
Lookahead analysis in exact real arithmetic with logical
methods

Nils Kpp

Ludwig-Maximilians Universitt, Theresienstr. 39, 80333 Mnchen

Helmut Schwichtenberg

Ludwig-Maximilians Universitt, Theresienstr. 39, 80333 Mnchen

Abstract

Program extraction from proofs can be used to obtain verified algorithms in
exact real arithmetic for e.g., the signed-digit code representation. In Minlog
this has been done in the past with the use of certain coinductive predicates. In a
next step we want to analyze the lookahead of these extracted programs. Doing
it by hand is quite cumbersome, so instead we change our definitions. Instead
of a coinductive predicate we use an inductive predicate for the representation
of reals that already incorporates the lookahead. In this way the lookahead
becomes part of the specification which is carried through all the proofs. In the
end we extract programs for computations on a signed-digit representation and
we can just read off the lookahead from the specification.

Keywords: signed digit code, exact real number computation, lookahead ,
program extraction, realizability, Minlog

Preprint submitted to Theoretical Computer Science July 29, 2022

Lookahead analysis in exact real arithmetic with logical
methods

Nils Kpp

Ludwig-Maximilians Universitt, Theresienstr. 39, 80333 Mnchen

Helmut Schwichtenberg

Ludwig-Maximilians Universitt, Theresienstr. 39, 80333 Mnchen

1. Introduction

We continue the work from [1], [2] and [3], where a coinductive predicate
coI was used to represent exact real numbers, i.e., coIx ⇔ x has a signed-
digit-code representation. This technique is based on an approach from [4],
although here we use explicitely defined real numbers instead of axioms for
abstract real numbers. From proofs that this predicate coI is closed under
average, multiplication and division, algorithms for exact real number arithmetic
are extracted and translated to Haskell. Furthermore a proof of correctness
can be automatically generated. In this paper we refine this method in order
to analyze the lookahead of these algorithms, namely we want to track how
many input digits are needed to compute a certain number of output digits.
To that end we use a new inductive predicate L that already contains the
information regarding the lookahead. In Section 1.3 we give a quick overview of
the definitions and main theorems from [1] and [2]. In Section 1.4 we give our
new definition and prove some basic properties. Then in Section 2 we use this
method to get explicit bounds for the lookahead in exact real arithmetic.

1.1. Theory of computable functionals

We use the formal theory of computable functionals TCF [5] to formalize
statements like “there is an arbitrarily exact representation of x by a list of
signed digits”. TCF is given by a language that consists of the following.

• Types consisting of variables, arrow-types and algebras directly given by
constructors.

• Terms given by the algebra-constructors, lambda-abstraction, application
and constants defined by computation rules.

• Predicates P,X which are either constants, variables or comprehension
terms {~x |A} of a fixed arity.

Preprint submitted to Theoretical Computer Science July 29, 2022

• Formulae of the form P~t, A→ B and ∀xA.

The logic is natural deduction together with a set of axioms for the predicate
constants given below. Note that predicates are marked as either computation-
ally relevant (c.r.) or non-computational (n.c.). Furthermore, for an unary
predicate A, we write t ∈ A for At and ∀t∈AB, ∃t∈AB are short for ∀t(At→ B)
and ∃t(At ∧B), respectively.

Predicates

The constants are either inductive or coinductive predicates. An inductive
predicate I is given by a list of introductory axioms

(I)+i : ∀~x(~Ai(I)→ I~ti) (i < k),

where X must only appear strictly positive in all Aij(X). Furthermore we add
a least-fixed-point-axiom or induction-axiom for I of the form

(I)− : I~x→
(
∀~x(~Ai(I ∩X)→ X~ti)

)
i<k
→ X~x.

The logical connectives ∃,∧ and ∨ are all special cases of inductive predicates.
A coinductive predicate J is introduced by giving one closure-axiom of the form

(J)− : ∀~x(J~x→
∨
i<k

∃~yiBi(J)).

Furthermore we add a greatest-fixed-point-axiom

(J)+ : X~x→ ∀~x(X~x→
∨
i<k

∃~yiBi(J ∪X))→ J~x.

For any inductive predicate I its companion prediacte coI is given by setting
Bi =

∧ ~Ai. Examples for inductive predicates are the totality predicates. For
some type τ the expression t ∈ τ is short for t ∈ Tτ , where Tτ is the totality-
predicate for this type, e.g., for a term ns : N → N we have ns ∈ (N → N) :=
∀n∈TN(ns n) ∈ TN where n ∈ TN is the inductive predicate given by the clauses
0 ∈ TN and n ∈ TN → (n+ 1) ∈ TN. The elimination rule of n ∈ N is induction
over natural numbers.

3

Realizability and Computational Content

We inductively assign to each c.r. predicate P and formula A a type τ and
a predicate P r of arity arity(P)× τ respectively Ar of arity τ .

τ(I) := ιI

τ(A→ B) :=

{
τ(A)→ τ(B), A c.r.

τ(B), A n.c.

τ(∀xA) := τ(A)

xrI~t := Ir~tx

fr(A→ B) :=

{
∀x(xrA→ (f x)rB), A c.r.

