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Abstract

Program extraction from proofs can be used to obtain verified algorithms in
exact real arithmetic for e.g., the signed-digit code representation. In Minlog
this has been done in the past with the use of certain coinductive predicates. In a
next step we want to analyze the lookahead of these extracted programs. Doing
it by hand is quite cumbersome, so instead we change our definitions. Instead
of a coinductive predicate we use an inductive predicate for the representation
of reals that already incorporates the lookahead. In this way the lookahead
becomes part of the specification which is carried through all the proofs. In the
end we extract programs for computations on a signed-digit representation and
we can just read off the lookahead from the specification.
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1. Introduction

We continue the work from [1], [2] and [3], where a coinductive predicate
coI was used to represent exact real numbers, i.e., coIx ⇔ x has a signed-digit-
code representation. This technique is based on an approach from [4], although
here we use explicitly defined real numbers instead of axioms for abstract real
numbers. From proofs that this predicate coI is closed under average, multipli-
cation and division, algorithms for exact real number arithmetic are extracted
and translated to Haskell. Furthermore a proof of correctness can be automat-
ically generated. In this paper we refine this method in order to analyze the
lookahead of these algorithms, namely we want to track how many input digits
are needed to compute a certain number of output digits. To that end we use
a new inductive predicate L that already contains the information regarding
the lookahead. This predicate L is introduced in Section 2. In Section 2.1 we
give a quick overview of the definitions and main theorems from [1] and [2], and
in Section 2.2 we present our new definition and prove some basic properties.
Then in Section 3 we use this method to get explicit bounds for the lookahead
in exact real arithmetic. Section 4 concludes.

1.1. Theory of computable functionals

We use the formal theory of computable functionals TCF [5] to formalize
statements like “there is an arbitrarily exact representation of x by a list of
signed digits”. TCF is given by a language that consists of the following.

• Types consisting of variables, arrow-types and algebras directly given by
constructors.

• Terms given by the algebra-constructors, lambda-abstraction, application
and constants defined by computation rules.

• Predicates P,X which are either constants, variables or comprehension
terms {~x |A} of a fixed arity.
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• Formulae of the form P~t, A→ B and ∀xA.

The logic is natural deduction together with a set of axioms for the predicate
constants given below. Note that predicates are marked as either computa-
tionally relevant (c.r.) or non-computational (n.c.). Furthermore, for a unary
predicate A, we write t ∈ A for At and ∀t∈AB, ∃t∈AB are short for ∀t(At→ B)
and ∃t(At ∧B), respectively.

Predicates

The constants are either inductive or coinductive predicates. An inductive
predicate I is given by a list of introductory axioms

(I)+i : ∀~x( ~Ai(I)→ I~ti) (i < k),

where X must only appear strictly positive in all Aij(X). Furthermore we add
a least-fixed-point-axiom or induction-axiom for I of the form

(I)− : I~x→
(
∀~x( ~Ai(I ∩X)→ X~ti)

)
i<k
→ X~x.

The logical connectives ∃, ∧ and ∨ are all special cases of inductive predicates.
A coinductive predicate J is introduced by giving one closure-axiom of the form

(J)− : ∀~x(J~x→
∨
i<k

∃~yiBi(J)).

Furthermore we add a greatest-fixed-point-axiom

(J)+ : X~x→ ∀~x(X~x→
∨
i<k

∃~yiBi(J ∪X))→ J~x.

For any inductive predicate I its companion prediacte coI is given by setting
Bi =

∧ ~Ai. Examples for inductive predicates are the totality predicates. For
some type τ the expression t ∈ τ is short for t ∈ Tτ , where Tτ is the totality-
predicate for this type, e.g., for a term ns : N → N we have ns ∈ (N → N) :=
∀n∈TN(ns n) ∈ TN where n ∈ TN is the inductive predicate given by the clauses
0 ∈ TN and n ∈ TN → (n+ 1) ∈ TN. The elimination rule of n ∈ N is induction
over natural numbers.
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Realizability and computational content

We inductively assign to each c.r. predicate P and formula A a type τ and
a predicate P r of arity arity(P )× τ respectively Ar of arity τ .

τ(I) := ιI

τ(A→ B) :=

{
τ(A)→ τ(B), A c.r.

τ(B), A n.c.

τ(∀xA) := τ(A)

x r I~t := Ir~tx

f r (A→ B) :=

{
∀x(x r A→ (f x) r B), A c.r.

A→ f r B, A n.c.

x r ∀yA := ∀yx r A

Here ιI is the algebra of realizers of the inductive predicate I, with constructors
of ιI corresponding to the clauses of I. The n.c. predicate Ir has one more
argument (of type ιI) than I, with Ir~tx expressing that x realizes I~t.

Furthermore to each derivation of a c.r. formula we assign its extracted term.
The interesting cases are the axioms. For an inductive predicate I given as above
they are

et((I)+i ) := CιIi ,

et((I)−(P )) := Rτ(P )
ιI ,

et((coI)−) := D,

et((coI)+(P )) := coRιIτ(P ),

where RιI and coRιI are the recursion and corecursion operators associated to
the algebra ιI and Ci and D are its constructors and destructor respectively. Note
that a non-uniform version of the ∀-quantifier can be recovered by abbreviations
as above, e.g., for A c.r. τ(∀n∈NA) := N → τ(A) and f r ∀n∈NA := ∀n,m(m r
(n ∈ N)→ (f m) r A). The foundation of program extraction is the soundness-
theorem, namely given a proof M of a formula A we also have a proof of et(M) r
A. The proof is by induction on derivations.

