we define the extension t as follows. A node b belongs to t if if it is not in r. If it is, check whether its length |b| is big. If not, b is not in t. If it is big, let k be such that k + 1 is big but k is not.

k+1: + + + + + + + k: + + a

Let a be the unique node such that on its length k to the left of a there are only nodes in r, but a itself is not in r. Then b is in t iff it is the extension of a by tt's to the length of b. So

$$t := \{ b \mid b \in r \to \operatorname{Big}(|b|) \land b = a :: \operatorname{tt} \cdots :: \operatorname{tt} \}$$

We show that t is infinite. So let n be given. If n is big, let a be as above. Then $a :: tt \cdots :: tt$ of length n is in t. If n is not big, an arbitrary node b of length n that is not in r is in t.

We show that t is a tree. So let $b \in t$, $n \leq |b|$; we must show $\bar{b}(n) \in t$. So assume $\bar{b}(n) \in r$. Then also $b \in r$, because r is upwards closed. Hence |b| is big and $b = a :: tt \cdots :: tt$. By definition of t, any initial segment of b is in t.

We show that t satisfies EffUniq_t. Consider g, h, n such that $\bar{g}(n) \neq h(n)$. Since every path hits s, there is an $m \geq n$ such that $\bar{g}(m), \bar{h}(m)$ both are in its upwards closure r. Assume for contradiction that both are in t. Then by construction of t both are of the form $a :: \text{tt} \cdots :: \text{tt}$ and of the same length, hence equal, and therefore also $\bar{g}(n) = \bar{h}(n)$. This is the desired contradiction.

Now WKL! gives a path f in t. It must hit the bar s, hence r, and at this length we have the desired big k.

4 Fan implies WKL!

Given an infinite tree t satisfying EffUniqt, we construct a path in t.

We derive from Fan a related auxiliary proposition PFan, referring to pair nodes. Using PFan, from EffUniq_t we can prove

FanBound_t: For every n there is a $k \ge n$ such that for all b, c of length k and in t we have $\bar{b}(n) = \bar{c}(n)$,

From FanBound_t we then easily construct a path in t.

4.1 Fan implies PFan

From Fan we want to prove

PFan:
$$\forall_n \forall_{ss}. (\forall_{bc} \forall_{n \leq |bc|}. \overline{bc}(n) \in ss \to bc \in ss) \to (\forall_{gh}. \overline{g}(n) \neq \overline{h}(n) \to \exists_m \overline{gh}(m) \in ss) \to \exists_k \forall_{gh}. \overline{g}(n) \neq \overline{h}(n) \to \overline{gh}(k) \in ss.$$

Given n, ss. Assume Upclosed_{ss}: $\forall_{bc} \forall_{n \leq |bc|} . \overline{bc}(n) \in ss \to bc \in ss$ and Bar_{ss}: $\forall_{qh} . \overline{g}(n) \neq \overline{h}(n) \to \exists_m \overline{gh}(m) \in ss.$ To construct: k. We use Fan for

$$s_n := \{ a \mid \forall_{i < n} . (a)_{2i} \neq (a)_{2i+1} \rightarrow \operatorname{Unzip}(\lfloor |a|/2 \rfloor, a) \in ss \}.$$

We need to show that every path f hits s_n . Let f be given.

Case f(2i) = f(2i+1) for all i < n. Then

$$(f(2n))_{2i} = f(2i) = f(2i+1) = (f(2n))_{2i+1}$$

for all i < n, hence $f(2n) \in s_n$.

Case $f(2i) \neq f(2i+1)$ for some i < n. Then $\operatorname{Funzip}(f)$ is some gh with $\bar{g}(n) \neq \bar{h}(n)$, for

$$(\bar{g}(n))_i = g(i) = (\text{Lft} \circ \text{Funzip}(f))(i) = f(2i),$$

$$(\bar{h}(n))_i = h(i) = (\text{Rht} \circ \text{Funzip}(f))(i) = f(2i+1)$$

By Bar_{ss} we can find an m such that $bc := \operatorname{Funzip}(f)(m) \in ss$; because of Upclosed_{ss} we may assume $n \leq m$. Now with

$$a := \operatorname{Zip}(bc) = \operatorname{Zip}(\operatorname{Funzip}(f)(m)) = f(2m) \quad (by (5))$$

we have $a \in s_n$, for by (4) and (3)