A→ frB, A n.c.

xr∀yA := ∀yxrA

Furthermore to each derivation of a c.r. formula we assign its extracted term.
The interesting cases are the axioms. For an inductive predicate I given as
above they are

et((I)+i) := CιIi ,

et((I)−(P)) := RτιI (P),

et((coI)−) := D,

et((coI)+(P)) := coRιIτ(P),

where RιI and coRιI are the recursion and corecursion operators associated to
the algebra ιI and Ci and D are its constructors and destructor respectively. Note
that a non-uniform version of the ∀-quantifier can be recovered by abbreviations
as above, e.g., for A c.r. τ(∀n∈NA) := N→ τ(A) and fr∀n∈NA := ∀n,m(mr(n ∈
N)→ (f m)rA).

Correctness and implementation in Minlog

The foundation of program extraction is the soundness-theorem, namely
given a proof M of a formula A we also have a proof of et(M)rA. The proof
is by induction on derivations. In Minlog this proof of correctness can be auto-
matically generated for every proof.
In TCF all variables are typed. The following table shows which variables have
which type.

m,n : N a, b : Q M,N : Z+ → N
d, e, k : Z x, y : R as, bs : N→ Q

Here N are the unary natural numbers, Z is defined as positive binary numbers
and Q is given by one constructor # : Z → Z+ → Q. In the implementation
in Minlog the type of real numbers R is explicitly defined as the type (N →
Q)×(Z+ → N). For computing the extraced terms and verifying the correctness

4

of the proofs, the proof assistant Minlog [6] is used. An introduction to Minlog
can be found in [7] or doc/tutor.pdf in the Minlog directory. All the proofs
in this paper have been formalized in Minlog. Minlog has the capability to
translate terms into Haskell. After each proof in the following we state its
computational content.

1.2. Cauchy reals

Formally real numbers are defined as pairs of a sequences of rational numbers
together with a modulus, roughly as presented in [8].

Definition 1 (Cauchy representation). We define the algebra R by the single
constructor

RealConstr : (N→ Q)→ (Z+ → N)→ R.

For as : N→ Q and M : Z+ → N we define

Mon(M) := M ∈ Tnc ∧ ∀p≤q (Mp ≤Mq) .

Next we define the predicate R, x = RealConstr as M ∈ R by

M ∈Mon ∧ as ∈ Tnc ∧ ∀p∈Tnc∀n,m≥M(p)

(
|(as n)− (as m)| < 2−p

)
.

In the following ∀xA will always be an abbreviation for ∀x(x ∈ R→ A) respec-
tively ∀x∈BA abbreviates ∀x(x ∈ R → B → A). For the type of R together
with the predicate R we can define all the usual operation for the real numbers
and prove all the properties of a field that constructively hold. For details we
refer to [9] and the implementation in Minlog which can be found in the folder
.../git/minlog/lib/rea.scm. Note that x ∈ R by definition does not carry
any computational content. Hence the Cauchy-representation of the reals is
only used for the verificiation.

1.3. Real numbers represented by streams

A signed-digit-code representation of some real number x is a sequence
(di)i ∈ {−1, 0, 1}N such that

x =

∞∑
i=1

di2
−i.

Definition 2 (sd-code representation). We define coI as the greatest predicate
satisfying the single clause

d ∈ Sd→ x ∈ coI→ x =
y + d

2
→ y ∈ coI

where Sd := {−1, 0, 1} ⊆ Z is an inductive predicate.

5

.../git/minlog/lib/rea.scm

Remark 1. Henceforth we will use Sd for the predicate as well as the algebra
given by three nullary constructors. A realiser of coIx is exactly a stream of
signed digits. The algebra of streams of signed digits S is given by the single
constructor

C : Sd→ S→ S.

The axioms of coI can be expressed as

coI− : x ∈ coI→ ∃d∈Sd,y∈coI x =
y + d

2

coI+ : ∀x∈X∃d∈Sd∃y∈X∪coI x =
y + d

2
→ X ⊆ coI.

Theorem 1 (CoIAverage). For all x, y ∈ coI

x+ y

2
∈ coI

Proof. The proof is done by first showing that{
x+ y

2

∣∣∣x, y ∈ coI

}
⊆
{
x+ y + i

4

∣∣∣x, y ∈ coI, i ∈ Sd2

}
,

where Sd2 := {−2,−1, 0, 1, 2}. Then we show that the second set also satisfies
the clause of coI. The result follows from the coinduction axiom.

Theorem 2 (CoIMult). For all x, y ∈ coI

xy ∈ coI

Proof. The idea is similar to the previous proof. First we show

{xy |x, y ∈ coI} ⊆
{
xy + z + i

4
|x, y, z ∈ coI, i ∈ Sd2

}
,

and then, that the second set fulfills the clause. Coinduction yields the claim.

Theorem 3 (CoIDiv). For all x, y ∈ coI with 1
4 ≤ y and |x| ≤ y

x

y
∈ coI

Proof. By coinduction we prove{
x

y

∣∣∣∣ x, y ∈ coI, |x| ≤ y, 1

4
≤ y
}
⊆ coI.

6

1.4. Real numbers represented by lists

We want to analyze the lookahead of the algorithms we extracted from the
proofs. Going through the proofs or algorithms and tracking the lookahead by
hand can be done, albeit it is quite cumbersome. For that reason we want to
track the lookahead directly on the logical level as part of the specification. To
this end we define a new inductive predicate

L ⊆ R× N

with the intended meaning

L(x, n)⇔We know the first n digits of x.