Implementation in Minlog

For computing extracted terms and verifying the correctness of proofs the
proof assistant Minlog [6] is used. Minlog is designed as an implementation
of TCF. In particular this means that Minlog implements a (simply) typed
constructive arithmetic with the following additional features.

• Inductively and coinductively defined predicates are added.

• There is a distinction between computationally relevant (c.r.) and non-
computational (n.c.) predicates.
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• Realizability predicates are added.

• Partial functionals are allowed. They are defined by equations, which are
possibly non-terminating (like corecursion).

• Minimal logic is used, with →, ∀ the only primitive logical connectives.
Existence, disjunction and conjunction are inductively defined.

In Minlog a soundness proof can be automatically generated for every proof.
All the proofs in this paper have been formalized1 in Minlog. After each proof
in the following we state its computational content.

More specifically, in TCF all variables are typed. The following table shows
which variables have which type.

m,n : N a, b : Q M,N : Z+ → N
d, e, k : Z x, y : R as, bs : N→ Q

Here N are the unary natural numbers, Z is defined as positive binary numbers
and Q is given by one constructor # : Z→ Z+ → Q. In the implementation the
type of real numbers R is explicitly defined as the type (N→ Q)× (Z+ → N).

An introduction to Minlog can be found in [7] or doc/tutor.pdf in the
Minlog directory.

1.2. Cauchy reals

Formally real numbers are defined as pairs of a sequences of rational numbers
together with a modulus, roughly as presented in [8].

Definition 1.1 (Cauchy representation). We define the algebra R by the single
constructor

RealConstr : (N→ Q)→ (Z+ → N)→ R.

For as : N→ Q and M : Z+ → N we define

Mon(M) := M ∈ Tnc ∧ ∀p≤q (Mp ≤Mq) .

Next we define the predicate R, x = RealConstr as M ∈ R by

M ∈Mon ∧ as ∈ Tnc ∧ ∀p∈Tnc∀n,m≥M(p)

(
|(as n)− (as m)| < 2−p

)
.

In the following ∀xA will always be an abbreviation for ∀x(x ∈ R→ A) respec-
tively ∀x∈BA abbreviates ∀x(x ∈ R → B → A). For the type of R together
with the predicate R we can define all the usual operation for the real numbers
and prove all the properties of a field that constructively hold. For details we
refer to [9] and the implementation in Minlog which can be found in the folder
.../git/minlog/lib/rea.scm. Note that x ∈ R by definition does not carry
any computational content. Hence the Cauchy representation of the reals is
only used for the verification.

1In the file sdind.scm in the directory examples/analysis
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2. The inductive predicate L and its properties

2.1. Real numbers represented by streams

A signed-digit-code representation of some real number x is a sequence
(di)i ∈ {−1, 0, 1}N such that

x =

∞∑
i=1

di2
−i.

Definition 2.1 (sd-code representation). We define coI as the greatest predicate
satisfying the single clause

d ∈ Sd→ x ∈ coI→ x =
y + d

2
→ y ∈ coI

where Sd := {−1, 0, 1} ⊆ Z is an inductive predicate.

Remark 2.2. Henceforth we will use Sd for the predicate as well as the algebra
given by three nullary constructors. A realiser of coIx is exactly a stream of
signed digits. The algebra of streams of signed digits S is given by the single
constructor

C : Sd→ S→ S.
The axioms of coI can be expressed as

coI− : x ∈ coI→ ∃d∈Sd,y∈coI x =
y + d

2
,

coI+ : ∀x∈X∃d∈Sd∃y∈X∪coI x =
y + d

2
→ X ⊆ coI.

Theorem 2.3 (CoIAverage). For all x, y ∈ coI

x+ y

2
∈ coI.

Proof. The proof is done by first showing that{x+ y

2

∣∣∣x, y ∈ coI
}
⊆
{x+ y + i

4

∣∣∣x, y ∈ coI, i ∈ Sd2

}
,

where Sd2 := {−2,−1, 0, 1, 2}. Then we show that the second set also satisfies
the clause of coI. The result follows from the coinduction axiom.

Theorem 2.4 (CoIMult). For all x, y ∈ coI

xy ∈ coI.

Proof. The idea is similar to the previous proof. First we show

{xy |x, y ∈ coI} ⊆
{xy + z + i

4

∣∣∣x, y, z ∈ coI, i ∈ Sd2

}
,

and then, that the second set fulfills the clause. Coinduction yields the claim.
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Theorem 2.5 (CoIDiv). For all x, y ∈ coI with 1
4 ≤ y and |x| ≤ y

x

y
∈ coI.

Proof. By coinduction we prove{x
y

∣∣∣x, y ∈ coI, |x| ≤ y, 1

4
≤ y
}
⊆ coI.

2.2. Real numbers represented by lists

We want to analyze the lookahead of the algorithms we extracted from the
proofs. Going through the proofs or algorithms and tracking the lookahead by
hand can be done, albeit it is quite cumbersome. For that reason we want to
track the lookahead directly on the logical level as part of the specification. To
this end we define a new inductive predicate

L ⊆ R× N

with the intended meaning

L(x, n)⇔We know the first n digits of a representation of x.