 $\operatorname{Unzip}(\lfloor |a|/2 \rfloor, a) = \operatorname{Unzip}(\lfloor |\operatorname{Zip}(bc)|/2 \rfloor, \operatorname{Zip}(bc)) = \operatorname{Unzip}(|bc|, \operatorname{Zip}(bc)) = bc.$

Now by Fan we have k such that $\forall_f \exists_{m \leq k} \bar{f}(m) \in s_n$. Since s_n clearly is upwards closed, we may assume that k is even and $2n \leq k$. We show

$$\forall_{gh}.\,\bar{g}(n)\neq\bar{h}(n)\rightarrow\overline{gh}(\lfloor k/2\rfloor)\in ss.$$

So let gh with $\bar{g}(n) \neq \bar{h}(n)$ be given. Let $f := \operatorname{Fzip}(gh)$. By assumption $a := \bar{f}(k) \in s_n$. Now $a = :g(0) :: h(0) :: \cdots :: g(\lfloor k/2 \rfloor - 1) :: h(\lfloor k/2 \rfloor - 1)$. Because of $\bar{g}(n) \neq \bar{h}(n)$ and $n \leq \lfloor k/2 \rfloor$ we have $\exists_{i < n}(a)_{2i} \neq (a)_{2i+1}$. Hence

$$\overline{gh}(\lfloor k/2 \rfloor) = \text{Unzip}(\lfloor k/2 \rfloor, a) = \text{Unzip}(\lfloor |a|/2 \rfloor, a) \in ss.$$

4.2 A bound for the fan

We shall prove

FanBound_t: For every n there is a $k \ge n$ such that for all b, c of length k and in t we have $\bar{b}(n) = \bar{c}(n)$.

The proof uses PFan – which we just proved from Fan – and also EffUniq_t , to obtain one of its hypotheses. We fix n and apply PFan to

$$ss_t := \{ bc \mid b \in t \to c \in t \to F \}.$$

 $\forall_{bc} \forall_{n \leq |bc|} . \overline{bc}(n) \in ss_t \to bc \in ss_t$ holds because t is a tree.

$$\forall_{gh}.\,\bar{g}(n)\neq\bar{h}(n)\rightarrow\exists_m\,\overline{gh}(m)\in ss_t$$

follows from EffUniq_t: it provides an m such that it is impossible that both $\bar{g}(m)$ and $\bar{h}(m)$ are in t. Hence $\overline{gh}(m) \in ss_t$.

Now PFan yields a k such that $\forall_{gh}. \bar{g}(n) \neq \bar{h}(n) \rightarrow \bar{gh}(k) \in ss_t$. We may assume $k \geq n$. To prove FanBound_t, let b, c of length k and in t be given; we have to show $\bar{b}(n) = \bar{c}(n)$. Let gh be the extension of bc by (pairs of) tt's. Assume for contradiction $\bar{b}(n) \neq \bar{c}(n)$, hence $\bar{g}(n) \neq \bar{h}(n)$. Therefore $\bar{gh}(k) \in ss_t$, that is $\bar{b}(k)$ and $\bar{c}(k)$ cannot both be in t. This is the desired contradiction.

4.3 Construction of the path

Let ks_0 be the function provided by FanBound_t, and let ks be the canonical monotone upper bound of ks_0 . Write k_n for ks(n), a_n for as(n), b_n for bs(n) etc.

Because t is infinite, we have a_n of length n in t. Define $b_n \in t$ by

$$b_n := \overline{a_{k_n}}(n).$$

We claim that the b_n 's extend each other and hence make up a path, i.e., with $f(n) := (b_{n+1})_n$ we have $\overline{f}(n) = b_n \in t$. It suffices to prove

$$b_n = \overline{b_{n+1}}(n),\tag{6}$$

for then we obtain $\overline{f}(n) = b_n$ by induction, as follows. The base case is obvious, and in the step case we have by (1)

$$\bar{f}(n+1) = \bar{f}(n) ::: f(n) = b_n ::: (b_{n+1})_n = \overline{b_{n+1}}(n) ::: (b_{n+1})_n = b_{n+1}.$$