Equivalently L(x, n) should mean that we have a 1
2n approximation of x, i.e.,

we have n signed digits d1 . . . dn such that
∣∣x−∑n

i=1
di
2i

∣∣ ≤ 1
2n . The formal

definition is motivated by the following property that L should have.

L(x, n+ 1)→ x =
y + d

2
→ L(y, n),

i.e., if we know the first n+1 digits of x and d is the first digit, then we know the
first n digits of 2x−d. We redo all the proofs previously done with a coinductive
predicate, and from a proof of e.g.,

L(x, n+ 1)→ L(y, n+ 1)→ L(
x+ y

2
, n)

we extract a term of type L → L → L that computes the first n digits of x+y
2 ,

given n+ 1 digits of x and y. Note that we do not loose anything compared to
Theorem 1, we just added some control regarding the precision of the input.

Definition 3. We define L as the least predicate satisfying the clauses

∀x,n(|x| ≤ 1→ L(x, 0))

∀x,n,d∈D(L(x, n+ 1)→ x =
y + d

2
→ L(y, n)).

Note that the algebra of realizers of L, namely L is now given by two con-
structors

U : L
C : Sd→ L→ L,

where U is the empty list. The computational content of the two introductory
axioms are the two constructors respectively. Note that due to the nullary clause
of L is it unnecessary to use a coniductive predicate, since realizers of Lxn will
be total (as long as n is) , i.e., finite lists, in any case. Note that apart from
choosing the right natural number, the proofs are very similar to the original
proofs. Coinduction will be replaced by an induction over the length of the
realizing list. In the following we will use the variable names u, v : L.

7

Remark 2. The elimination axiom of L has the following form. Assume P ⊆
R× N. Then if

∀x(|x| ≤ 1→ Px0)

∀d∈D,x,y,n(Lxn→ Pxn→ y =
x+ d

2
→ Py(n+ 1))

we can infer L ⊆ P . In the following we will use the notation

Lxn := (x ∈ Ln)

If P has type τ then the computational content of the elimination axiom (L)−[P]
is given by the recursion operator RτL : L→ τ → (Sd→ L→ τ → τ)→ τ with
the computation rules

RτL(U, t0, f) = t0

RτL(Cdv, t0, f) = f(d, v,RτL(v, t0, f)),

i.e., recursion for lists.

1.5. Basic properties

We prove some basic properties.

Lemma 1 (LSuccToL).

∀x,n(x ∈ Ln+1 → x ∈ Ln).

Proof. We can immediately prove ∀m,x,n(x ∈ Lm → m = n+ 1→ x ∈ Ln) with
the elemination axiom of L.

Extracted Term (cLSuccToL).

cLSuccToL(d :: u) := u.

Lemma 2 (LToLPred).

∀x,n(x ∈ Ln → x ∈ Ln−̇1).

Proof. Immediately by the elimination axiom of L.

Extracted Term (cLToToLPred).

cLToLPred(U) := U,

cLToLPred(d :: u) := u.

Remark 3. In the following we will write the extracted term of the previous
two lemmas as tl : L→ L, i.e., the usual tail-function. Furthermore, for better
readability, we will sometimes make use of the function hd : L→ Sd defined by

hd(U) := 0,

hd(d :: u) := d.

8

Lemma 3 (LCompat).

∀x,y,n(x = y → x ∈ Ln → y ∈ Ln)

Proof. The proof is by induction on Lxn

Extracted Term (cLCompat). The extracted term is cLCompat(u) := u, i.e.,
the identity. In the following we will omit it.

In order to adapt proofs for coI to the present setting we prove that L satisfies
a certain closure-rule.

Lemma 4 (LClosure).

x ∈ Ln+1 → ∃d∈D,x0
x =

x0 + d

2
∧ x0 ∈ Ln.

Proof. Immediately by induction.

Extracted Term (cLClosure). The extracted term is of type L → Sd × L.
Let 〈·, ·〉 denote the pair constructor, then

cLClosure(s :: v) := 〈s, v〉.

In the following this term we will be supressed by either supplying enough digits
in the input or by using the hd function when needed.

In order to avoid long case distinctions in the following proofs we define two
functions J,K : Z→ Z such that the following equality holds:

m = K(m) + 4J(m)

These functions exist since we can do division with remainder. Furthermore we
have the following property:

Lemma 5. For m ∈ Z with |m| ≤ 6 it holds that Km ∈ Sd2 and Jm ∈ Sd.

For the proofs in the next section regarding multiplication we need some
more properties of L.

Lemma 6 (LSd).
∀n∈N∀d∈Sd d ∈ Ln

Proof. By induction on n ∈ N.

Extracted Term (cLSd). cLSd : N→ Sd→ L

cLSd(0, d) := U

cLSd(n+ 1, d) := d :: (cLSd(n, d))

Lemma 7 (LUMinus).
∀n∀x∈Ln(−x) ∈ Ln

9

Proof. By induction on x ∈ Ln. In the base case we immediately get (−x) ∈ L0.
Assume d ∈ D, x, (−x) ∈ Ln and y = x+d

2 . We need to prove (−y) ∈ Ln+1 which

follows from −y = −x−d
2 .