Equivalently L(x, n) should mean that we have a 1
2n approximation of x, i.e.,

we have n signed digits d1 . . . dn such that
∣∣x−∑n

i=1
di
2i

∣∣ ≤ 1
2n . The formal

definition is motivated by the following property that L should have.

L(x, n+ 1)→ x =
y + d

2
→ L(y, n),

i.e., if we know the first n + 1 digits of a representation of x and d is the first
digit, then we know the first n digits of a representation of 2x − d. We redo
all the proofs previously done with a coinductive predicate, and from a proof of
e.g.,

L(x, n+ 1)→ L(y, n+ 1)→ L
(x+ y

2
, n
)

we extract a term of type L → L → L that computes the first n digits of x+y
2 ,

given n + 1 digits of x and y. Note that we do not lose anything compared to
Theorem 2.3, we just added some control regarding the precision of the input.

Definition 2.6. We define L as the least predicate satisfying the clauses

∀x(|x| ≤ 1→ L(x, 0)),

∀d∈Sd,x,y,n
(
L(x, n)→ y =

x+ d

2
→ L(y, n+ 1)

)
.

Note that the algebra L of realizers of L is now given by two constructors

U : L
C : Sd→ L→ L,

7



where U is the empty list. The computational content of the two introductory
axioms are the two constructors respectively. Note that due to the nullary clause
of L it is unnecessary to use a coniductive predicate, since realizers of Lxn will
be total (as long as n is) , i.e., finite lists, in any case. Note that apart from
choosing the right natural number, the proofs are very similar to the original
proofs. Coinduction will be replaced by an induction over the length of the
realizing list. In the following we will use the variable names u, v : L.

Remark 2.7. The elimination axiom of L has the following form. Assume P ⊆
R× N. Then if

∀x(|x| ≤ 1→ Px0),

∀d∈Sd,x,y,n
(
Lxn→ Pxn→ y =

x+ d

2
→ Py(n+ 1)

)
we can infer L ⊆ P . In the following we will use the notation

Lxn := (x ∈ Ln)

If P has type τ then the computational content of the elimination axiom (L)−[P ]
is given by the recursion operator RτL : L→ τ → (Sd→ L→ τ → τ)→ τ with
the computation rules

RτL(U, t0, f) = t0,

RτL(Cdv, t0, f) = f(d, v,RτL(v, t0, f)),

i.e., recursion for lists.

2.3. Basic properties

Lemma 2.8 (LSuccToL).

∀x,n(x ∈ Ln+1 → x ∈ Ln).

Proof. We can immediately prove ∀m,x,n(x ∈ Lm → m = n+ 1→ x ∈ Ln) with
the elimination axiom of L.

Extracted term (cLSuccToL).

cLSuccToL(d :: u) := u.

Lemma 2.9 (LToLPred).

∀x,n(x ∈ Ln → x ∈ Ln−· 1).

Proof. Immediately by the elimination axiom of L.

Extracted term (cLToToLPred).

cLToLPred(U) := U,

cLToLPred(d :: u) := u.
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Remark 2.10. In the following we will write the extracted term of the previous
two lemmas as tl : L→ L, i.e., the usual tail-function. Furthermore, for better
readability, we will sometimes make use of the function hd : L→ Sd defined by

hd(U) := 0,

hd(d :: u) := d.

Lemma 2.11 (LCompat).

∀x,y,n(x = y → x ∈ Ln → y ∈ Ln).

Proof. The proof is by induction on Lxn.

Extracted term (cLCompat). The extracted term is cLCompat(u) := u, i.e.,
the identity. In the following we will omit it.

In order to adapt proofs for coI to the present setting we prove that L satisfies
a certain closure property.

Lemma 2.12 (LClosure).

x ∈ Ln+1 → ∃d∈Sd,x0

(
x =

x0 + d

2
∧ x0 ∈ Ln

)
.

Proof. Immediately by induction.

Extracted term (cLClosure). The extracted term is of type L→ Sd×L. Let
〈·, ·〉 denote the pair constructor, then

cLClosure(s :: v) := 〈s, v〉.

In the following this term will be suppressed by either supplying enough digits in
the input or by using the hd function when needed.

In order to avoid long case distinctions in the following proofs we define two
functions J,K : Z→ Z such that the following equality holds:

m = K(m) + 4J(m).

These functions exist since we can do division with remainder. Furthermore we
have the following property:

Lemma 2.13. For m ∈ Z with |m| ≤ 6 it holds that Km ∈ Sd2 and Jm ∈ Sd.

For the proofs in the next section regarding multiplication we need some
more properties of L.

Lemma 2.14 (LSd).
∀n∈N∀d∈Sd d ∈ Ln.

Proof. By induction on n ∈ N.

9



Extracted term (cLSd). cLSd : N→ Sd→ L

cLSd(0, d) := U,

cLSd(n+ 1, d) := d :: (cLSd(n, d)).

Lemma 2.15 (LUMinus).

∀n∀x∈Ln(−x) ∈ Ln.

Proof. By induction on x ∈ Ln. In the base case we immediately get (−x) ∈ L0.
Assume d ∈ Sd, x, (−x) ∈ Ln and y = x+d

2 . We need to prove (−y) ∈ Ln+1

which follows from −y = −x−d
2 .