For (6) we apply FanBound_t to the two nodes a_{k_n} and $\overline{a_{k_{n+1}}}(k_n)$, which are both of length k_n and in t. Hence by (2)

$$b_n = \overline{a_{k_n}}(n) = \overline{\overline{a_{k_{n+1}}}(k_n)}(n) = \overline{\overline{a_{k_{n+1}}}(n)} = \overline{\overline{a_{k_{n+1}}}(n+1)}(n) = \overline{\overline{b_{n+1}}(n)}.$$

A Appendix: Formalization and extraction

The proofs above have been done in sufficient detail to allow formalization. By the well known method of (modified) realizability (see [8, 3] for recent expositions and applications) one can extract from a (constructive) proof of a formula with computational content a term that "realizes" the formula.

Of course, the algorithm expressed by such a term is already – at least implicitely – present in the proof. This is particularly true for the proof that WKL! implies Fan, which essentially consists of a construction. However, it spite of this fact there are good reasons to be interested in formalization and term extraction:

- It can be important to know for sure (and to be able to machine check) that in a proof nothing has been overlooked.
- The same applies to the algorithm implicit in the proof: even if the latter is correct, errors may occur in the implemention of the algorithm.
- Finally, even if the algorithm is correctly implemented, for sensitive applications customers may (and do) require a formal proof that the code implementing algorithm is correct.

The realizability method takes care of all these points.

For space reasons, we neither give nor comment the formalizations¹, but only show the extracted terms (verbatim as produced by the Minlog system), and where necessary explain which algorithm they represent.

Notice that our trees and bars are decidable, and given by computable boolean functions. We use impb for boolean implication, AllBNat of type $\mathbf{N} \to (\mathbf{N} \to \mathbf{B}) \to \mathbf{B}$ for the bounded universal quantifier $\forall_{i < n} Q(i)$ and AllBList of type $\mathbf{N} \to (\mathbf{L}(\mathbf{B}) \to \mathbf{B}) \to \mathbf{B}$ for $\forall_a.|a| = n \to Q(a)$.

A.1 WKL! implies Fan

```
[wklu0,r1,inf2]
inf2
(wklu0(Ext(Up r1))
 ([n4][if (AllBList n4(Up r1))
                    (LExt(UL n4(Up r1))n4)
                        (BMu n4(Up r1))])
 ([f4,f5]NatMax(inf2 f4 max inf2 f5)))
```

We are given a functional wklu0 realizing WKL!, a tree r1 and a realizer inf2 for its infinity. Apply inf2 to the result of applying wklu0 to (1) the extension of the complement of the upwards closure Up r1 of r1, (2) a witness for its infinity and (3) a witness for the effective uniqueness of its paths. For (2), we are given n4. If n4 is big, take the left extension (by tt's) of the uppermost leftmost node in the tree. If n4 is not big, take the first node of length n4 in the tree. For (3), we are given f4 and f5. Take the function mapping n to the max of itself and what the witness for infinity gives at f4 and f5.

A.2 Fan implies WKL!

A.2.1 Fan implies PFan

[fan0,n1,ss2,pbar3]

¹The first formalization (in the Minlog proof assistant) of a related proof (that WKL implies Fan) has been done in a slightly different setup by Klaus Thiel, Freiric Barral, Josef Berger, Basil Karadice and Stefan Schimanski; they also extracted a term.

```
fan0
([a4]
AllBNat n1
([n5](a4__(n5+n5)=a4__Succ(n5+n5)impb False)impb
            ss2(Half Lh a4 unzip a4)))
([f4]
[if (AllBNat n1([n5]f4(n5+n5)=f4(Succ(n5+n5))))
            (n1+n1)
            (pbar3([n5]f4(n5+n5)@f4(Succ(n5+n5)))+n1+
            pbar3([n5]f4(n5+n5)@f4(Succ(n5+n5)))+
            n1)])+n1
```

We are given a functional fan0 realizing Fan, a number n1, a set ss2 of pair nodes and a functional pbar3 mapping a pair path differing at n to a bar. Apply fan0 to (1) the set of all nodes a4 such that for all n5<n1, if the elements of a4 at 2*n5 and 2*n5+1 are distinct, then the result of unzipping a4 at half of its length is in ss2, and (2) a witness that every path f4 hits this set, and take the max of this number and n1. For (2), distinguish cases whether for some n5<n1, f4 at 2*n5 equals f4 at 2*n5+1. If so, take 2*n1. If not, let n be the result of applying pbar3 to the unzipped form of f4, and take 2*n+2*n1.