Extracted Term (cLUMinus). cLUMinus : L→ L is given by recursion on L:

cLUMinus U := U

cLUMinus(e :: v) := (−e) :: (cLUMinus v)

Lemma 8 (LSdTimes).

∀n∈N∀d∈D∀x∈Ln
(dx) ∈ Ln

Proof. By induction on d ∈ D. If d = −1 we use Lemma 7 and if d = 0 then
Lemma 6. Otherwise we are done by compatibility.

Extracted Term (cLSdTimes). cLSdTimes : N → Sd → L → L is defined by
a case-distiction on Sd:

cLSdTimes(n,−1, u) := cLUMinus u

cLSdTimes(n, 0, u) := cLSd(n, 0)

cLSdTimes(n, 1, u) := u

For the proof that L is closed under division we will need the following two
Lemmas.

Lemma 9 (LNegToLPlusOne,LPosToLMinusOne). For all n ∈ N we have

x ∈ Ln → x ≤ 0→ (x+ 1) ∈ Ln,

x ∈ Ln → 0 ≤ x→ (x− 1) ∈ Ln.

Proof. Both statements follow by induction on n ∈ N. In the step a case-
distinction on Sd is used.

Extracted Term (cLNegToPlusOne,cLPosToLMinusOne). The extracted terms
are defined by recursion on N and a case-distinction on Sd in the step-cases:

cLNegToPlusOne(0, u) := U

cLNegToPlusOne(n+ 1, d :: v) :=


cLSd(n+ 1, 1), d = 1

1 :: cLNegToPlusOne(v), d = 0

1 :: v, d = −1

cLPosToLMinusOne(0, u) := U

cLPosToLMinusOne(n+ 1, d :: v) :=


−1 :: v, d = 1

−1 :: cLPosToLMinusOne(v), d = 0

cLSd(n+ 1,−1), d = −1

10

Lemma 10 (LToLDouble,LToLQuad). For all n ∈ N

x ∈ Ln+1 → |x| ≤
1

2
→ (2x) ∈ Ln,

x ∈ Ln+2 → |x| ≤
1

4
→ (4x) ∈ Ln.

Proof. For the first statement we use Lemmas 4 and 9 with a case-distinction
on Sd. E.g. if x = y+1

2 , then x ≤ 1
2 implies y ≤ 0 and 2x = y + 1 ∈ Ln. The

second follows directly from the first.

Extracted Term (cLToLDouble,cLToLQuad). The extracted terms are

cLToLDouble(n, d :: u) :=


cLNegToLPlusOne(n, u), d = 1

u, d = 0

cLPosToLMinusOne(n, u), d = −1

,

cLToLQuad(n, u) := cLToLDouble(n, cLToLDouble(n+ 1, u)).

2. Exact real number arithmetic with lookahead

2.1. Average, multiplication and division

Now we can go through the proofs referenced above with the new predicate
L instead of coI. This will give us verified algorithms for exact real number
arithmetic with the added bonus that the look-ahead of the algorithms is ex-
plicitly part of the specification.

We first show that L is closed under the average. The proof structure will
be very similar, namely we show{

x+ y

2
|x, y ∈ Ln+1

}
⊆
{
x+ y + i

4
|x, y ∈ Ln, i ∈ Sd2

}
⊆ Ln,

where the second inclusion is proven by induction on N.

Lemma 11 (LAvToAvc).

x, y ∈ Ln+1 → ∃i∈D2
∃x1,y1∈Ln

x+ y

2
=
x1 + y1 + i

4

Proof. By applying Lemma 4 to x, y ∈ Ln+1 we get

x+ y

2
=
x1 + y1 + (d+ e)

4
.

Extracted Term (cLAvToAvc). cLAvToAvc : L→ L→ Sd2 × L× L

cLAvToAvc(d :: u, e :: v) := 〈d+ e, u, v〉.

11

Lemma 12 (LAvcSatLCl).

i ∈ Sd2 → x, y ∈ Ln+1 → ∃d∈D∃j∈D2
∃x1,y1∈Ln

x+ y + i

4
=

x1+y1+j
4 + d

2
.

Proof. We use Lemma 4 to decompose x, y ∈ Ln+1 to d, e ∈ Sd, x0, y0 ∈ Ln.
Then we compute

x+ y + i

4
=
x0 + y0 + (d+ e+ 2i)

8
.

With Lemma 5 we can transform this expression to

x0+y0+K(d+e+2i)
4 + J(d+ e+ 2i)

2
.

Extracted Term (cLAvcSatLCl). cLAvcSatLCl : Sd2 → L→ L→ Sd×Sd2×
L× L

cLAvcSatLCl(i, d :: u, e :: v) := 〈K(d+ e+ 2i), J(d+ e+ 2i), u, v〉.

Lemma 13 (LAvcToL).

∀n∈N∀i∈D2
∀x,y∈Ln

x+ y + i

4
∈ Ln

Proof. By induction on n ∈ N. The base-case is immediate by the first intro-
duction axiom of L, since

|x|, |y| ≤ 1⇒
∣∣∣∣x+ y + i

4

∣∣∣∣ ≤ 1.

So assume

∀i∈D2∀x,y∈Ln

x+ y + i

4
∈ Ln,

and x, y ∈ Ln+1. By Lemma 12 there exists j ∈ D2, d ∈ D and x1, y1 ∈ Ln with

x+ y + i

4
=

x1+y1+j
4 + d

2

By compatibility of L it suffices to prove

x1+y1+j
4 + d

2
∈ Ln+1.