Extracted term (cLUMinus). cLUMinus : L→ L is given by recursion on L:

cLUMinus U := U

cLUMinus(e :: v) := (−e) :: (cLUMinus v)

Lemma 2.16 (LSdTimes).

∀n∈N∀d∈Sd∀x∈Ln(dx) ∈ Ln.

Proof. By induction on d ∈ Sd. If d = −1 we use Lemma 2.15 and if d = 0
then Lemma 2.14. Otherwise we are done by compatibility.

Extracted term (cLSdTimes). cLSdTimes : N→ Sd→ L→ L is defined by a
case-distiction on Sd:

cLSdTimes(n,−1, u) := cLUMinus u,

cLSdTimes(n, 0, u) := cLSd(n, 0),

cLSdTimes(n, 1, u) := u.

For the proof that L is closed under division we will need the following two
lemmas.

Lemma 2.17 (LNegToLPlusOne,LPosToLMinusOne). For all n ∈ N we have

x ∈ Ln → x ≤ 0→ (x+ 1) ∈ Ln,

x ∈ Ln → 0 ≤ x→ (x− 1) ∈ Ln.

Proof. Both statements follow by induction on n ∈ N. In the step a case dis-
tinction on Sd is used.

Extracted term (cLNegToPlusOne,cLPosToLMinusOne). The extracted terms
are defined by recursion on N and a case distinction on Sd in the step-cases:

cLNegToPlusOne(0, u) := U

cLNegToPlusOne(n+ 1, d :: v) :=


cLSd(n+ 1, 1), d = 1

1 :: cLNegToPlusOne(v), d = 0

1 :: v, d = −1
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cLPosToLMinusOne(0, u) := U

cLPosToLMinusOne(n+ 1, d :: v) :=


−1 :: v, d = 1

−1 :: cLPosToLMinusOne(v), d = 0

cLSd(n+ 1,−1), d = −1

Lemma 2.18 (LToLDouble,LToLQuad). For all n ∈ N

x ∈ Ln+1 → |x| ≤
1

2
→ (2x) ∈ Ln,

x ∈ Ln+2 → |x| ≤
1

4
→ (4x) ∈ Ln.

Proof. For the first statement we use Lemmas 2.12 and 2.17 with a case distinc-
tion on Sd. E.g., if x = y+1

2 , then x ≤ 1
2 implies y ≤ 0 and 2x = y + 1 ∈ Ln.

The second follows directly from the first.

Extracted term (cLToLDouble,cLToLQuad). The extracted terms are

cLToLDouble(n, d :: u) :=


cLNegToLPlusOne(n, u), d = 1

u, d = 0

cLPosToLMinusOne(n, u), d = −1

cLToLQuad(n, u) := cLToLDouble(n, cLToLDouble(n+ 1, u)).

3. Exact real number arithmetic with lookahead

3.1. Average, multiplication and division

Now we can go through the proofs referenced above with the new predicate L
instead of coI. This will give us verified algorithms for exact real number arith-
metic with the added bonus that the lookahead of the algorithms is explicitly
part of the specification.

We first show that L is closed under the average. The proof structure will
be very similar, namely we show{x+ y

2

∣∣∣x, y ∈ Ln+1

}
⊆
{x+ y + i

4

∣∣∣x, y ∈ Ln, i ∈ Sd2

}
⊆ Ln,

where the second inclusion is proven by induction on N.

Lemma 3.1 (LAvToAvc).

x, y ∈ Ln+1 → ∃i∈Sd2
∃x1,y1∈Ln

x+ y

2
=
x1 + y1 + i

4
.

Proof. By applying Lemma 2.12 to x, y ∈ Ln+1 we get

x+ y

2
=
x1 + y1 + (d+ e)

4
.
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Extracted term (cLAvToAvc). cLAvToAvc : L→ L→ Sd2 × L× L

cLAvToAvc(d :: u, e :: v) := 〈d+ e, u, v〉.

Lemma 3.2 (LAvcSatLCl).

i ∈ Sd2 → x, y ∈ Ln+1 → ∃d∈Sd∃j∈Sd2
∃x1,y1∈Ln

x+ y + i

4
=

x1+y1+j
4 + d

2
.

Proof. We use Lemma 2.12 to decompose x, y ∈ Ln+1 to d, e ∈ Sd, x0, y0 ∈ Ln.
Then we compute

x+ y + i

4
=
x0 + y0 + (d+ e+ 2i)

8
.

With Lemma 2.13 we can transform this expression to

x0+y0+K(d+e+2i)
4 + J(d+ e+ 2i)

2
.

Extracted term (cLAvcSatLCl). cLAvcSatLCl : Sd2 → L→ L→ Sd×Sd2×
L× L

cLAvcSatLCl(i, d :: u, e :: v) := 〈K(d+ e+ 2i), J(d+ e+ 2i), u, v〉.

Lemma 3.3 (LAvcToL).

∀n∈N∀i∈Sd2
∀x,y∈Ln

x+ y + i

4
∈ Ln.

Proof. By induction on n ∈ N. The base-case is immediate by the first intro-
duction axiom of L, since

|x|, |y| ≤ 1⇒
∣∣∣∣x+ y + i

4

∣∣∣∣ ≤ 1.