A.2.2 A bound for the fan

```
[pfan0,r1,uniq2,n3]
n3 max
pfan0 n3
([bc4]r1(([pq5]left pq5)map bc4)impb
r1(([pq5]right pq5)map bc4)impb False)
([gh4]uniq2([n5]left(gh4 n5))([n5]right(gh4 n5))n3)
```

We are given a functional pfan0 realizing PFan, a tree r1, a realizer uniq2 of the effective uniqueness property and a number n3. Take the max of n3 and the result of applying pfan0 to this number, the set of all pair nodes whose left and right parts cannot both be in r1, and the functional mapping a pair path to the result of applying uniq2 to it and this number.

A.2.3 Construction of the path

[r0,ns1,as2,n3]as2(ns1(Succ n3))__n3

We are given a tree r0, a sequence ns1 of numbers provided by FanBound, a sequence as2 of nodes witnessing the infinity of r0, and an argument n3 for the path to be constructed. Take the n3-th element of the sequence as2 applied to ns1(n3+1).

A.2.4 Putting the parts together

```
[fan0,r1,as2,uniq3]
cPath r1(Mon(cACNat(cFanBound(cFanImpPFan fan0)r1 uniq3)))
(cACListBoole as2)
```

cACNat and cACListBoole can be ignored, for they are realisers of choice axioms and hence identities.

We can unfold the contents of the auxiliary propositions, by "animating" them. The result is

```
[fan0,r1,as2,uniq3,n4]
cACListBoole as2
(Mon
 (cACNat
  ([n6]n6 max
     (fan0
      ([a7]
       AllBNat n6
        ([n8]
          (a7__(n8+n8)=a7__Succ(n8+n8)impb False)impb
          r1(([pq9]left pq9)map Half Lh a7 unzip a7)impb
          r1(([pq9]right pq9)map Half Lh a7 unzip a7)impb
          False))
      ([f7]
        [if (AllBNat n6([n8]f7(n8+n8)=f7(Succ(n8+n8))))
          (n6+n6)
          (uniq3([n8]f7(n8+n8))([n8]f7(Succ(n8+n8)))n6+n6+
          uniq3([n8]f7(n8+n8))([n8]f7(Succ(n8+n8)))n6+
         n6)])+n6)))
  (Succ n4))__n4
```

So from the formalized proof that Fan implies WKL! we have automatically extracted a rather readable term expressing its computational content. When supplied with concrete arguments, this term can be evaluated (i.e., normalized) to the nodes of the path.

References

- [1] Josef Berger, Douglas Bridges, and Peter Schuster. The fan theorem and unique existence of maxima. Submitted, 2005.
- [2] Josef Berger and Hajime Ishihara. Brouwer's fan theorem and unique existence in constructive analysis. Math. Log. Quart., 51(4):360–364, 2005.

- [3] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwichtenberg. Program extraction from normalization proofs. *Studia Logica*, To appear, 2005.
- [4] Errett Bishop. Foundations of Constructive Analysis. McGraw-Hill, New York, 1967.
- [5] Douglas Bridges and Fred Richman. Varieties of Constructive Mathematics. Cambridge University Press, Cambridge, 1987.
- [6] Hajime Ishihara. An omniscience principle, the König lemma and the Hahn-Banach theorem. Zeitschr. f. math. Logik und Grundlagen d. Math., 36:237–240, 1990.
- [7] Hajime Ishihara. Weak König lemma implies Brouwer's fan theorem: a direct proof. To appear: Notre Dame J. Formal Logic, 2005.
- [8] Erik Palmgren. Internalising modified realisability in constructive type theory. Logical Methods in Computer Science, 1(2):1–7, 2005. http://www.lmcs-online.org/.