By the second introduction axiom of L this follows from

x1 + y1 + j

4
∈ Ln

which we have by the induction hypothesis.

12

Extracted Term (cLAvcToL). The extracted term cLAvcToL : N → Sd2 →
L→ L→ L is defined by recursion on N. It is given by

cLAvcToL(0, i, u, v) := U

cLAvcToL(n+ 1, i, u, v) := d :: cLAvcToL(n,w),

where
〈d,w〉 = cLAvcSatLCl(i, u, v).

Theorem 4 (LAverage).

∀n∈N∀x,y∈Ln+1

x+ y

2
∈ Ln

Proof. Directly by the Lemmas 11 and 13.

Extracted Term (cLAverage). The extracted term cLAverage : N → L →
L→ L is defined by

cLAverage(n, u, v) := cLAvcToL(n+ 1, cLAvToAvc(u, v)).

Next we will prove, that L is closed under multiplication. Again the structure
of the proof is comparable to the coinductive case. We prove

{xy |x, y ∈ Ln+3} ⊆
{
xy + z + i

4
|x, y ∈ Ln+2, z ∈ Ln, i ∈ Sd2

}
,

and in a second step, by induction on N,{
xy + z + i

4
|x, z ∈ L3n, y ∈ L3n−̇1, i ∈ Sd2

}
⊆ Ln.

Lemma 14 (LMultToMultc). For all n ∈ N and x, y ∈ Ln+3 we have

∃i∈D2
∃x1,y1∈Ln+2

∃z1∈Ln

(
xy =

x1y1 + z1 + i

4

)
Proof. By Lemma 4 there are d1, e1 ∈ D and x1, y1 ∈ Ln+2 such that

x =
x1 + d1

2
y =

y1 + e1
2

.

Then by Lemma 8 and Theorem 4 we also know

e1x1 + d1y1
2

∈ Ln+1.

So by another application of Lemma 4 there exist z1 ∈ Ln and d2 ∈ Sd with
e1x1+d1y1

2 = z1+d2
2 . We compute

xy =
x1y1 + d1e1 + e1x1 + d1y1

4
=
x1y1 + z1 + (d2 + d1e1)

4
.

13

Extracted Term (cLMultToMultc). The extracted term cLMultToMultc : N→
L→ L→ Sd2 × L× L× L is given by

cLMultToMultc(n, d1 :: u, e1 :: v) := 〈d2 + d1e1, u, e1 :: v, w〉,

where

d2 :: w = cLAverage(cLSdTimes(n+ 2, e1, u), cLSdTimes(n+ 2, d1, v).

Lemma 15 (LMultcSatLCl). For all i ∈ D2, n ∈ N,m, x ∈ Lm+1, y ∈ Ln+2

and z ∈ Ln+3 we have

∃d∈D∃j∈D2∃x1∈Lm∃z1∈Ln

xy + z + i

4
=

x1y+z1+j
4 + d

2
.

Proof. We decompose x, z via Lemma 4 into

x =
x1 + d1

2
z =

z0 + d0
2

,

where x1 ∈ Lm and z0 ∈ Ln+2. Then by Lemmas 13 and 8 we know

z0 + d1y + i

4
∈ Ln+2.

Another two applications of Lemma 4 to this yields

z0 + d1y + i

4
=
z1 + e1 + 2e0

4
,

where z1 ∈ Ln and e, e0 ∈ Sd. Finally we compute

xy + z + i

4
=
x1y + (z0 + d1y + i) + d0 + i

8
=
x1y + (z1 + e1 + 2e0) + d0 + i

8
.

With m := e1 + 2e0 + d0 + i and Lemma 5 we get

=
x1y+z1+J(m)

4 +K(m)

2
.

Extracted Term (cLMultcSatLCl). The extracted term cLMultcSatLCl : Sd2 →
N→ L→ L→ L→ Sd× Sd2 × L× L is given by

cLMultcSatLCl(i, n, d1 :: u, v, d0 :: w) := 〈K(m), J(m), u, w0〉,

where m := e1 + 2e0 + d0 + i and

e0 :: e1 :: w0 := cLAvcToL(n+ 2, w, cLSdTimes(n+ 2, d1, v)).

Lemma 16 (LMultcToL). For all n ∈ N, i ∈ D2 and x, z ∈ L3n, y ∈ L3n−̇1 we
have

xy + z + i

4
∈ Ln

14

Proof. By induction on n ∈ N. In the step case assume i ∈ D2, x, z ∈ L3n+3

and y ∈ L3n+2. We need to prove

xy + z + i

4
∈ Ln+1.

To that end we show there exist d ∈ D and x′ ∈ Ln with

xy + z + i

4
=
x′ + d

2
.

Then the claim follows from the second introduction axiom. From Lemma 15
we obtain d ∈ Sd, j ∈ Sd2, x1 ∈ L3n+2 and z1 ∈ L3n with

xy + z + i

4
=

x1y+z1+j
4 + d

2

Hence it suffices to show that x1y+z1+j
4 ∈ Ln for which we use the induction

hypothesis. This requires that x1, z1 ∈ L3n and y ∈ L3n−̇1 which we either have
directly or by applications of Lemmas 1 and 2.