So assume

∀i∈Sd2
∀x,y∈Ln

x+ y + i

4
∈ Ln,

and x, y ∈ Ln+1. By Lemma 3.2 there exists j ∈ Sd2, d ∈ Sd and x1, y1 ∈ Ln
with

x+ y + i

4
=

x1+y1+j
4 + d

2
.

By compatibility of L it suffices to prove

x1+y1+j
4 + d

2
∈ Ln+1.

By the second introduction axiom of L this follows from

x1 + y1 + j

4
∈ Ln

which we have by the induction hypothesis.
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Extracted term (cLAvcToL). The extracted term cLAvcToL : N→ Sd2 → L→
L→ L is defined by recursion on N. It is given by

cLAvcToL(0, i, u, v) := U

cLAvcToL(n+ 1, i, u, v) := d :: cLAvcToL(n,w),

where
〈d,w〉 = cLAvcSatLCl(i, u, v).

Theorem 3.4 (LAverage).

∀n∈N∀x,y∈Ln+1

x+ y

2
∈ Ln.

Proof. Directly by the Lemmas 3.1 and 3.3.

Extracted term (cLAverage). The extracted term cLAverage : N→ L→ L→
L is defined by

cLAverage(n, u, v) := cLAvcToL(n+ 1, cLAvToAvc(u, v)).

Next we will prove that L is closed under multiplication. Again the structure
of the proof is comparable to the coinductive case. We prove{

xy
∣∣∣x, y ∈ Ln+3

}
⊆
{xy + z + i

4

∣∣∣x, y ∈ Ln+2, z ∈ Ln, i ∈ Sd2

}
,

and in a second step, by induction on N,{xy + z + i

4

∣∣∣x, z ∈ L3n, y ∈ L3n−· 1, i ∈ Sd2

}
⊆ Ln.

Lemma 3.5 (LMultToMultc). For all n ∈ N and x, y ∈ Ln+3 we have

∃i∈Sd2∃x1,y1∈Ln+2∃z1∈Ln

(
xy =

x1y1 + z1 + i

4

)
.

Proof. By Lemma 2.12 there are d1, e1 ∈ Sd and x1, y1 ∈ Ln+2 such that

x =
x1 + d1

2
y =

y1 + e1
2

.

Then by Lemma 2.16 and Theorem 3.4 we also know

e1x1 + d1y1
2

∈ Ln+1.

So by another application of Lemma 2.12 there exist z1 ∈ Ln and d2 ∈ Sd with
e1x1+d1y1

2 = z1+d2
2 . We compute

xy =
x1y1 + d1e1 + e1x1 + d1y1

4
=
x1y1 + z1 + (d2 + d1e1)

4
.
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Extracted term (cLMultToMultc). The extracted term cLMultToMultc : N→
L→ L→ Sd2 × L× L× L is given by

cLMultToMultc(n, d1 :: u, e1 :: v) := 〈d2 + d1e1, u, e1 :: v, w〉,

where

d2 :: w = cLAverage(cLSdTimes(n+ 2, e1, u), cLSdTimes(n+ 2, d1, v)).

Lemma 3.6 (LMultcSatLCl). For all i ∈ Sd2, n ∈ N,m, x ∈ Lm+1, y ∈ Ln+2

and z ∈ Ln+3 we have

∃d∈Sd∃j∈Sd2
∃x1∈Lm

∃z1∈Ln

xy + z + i

4
=

x1y+z1+j
4 + d

2
.

Proof. We decompose x, z via Lemma 2.12 into

x =
x1 + d1

2
z =

z0 + d0
2

,

where x1 ∈ Lm and z0 ∈ Ln+2. Then by Lemmas 3.3 and 2.16 we know

z0 + d1y + i

4
∈ Ln+2.

Another two applications of Lemma 2.12 to this yields

z0 + d1y + i

4
=
z1 + e1 + 2e0

4
,

where z1 ∈ Ln and e, e0 ∈ Sd. Finally we compute

xy + z + i

4
=
x1y + (z0 + d1y + i) + d0 + i

8
=
x1y + (z1 + e1 + 2e0) + d0 + i

8
.

With m := e1 + 2e0 + d0 + i and Lemma 2.13 we get

=
x1y+z1+J(m)

4 +K(m)

2
.

Extracted term (cLMultcSatLCl). The extracted term cLMultcSatLCl : Sd2 →
N→ L→ L→ L→ Sd× Sd2 × L× L is given by

cLMultcSatLCl(i, n, d1 :: u, v, d0 :: w) := 〈K(m), J(m), u, w0〉,

where m := e1 + 2e0 + d0 + i and

e0 :: e1 :: w0 := cLAvcToL(n+ 2, w, cLSdTimes(n+ 2, d1, v)).

Lemma 3.7 (LMultcToL). For all n ∈ N, i ∈ Sd2 and x, z ∈ L3n, y ∈ L3n−· 1
we have

xy + z + i

4
∈ Ln.
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Proof. By induction on n ∈ N. In the step case assume i ∈ Sd2, x, z ∈ L3n+3

and y ∈ L3n+2. We need to prove

xy + z + i

4
∈ Ln+1.

To that end we show that there exist d ∈ Sd and x′ ∈ Ln with

xy + z + i

4
=
x′ + d

2
.