Extracted Term (cLMultToL). The extracted term cLMultToL : N → L ×
Sd2 × L× L→ L is given by recursion, namely

cLMultToL(0, i, u, w, v) := U

cLMultToL(n+ 1, i, u, w, v) := d :: cLMultToL(n, 〈i1, hd(2) u1, w1, hd
(3) v〉),

where
〈d, i1, u1, w1〉 = cLMultcSatLCl(i, 3n, u, v, w).

Now we have all the parts to finalize the proof, that L is closed under mul-
tiplication.

Theorem 5 (LMult).

n ∈ N→ x, y ∈ L3n+3 → xy ∈ Ln

Proof. By Lemma 14 there exist x1, y1 ∈ L3n+2, z ∈ L3n and i ∈ Sd2 with

xy =
x1y1 + z1 + i

4
.

Now with two respectively three applications of Lemmas 1 and 2 to x and y we
can use the previous Lemma 16 to get x1y1+z1+i

4 ∈ Ln.

Extracted Term (cLMult). The extracted term cLMult : N→ L→ L→ L is
defined by

cLMult(n, u, v) := cLMultcToL(n, i, hd(2) u1, hd
(3) v1, w),

where

〈i, u1, v1, w〉 := cLMultToMultc(3n, u, v).

15

We proceed with the proof that L is closed under division. We first prove{
x

y

∣∣∣∣ x ∈ Ln+3, y ∈ Ln+2,
1

4
≤ y, |x| ≤ y

}
⊆{ x

y + d

2

∣∣∣∣ d ∈ Sd, x ∈ Ln, y ∈ Ln+2,
1

4
≤ y, |x| ≤ y

}
.

Then in a second step, by induction on N this directly gives us{
x

y

∣∣∣∣ x ∈ L3n, y ∈ L3n−̇1,
1

4
≤ y, |x| ≤ y

}
⊆ Ln.

Lemma 17 (LDivSatLClAuxL,LDivSatLClAuxR). Assume n ∈ N and x ∈
Ln+3, y ∈ Ln+2 with

1

4
≤ y ∧ |x| ≤ y.

Then we have

0 ≤ x→ (2x− y) ∈ Ln

x ≤ 0→ (2x+ y) ∈ Ln

Proof. First assume 0 ≤ x. Using the assumptions we can estimate

2x− y ≤ 2y − y ≤ |y| ≤ 1
y − 2x ≤ y ≤ |y| ≤ 1

}
⇒
∣∣∣∣x− y

2

2

∣∣∣∣ ≤ 1

4
.

Hence we can apply Lemma 10 for our goal. Now by Theorem 4 it remains to
prove x,−y2 ∈ Ln+3. The first we have by assumption and the latter follows from

Lemma 7 and an application of the second introduction axiom using y
2 = y+0

2
and the assumption y ∈ Ln+2. The second formula is proven in a similar fashion
but with an application of Lemma 7.

Extracted Term (cLDivSatLClAuxL,cLDivSatLClAuxR). The extracted terms,
both of type N→ L→ L→ L, are given by

cLDivSatLClAuxL(n, u, v) := cLToLQuad(n, cLAverage(n+ 2, u, cLUMinus(SdM :: v))),

cLDivSatLClAuxR(n, u, v) := cLToLQuad(n, cLAverage(n+ 2, u, SdM :: v)).

Lemma 18 (TripleCase).

3 ≤ n→ x ∈ Ln → 0 ≤ x ∨ |x| ≤ 1

8
∨ x ≤ 0

Proof. Three applications of Lemma 4 give d0, d1, d2 ∈ Sd and some y ∈ Ln
with

x =
4d0 + 2d1 + d2 + y

8
.

16

By case-distinctions on di ∈ Sd we get

d0 = 1
d0 = 0, d1 = 1

d0 = d1 = 0, d2 = 1

⇒ 0 ≤ x
d0 = d1 = 0, d2 = −1

d0 = 0, d1 = −1
d0 − 1

⇒ x ≤ 0

and

d0 = d1 = d2 = 0⇒ |x| ≤ 1

8
.

Extracted Term (cTripleCase). The extracted term cTripleCase : L→ U+
U + U is directly defined according to the case-distinction in the proof, e.g.,

cTripleCase(0 :: 0 :: 0 :: u) = InL(InR).

In the following we will omit it and just write out the case-distinction.

Lemma 19 (LDivSatLCl). Assume n ∈ N, x ∈ Ln+3, y ∈ Ln+2 with

1

4
≤ y ∧ |x| ≤ y.

Then

∃d0∈D∃x0∈Ln
|x0| ≤ y ∧

x

y
=

x0

y + d0

2
.

Proof. We use Lemma 18 and distinguish cases. In the first case 0 ≤ x and we
define d0 = 1 and

x0 = 2x− y = 4
x− y

2

2
.

An application of Lemma 17 directly yields x0 ∈ Ln and we compute

x

y
=

x0+y
2

y
=

x0

2 + 1

2
.

In case x ≤ 0 we proceed in a similar fashion with d0 = −1 and x0 = 2x + y.
The remaining case is |x| ≤ 1

8 . Here we define d0 = 0 and x0 = 2x. Since
x ∈ Ln+3 and |x| ≤ 1

8 ≤
1
2 by Lemma 10 we get 2x ∈ Ln+2. Two applications

of 1 yield x0 ∈ Ln. Futhermore

x

y
=

2x
y

2
=

x0

y + 0

2
.

Extracted Term (cLDivSatLCl). By unfolding the case-distinction the ex-
tracted term of type N→ L→ L→ Sd×L can be represented in the following
way.

cLDivSatLCl(n, u, v) :=


〈1, cLDivSatLClAuxL(u, v)〉, 0 ≤ x
〈0, hd(2)(cLToDouble(n+ 2, u)))〉, |x| ≤ 1

8

〈−1, cLDivSatLClAuxR(u, v)〉, x ≤ 0

17

Now we can finally prove that L is closed under division:

Theorem 6 (LDiv).

∀n∈N∀x∈L3n
∀y∈L3n−̇1

(
1

4
≤ y → |x| ≤ y → x

y
∈ Ln

)
Proof. By induction on n ∈ N. In the base case we have

∣∣∣xy ∣∣∣ ≤ 1 and are

done. So assume x ∈ L3n+3, y ∈ L3n+2. By the previous Lemma 19 we get
d0 ∈ Sd, x0 ∈ L3n with |x0| ≤ y and

x

y
=

x0

y + d0

2
.

By the second introduction axiom we need to prove x0

y ∈ Ln. With the induction
hypothesis it remains to prove x0 ∈ L3n and y ∈ L3n−̇1. The former we have
and the latter follows with applications of Lemmas 1 and 2.

Extracted Term (cLDiv). The extracted term cLDiv : N → L → L → L is
given by recursion on n ∈ N.

cLDiv(0, u, v) = U,

cLDiv(n+ 1, u, v) = d :: cLDiv(n, u1, hd
(3) v),

where
〈d, u1〉 := cLDivSatLCl(3n, u, v).

Next we turn our attention the computation of the square. We could just
use Theorem 5 and obtain

x ∈ L3n+3 → x2 ∈ Gn

but there is a way to obtain an algorithm with a lower bound for the lookahead.
The computation is based on the following decomposition.

Lemma 20 (LSquareAux). If x ∈ Ln+2 then there exist d0, d1 ∈ Sd and y ∈ Ln
with

x2 =
y2+d21+2d20+4d0d1

8 +
d1y+d

2
0+2d0y
4

2
.

Proof. By two applications of Lemma 4 we get y ∈ Ln and d0, d1 ∈ Sd with

x =
y + d1 + 2d0

4
.

The rest is obtained by elementary arithmetic.

Extracted Term (cLSquareAux). The extracted term is given by

cLSquareAux(d0 :: d1 :: u) = 〈d0, d1, u〉.

18

Remark 4. In the proof of the following Theorem we avoid an unnecessary use
of course-of-values-induction by using induction over N in the following way.

A0→ A1→ ∀n∈N(An→ A(n+ 2))→ N ⊆ A

If τ is the type associated to A, the realizer f : τ → τ → (N→ τ → τ)→ N→ τ
is given by

f(t0, t1, H, 0) = t0,

f(t0, t1, H, 1) = t1,

f(t0, t1, H, n+ 2) = H(n, f(t0, t1, n)).

Theorem 7 (LSquare).

∀n∈N(x ∈ Ln+4 → x2 ∈ Ln)

Proof. By the remark above we prove the three following statements which then
imply the claim.

∀x(x ∈ L4 → x2 ∈ L0), ∀x(x ∈ L5 → x2 ∈ L1),

∀n∈N∀x(x ∈ Ln+4 → x2 ∈ Ln)→ ∀n∈N∀x(x ∈ Ln+6 → x2 ∈ Ln+2)

The first one is immediate since |x| ≤ 1 implies |x2| ≤ 1.
The second one holds, since |x2| ≥ 0, namely we decompose x = y+d

2 , compute

x2 =
(y+d)2−2

2 + 1

2

and
∣∣(y + d)2 − 2

∣∣ ≤ 2. Hence the second introduction axiom of L can be applied
with d = 1.
For the third assume ∀n∈N∀x(x ∈ Ln+4 → x2 ∈ Ln) and x ∈ Ln+6. We use
Lemma 20 and get d0, d1 ∈ Sd and y ∈ Ln+4 with

x2 =
y2+d21+2d20+4d0d1

8 +
d1y+d

2
0+2d0y
4

2
.

By an application of Theorem 4 we need to show that the two summands of the
numerator are in Ln+3. The left one can be rewritten as

y2+d21
2 +d20
2 + d0d1

2
,

so we can apply the introduction-rule three times and it remains to prove y2 ∈
Ln, which follows from the assumption since we have y ∈ Ln+4.
The right side can be written as

d1y+d
2
0

2 + d0y

2
.

By an application of Theorem 4 we need to provide
d1y+d

2
0

2 ∈ Ln+4 and d0y ∈
Ln+4. The second follows directly from Lemma 8. For the first one we use the
introduction axiom and Lemmas 1 and 8.

19

Extracted Term (cLSquare). The extracted term cLSquare : N → L → L is
given by

cLSquare(0, u) = U,

cLSquare(1, u) = 1 :: U,

cLSquare(n+ 2, d0 :: d1 :: u) = cLAverage(n+ 2, v0, v1),

where

v0 = d0d1 :: d20 :: d21 :: cLSquare(n, u),

v1 = cLAverage(n+ 3, d20 :: (tl(cLSdTimes(n+ 4, d1, u))), cLSdTimes(n+ 4, d0, u)).