Then the claim follows from the second introduction axiom. From Lemma 3.6
we obtain d ∈ Sd, j ∈ Sd2, x1 ∈ L3n+2 and z1 ∈ L3n with

xy + z + i

4
=

x1y+z1+j
4 + d

2

Hence it suffices to show that x1y+z1+j
4 ∈ Ln for which we use the induction

hypothesis. This requires that x1, z1 ∈ L3n and y ∈ L3n−· 1 which we either have
directly or by applications of Lemmas 2.8 and 2.9.

Extracted term (cLMultToL). The extracted term cLMultToL : N→ L×Sd2×
L× L→ L is given by recursion, namely

cLMultToL(0, i, u, w, v) := U

cLMultToL(n+ 1, i, u, w, v) := d :: cLMultToL(n, 〈i1, hd(2) u1, w1, hd
(3) v〉),

where
〈d, i1, u1, w1〉 = cLMultcSatLCl(i, 3n, u, v, w).

Now we have all the parts to finalize the proof that L is closed under mul-
tiplication.

Theorem 3.8 (LMult).

n ∈ N→ x, y ∈ L3n+3 → xy ∈ Ln.

Proof. By Lemma 3.5 there exist x1, y1 ∈ L3n+2, z ∈ L3n and i ∈ Sd2 with

xy =
x1y1 + z1 + i

4
.

Now with two respectively three applications of Lemmas 2.8 and 2.9 to x and y
we can use the previous Lemma 3.7 to get x1y1+z1+i

4 ∈ Ln.

Extracted term (cLMult). The extracted term cLMult : N → L → L → L is
defined by

cLMult(n, u, v) := cLMultcToL(n, i, hd(2) u1, hd
(3) v1, w),

where

〈i, u1, v1, w〉 := cLMultToMultc(3n, u, v).

15



We proceed with the proof that L is closed under division. First we prove{x
y

∣∣∣x ∈ Ln+3, y ∈ Ln+2,
1

4
≤ y, |x| ≤ y

}
⊆{ x

y + d

2

∣∣∣ d ∈ Sd, x ∈ Ln, y ∈ Ln+2,
1

4
≤ y, |x| ≤ y

}
.

Then in a second step, by induction on N this directly gives us{x
y

∣∣∣x ∈ L3n, y ∈ L3n−· 1,
1

4
≤ y, |x| ≤ y

}
⊆ Ln.

Lemma 3.9 (LDivSatLClAuxL,LDivSatLClAuxR). Assume that n ∈ N and x ∈
Ln+3, y ∈ Ln+2 with

1

4
≤ y ∧ |x| ≤ y.

Then we have

0 ≤ x→ (2x− y) ∈ Ln,

x ≤ 0→ (2x+ y) ∈ Ln.

Proof. First assume 0 ≤ x. Using the assumptions we can estimate

2x− y ≤ 2y − y ≤ |y| ≤ 1
y − 2x ≤ y ≤ |y| ≤ 1

}
⇒
∣∣∣∣x− y

2

2

∣∣∣∣ ≤ 1

4
.

Hence we can apply Lemma 2.18 for our goal. Now by Theorem 3.4 it remains
to prove x,−y2 ∈ Ln+3. The first we have by assumption and the latter follows
from Lemma 2.15 and an application of the second introduction axiom using
y
2 = y+0

2 and the assumption y ∈ Ln+2. The second formula is proven in a
similar fashion but with an application of Lemma 2.15.

Extracted term (cLDivSatLClAuxL,cLDivSatLClAuxR). The extracted terms,
both of type N→ L→ L→ L, are given by

cLDivSatLClAuxL(n, u, v) :=

cLToLQuad(n, cLAverage(n+ 2, u, cLUMinus(SdM :: v))),

cLDivSatLClAuxR(n, u, v) :=

cLToLQuad(n, cLAverage(n+ 2, u, SdM :: v)).

Lemma 3.10 (TripleCase).

3 ≤ n→ x ∈ Ln → 0 ≤ x ∨ |x| ≤ 1

8
∨ x ≤ 0.

Proof. Three applications of Lemma 2.12 give d0, d1, d2 ∈ Sd and some y ∈ Ln
with

x =
4d0 + 2d1 + d2 + y

8
.
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By case distinctions on di ∈ Sd we get

d0 = 1
d0 = 0, d1 = 1

d0 = d1 = 0, d2 = 1

⇒ 0 ≤ x
d0 = d1 = 0, d2 = −1

d0 = 0, d1 = −1
d0 − 1

⇒ x ≤ 0

and

d0 = d1 = d2 = 0⇒ |x| ≤ 1

8
.

Extracted term (cTripleCase). The extracted term cTripleCase : L→ U +
U + U is directly defined according to the case distinction in the proof, e.g.,

cTripleCase(0 :: 0 :: 0 :: u) = InL(InR).

In the following we will omit it and just write out the case distinction.

Lemma 3.11 (LDivSatLCl). Assume n ∈ N, x ∈ Ln+3, y ∈ Ln+2 with

1

4
≤ y ∧ |x| ≤ y.

Then

∃d0∈Sd∃x0∈Ln

(
|x0| ≤ y ∧

x

y
=

x0

y + d0

2

)
.

Proof. We use Lemma 3.10 and distinguish cases. In the first case 0 ≤ x and
we define d0 = 1 and

x0 = 2x− y = 4
x− y

2

2
.