2.2. Composition

In this section we want to analyze the look-ahead of compound expressions.
We can immediately prove the following

Theorem 8 (LComp). Let f, g : R → R and r, s ∈ N → N total functions.
Further assume that we have

∀x,n(x ∈ Lr(n) → (f x) ∈ Gn),

∀x,n(x ∈ Ls(n) → (g x) ∈ Gn),

then
∀x,n(x ∈ G(s◦r)(n) → (f ◦ g)(x) ∈ Gn)

Proof. Immediately from the two assumptions.

Extracted Term (cLComp). Assuming that r, s only occur non-computational
the extracted term cLComp : (L→ L)→ (L→ L)→ L→ L is simply given by

cLComp(f0, f1, u) := f0(f1u).

If r, s are computationally relevant, then cLComp : (N→ N)→ (N→ L→ L)→
(N→ L→ L)→ N→ L→ L is defined by

cLComp(r0, r1, H0, H1, n) = H0(n,H1(r0 n), u).

Using this we can e.g., prove the following

Lemma 21. For all n ∈ N we have

x, y ∈ L9n+12 → z ∈ L3n+3 → xyz ∈ Ln,

x, y, z ∈ L3n+6 →
xy + xz

2
∈ Ln.

20

3. Conclusion and further work

We presented a formal method for extracting verified algorithms for exact
real number arithmetic based on stream representations. The verification is
based on an explicit representation of real numbers by Cauchy-sequences of
rational numbers, which ultimately do not appear in the extracted terms. Hence
the only axioms needed are the introduction and elimination axioms for the
predicates. The novelty of this approach is that the lookahead of these extracted
programs is directly part of the specification. All the proofs have been carried
out in the proof assistant Minlog and correctness proofs were automatically
generated.

The same methodology can be applied to analyze the lookahead of algorithms
that are based on gray-code as in [10]. Furthermore it would be interesting to
formalize the connection between the two predicates coI and L. Namely for
certain programs extracted from a proof involving L there is a corresponding
program for coI. The latter will then exactly have the lookahead specified in
the former.

[1] H. Schwichtenberg, F. Wiesnet, Logic for exact real arithmetic, Logical
Methods in Computer Science 17:2, 2021.

[2] H. Schwichtenberg, Logic for exact real arithmetic: Multiplication, in:
D. Bridges, H. Ishihara, H. Schwichtenberg, M. Rathjen (Eds.), Handbook
of constructive mathematics, Cambridge University Press, 2022, to appear.

[3] K. Miyamoto, H. Schwichtenberg, Program extraction in exact real arith-
metic, Mathematical Structures in Computer Science 25 (Special issue 8)
(2015) 1692–1704.

[4] U. Berger, From coinductive proofs to exact real arithmetic: theory and
applications, Log. Methods Comput. Sci. 7 (1). doi:10.2168/LMCS-7(1:

8)2011.
URL https://doi.org/10.2168/LMCS-7(1:8)2011

[5] H. Schwichtenberg, S. S. Wainer, Proofs and Computations, Perspectives
in Logic, Association for Symbolic Logic and Cambridge University Press,
2012.

[6] K. Miyamoto, The Minlog System, http://www.mathematik.

uni-muenchen.de/~logik/minlog/index.php, [Online; accessed 29-
January-2017] (2017).

[7] F. Wiesnet, Introduction to Minlog, in: K. Mainzer, P. Schuster,
H. Schwichtenberg (Eds.), Proof and Computation, World Scientific, 2018,
pp. 233–288.

[8] E. Bishop, D. Bridges, Constructive analysis, Vol. 279, Springer Science &
Business Media, 2012.

21

https://doi.org/10.2168/LMCS-7(1:8)2011
https://doi.org/10.2168/LMCS-7(1:8)2011
http://dx.doi.org/10.2168/LMCS-7(1:8)2011
http://dx.doi.org/10.2168/LMCS-7(1:8)2011
https://doi.org/10.2168/LMCS-7(1:8)2011
http://www.mathematik.uni-muenchen.de/~logik/minlog/index.php
http://www.mathematik.uni-muenchen.de/~logik/minlog/index.php

[9] H. Schwichtenberg, Constructive analysis with witnesses, in: Schwichten-
berg and Spies [11], pp. 323–353.

[10] U. Berger, K. Miyamoto, H. Tsuiki, H. Schwichtenberg, Logic for Gray-
code Computation, In D. Probst and P. Schuster: Concepts of Proof in
Mathematics, Philosophy, and Computer Science, 2016, pp. 69–110.

[11] H. Schwichtenberg, K. Spies (Eds.), Proof Technology and Computation.
Proc. NATO Advanced Study Institute, Marktoberdorf, 2003, Vol. 200 of
Series III: Computer and Systems Sciences, IOS Press, 2006.

22

	Introduction
	Theory of computable functionals
	Cauchy reals
	Real numbers represented by streams
	Real numbers represented by lists
	Basic properties

	Exact real number arithmetic with lookahead
	Average, multiplication and division
	Composition

	Conclusion and further work