An application of Lemma 3.9 directly yields x0 ∈ Ln and we compute

x

y
=

x0+y
2

y
=

x0

2 + 1

2
.

In case x ≤ 0 we proceed in a similar fashion with d0 = −1 and x0 = 2x + y.
The remaining case is |x| ≤ 1

8 . Here we define d0 = 0 and x0 = 2x. Since
x ∈ Ln+3 and |x| ≤ 1

8 ≤
1
2 by Lemma 2.18 we get 2x ∈ Ln+2. Two applications

of 2.8 yield x0 ∈ Ln. Futhermore

x

y
=

2x
y

2
=

x0

y + 0

2
.

Extracted term (cLDivSatLCl). By unfolding the case distinction the ex-
tracted term of type N→ L→ L→ Sd× L can be represented in the following
way.

cLDivSatLCl(n, u, v) :=


〈1, cLDivSatLClAuxL(u, v)〉, 0 ≤ x
〈0, hd(2)(cLToDouble(n+ 2, u)))〉, |x| ≤ 1

8

〈−1, cLDivSatLClAuxR(u, v)〉, x ≤ 0

17



Now we can finally prove that L is closed under division:

Theorem 3.12 (LDiv).

∀n∈N∀x∈L3n
∀y∈L3n−· 1

(
1

4
≤ y → |x| ≤ y → x

y
∈ Ln

)
Proof. By induction on n ∈ N. In the base case we have

∣∣∣xy ∣∣∣ ≤ 1 and are

done. So assume x ∈ L3n+3, y ∈ L3n+2. By the previous Lemma 3.11 we get
d0 ∈ Sd, x0 ∈ L3n with |x0| ≤ y and

x

y
=

x0

y + d0

2
.

By the second introduction axiom we need to prove x0

y ∈ Ln. With the induction
hypothesis it remains to prove x0 ∈ L3n and y ∈ L3n−· 1. The former we have
and the latter follows with applications of Lemmas 2.8 and 2.9.

Extracted term (cLDiv). The extracted term cLDiv : N → L → L → L is
given by recursion on n ∈ N.

cLDiv(0, u, v) = U,

cLDiv(n+ 1, u, v) = d :: cLDiv(n, u1, hd
(3) v),

where
〈d, u1〉 := cLDivSatLCl(3n, u, v).

Remark 3.13. If we compare the algorithms obtained for average, multiplication
and division in [2, 1] on stream representations to the algorithm obtained here
for list representations, then we can see that they essentially operate in exactly
the same way. So although not formally verified we successfully have analysed
the lookahead of the former algorithms. In fact this can be made more precise
e.g., if we take the extracted term cCoIAv : S(Sd)→ S(Sd)→ S(Sd) of theorem
2.3 then its lookahead is bound by n+1 exactly if for all streams ui, vi and n ∈ N
we have

cCoIAv((u0|n+1) ∗ v0, (u1|n+1) ∗ v1)|n = cCoIAv(u0, u1)|n,

where ·|n : S(Sd)→ L(Sd) is the initial segment of length n defined by

u|0 = [ ], (d :: u)|n+1 = d :: (u|n),

and ∗ is the concatenation of a list and a stream. Now we also have the extracted
term cLAv : L(Sd) → L(Sd) → L(Sd) of Theorem 3.4 and we consider the
following diagram:

L(Sd)× L(Sd) L(Sd)

S(Sd)× S(Sd) S(Sd)

cLAv

cCoIAv

·|n+1×·|n+1 ·|n

18



Then we can formally prove that this diagram commutes for all n ∈ N which
entails the property above regarding the lookahead of cCoIAv. Although these
kinds of proofs are possible for all the corresponding pairs of extracted terms
from Section 3, these proofs involve unfolding all the extracted terms which
quickly becomes unmanageable.

3.2. Squaring

Instead of only tracking the lookahead of essentially known algorithms we
are also interested in finding new algorithms with (possibly) optimal lookahead.
Now in Theorem 3.8 we have proven that our algorithm for multiplication has
lookahead 3n+3. For the optimal lookahead we consider x, y for which we know
n digits of a signed-digit representation respectively, i.e., they are contained in
intervals of length 1

2n−1 . Multiplying these intervals we get a new interval In
with length |In| ≤ 2n−1

4n−1 . Then we can estimate

|In+3| ≤
1

2n−1
,

which is exactly what we need to determine the first n digits of x · y. Hence
theoretically the optimal bound for the lookahead of multiplication should be
n+ 3.

We will now give a proof that L is closed under the square. The obtained
bound for the lookahead will be n + 4. We could just use Theorem 3.8 and
obtain

x ∈ L3n+3 → x2 ∈ Ln

but there is a way to obtain an algorithm with a lower bound for the lookahead.
The computation is based on the following decomposition.

Lemma 3.14 (LSquareAux). If x ∈ Ln+2 then there exist d0, d1 ∈ Sd and
y ∈ Ln with

x2 =
y2+d21+2d20+4d0d1

8 +
d1y+d

2
0+2d0y
4

2
.

Proof. By two applications of Lemma 2.12 we get y ∈ Ln and d0, d1 ∈ Sd with

x =
y + d1 + 2d0

4
.

The rest is obtained by elementary arithmetic.

Extracted term (cLSquareAux). The extracted term is given by

cLSquareAux(d0 :: d1 :: u) = 〈d0, d1, u〉.

Remark 3.15. In the proof of the following Theorem we avoid an unnecessary
use of course-of-values-induction by using induction over N in the following way.

A0→ A1→ ∀n∈N(An→ A(n+ 2))→ N ⊆ A
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If τ is the type associated to A, the realizer f : τ → τ → (N→ τ → τ)→ N→ τ
is given by

f(t0, t1, H, 0) = t0,

f(t0, t1, H, 1) = t1,

f(t0, t1, H, n+ 2) = H(n, f(t0, t1, H, n)).

Theorem 3.16 (LSquare).

∀n∈N(x ∈ Ln+4 → x2 ∈ Ln).

Proof. By the remark above we prove the three following statements which then
imply the claim.

∀x(x ∈ L4 → x2 ∈ L0), ∀x(x ∈ L5 → x2 ∈ L1),

∀n∈N∀x(x ∈ Ln+4 → x2 ∈ Ln)→ ∀n∈N∀x(x ∈ Ln+6 → x2 ∈ Ln+2).

The first one is immediate since |x| ≤ 1 implies |x2| ≤ 1.
The second one holds, since |x2| ≥ 0, namely we decompose x = y+d

2 ,
compute

x2 =
(y+d)2−2

2 + 1

2

and
∣∣(y + d)2 − 2

∣∣ ≤ 2. Hence the second introduction axiom of L can be applied
with d = 1.

For the third assume ∀n∈N∀x(x ∈ Ln+4 → x2 ∈ Ln) and x ∈ Ln+6. We use
Lemma 3.14 and get d0, d1 ∈ Sd and y ∈ Ln+4 with

x2 =
y2+d21+2d20+4d0d1

8 +
d1y+d

2
0+2d0y
4

2
.

By an application of Theorem 3.4 we need to show that the two summands of
the numerator are in Ln+3. The left one can be rewritten as

y2+d21
2 +d20
2 + d0d1

2
,

so we can apply the introduction-rule three times and it remains to prove y2 ∈
Ln, which follows from the assumption since we have y ∈ Ln+4. The right side
can be written as

d1y+d
2
0

2 + d0y

2
.

By an application of Theorem 3.4 we need to provide
d1y+d

2
0

2 ∈ Ln+4 and d0y ∈
Ln+4. The second follows directly from Lemma 2.16. For the first one we use
the introduction axiom and Lemmas 2.8 and 2.16.
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Extracted term (cLSquare). The extracted term cLSquare : N → L → L is
given by

cLSquare(0, u) = U,

cLSquare(1, u) = 1 :: U,

cLSquare(n+ 2, d0 :: d1 :: u) = cLAverage(n+ 2, v0, v1),

where

v0 = d0d1 :: d20 :: d21 :: cLSquare(n, u),

v1 = cLAverage(

n+ 3, d20 :: (tl(cLSdTimes(n+ 4, d1, u))), cLSdTimes(n+ 4, d0, u)).

Remark 3.17. A very similar decomposition as in Lemma 3.14 can be used for
the multiplication. Namely

x+d0
2 + d1

2
·
y+e0

2 + e1

2
=

xy+d1e1
2

+d0e1
2 +d0e0

2 +

e1x+d1y
2

+d1e0
2 +

e0x+d0y
2

2

2
,

from which we can prove

x, y ∈ Ln+5 → x · y ∈ Ln.

Remark 3.18. Now that we have the squaring algorithm for the list representa-
tion we are also interested if the same algorithm is also possible for the stream
representation. So following our methodology, the algorithm should be obtained
from a proof of

x ∈ coI→ x2 ∈ coI.

While possible, technically such a proof is much harder.

3.3. Haskell translation

The terms extracted from the proofs can be translated to Haskell or Scheme
programs. We compare the run-time of the algorithms obtained for multipli-
cation for the stream and list-representations respectively. For this purpose we
translate the terms to Haskell and measure the time (with :set +s) it takes
to compute the first n digits of the square of some stream or list u. This
u is a pseudo-random sequence of signed digits generated with the Haskell
System.Random package. The time (in seconds) in the table below is the average
over 10 runs. Furthermore we also compare with the multiplication algorithm
from Remark 3.15.

As expected the runtime of cCoIMult and cLMult is about the same. The
small difference is due to the testing setup, since the algorithm for lists spends
more time printing to the screen.
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digits cCoIMult cLMult cLMultNew

10 .03 .03 .02
50 .12 .10 .05
250 2.34 2.44 .79
1000 22.27 24.67 12.65

Figure 1: runtime test for squaring

4. Conclusion and further work

We presented a formal method for extracting verified algorithms for exact
real number arithmetic based on stream representations. The verification is
based on an explicit representation of real numbers by Cauchy-sequences of
rational numbers, which ultimately do not appear in the extracted terms. Hence
the only axioms needed are the introduction and elimination axioms for the
predicates. The novelty of this approach is that the lookahead of these extracted
programs is directly part of the specification. All the proofs have been carried
out in the proof assistant Minlog and correctness proofs were automatically
generated.

The same methodology should be applicable to analyze the lookahead of
algorithms that are based on Gray-code as in [10]. We leave this for future
work.
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