
Recursion on the partial continuous functionals

Helmut Schwichtenberg

1 Introduction

We describe a constructive theory of computable functionals, based on the
partial continuous functionals as their intendend domain. Such a task had
long ago been started by Dana Scott [28], under the well-known abbrevia-
tion LCF. However, the prime example of such a theory, Per Martin-Löf’s
type theory [24] in its present form deals with total (structural recursive)
functionals only. An early attempt of Martin-Löf [23] to give a domain theo-
retic interpretation of his type theory has not even been published, probably
because it was felt that a more general approach – such as formal topology
[13] – would be more appropriate.

Here we try to make a fresh start, and do full justice to the fundamental
notion of computability in finite types, with the partial continuous function-
als as underlying domains. The total ones then appear as a dense subset
[20, 15, 7, 31, 27, 21], and seem to be best treated in this way.

Computable functionals and logic Types are built from base types by
the formation of function types, ρ ⇒ σ. As domains for the base types we
choose non-flat (cf. Figure 2) and possibly infinitary free algebras, given by
their constructors. The main reason for taking non-flat base domains is that
we want the constructors to be injective and with disjoint ranges.

The naive model of such a finitely typed theory is the full set theoretic
hierarchy of functionals of finite types. However, this immediately leads to
higher cardinalities, and does not lend itself well for a theory of computabil-
ity. A more appropriate semantics for typed languages has its roots in work
of Kreisel [20] (who used formal neighborhoods) and Kleene [19]. This line of
research was taken up and developed in a mathematically more satisfactory
way by Scott and Ershov [29, 16]. Today this theory is usually presented in
the context of abstract domain theory [31, 3]; it is based on classical logic.

The present work can be seen as an attempt to develop a constructive
theory of formal neighborhoods for continuous functionals, in a direct and
intuitive style. The task is to replace abstract domain theory by a more con-
crete and (in case of finitary free algebras) finitary theory of representations.
As a framework we use Scott’s information systems [30, 22, 31]. It turns out

1

that we only need to deal with “atomic” and “coherent” information sys-
tems (abbreviated acis), which simplifies matters considerably. In this setup
the basic notion is that of a “token”, or unit of information. The elements
of the domain appear as abstract or “ideal” entitites: possibly infinite sets
of tokens, which are “consistent” and “deductively closed”.

Total functionals One reason to be interested in total functionals is that
for base types, that is free algebras, we can prove properties of total ob-
jects by structural induction. This is also true for the more general class
of structure-total objects, where the arguments at parameter positions in
constructor terms need not be total. An example is a list whose length is
determined, but whose elements need not be total.

We show that the standard way to single out the total functionals from
the partial ones works with non-flat base domains as well, and that Berger’s
proof [7] of Kreisel’s [20] density theorem can be adapted.

Terms and their denotational and operational semantics Since we
have introduced domains via concrete representations, it is easy to define
the computable functionals, simply as recursively enumerable ideals (= sets
of tokens). However, this way to deal with computability is too general for
concrete applications. In practice, one wants to define computable functio-
nals by recursion equations. We show that and how computation rules [11, 8]
can be used to achieve this task. The meaning [[λ~x M]] of a term M (with
free variables in ~x) involving constants D defined by computation rules will
be an inductively defined set of tokens (~U, b), of the type of λ~x M .

So we extend the term language of Plotkin’s PCF [25], by constants
defined via “computation rules”. One instance of such rules is the definition
of the fixed point operators Yρ of type (ρ ⇒ ρ) ⇒ ρ, by Yρf = f(Yρf).
Another instance is the structural recursion operator Rτ

N, defined by

Rτ
N(f, g, 0) = f, Rτ

N(f, g, Sn) = g(n,Rτ
N(f, g, n)).

Operationally, the term language provides some natural conversion rules
to “simplify” terms: β, η, and – for every defined constant D – the defi-
ning equations D ~P 7→ M with non-overlapping constructor patterns ~P ; the
equivalence generated by these conversions is called operational semantics.
We show that the (denotational) values are preserved under conversions,
including computation rules.

Computational adequacy Clearly we want to know that the conversions
mentioned above give rise to a “computationally adequate” operational se-
mantics: If [[M]] = k, then the conversion rules suffice to actually reduce M
to the numeral k. We show that this holds true in our somewhat extended
setting as well, with computation rules and non-flat base domains.

2

Structural recursion An important example of computation rules are
those of the (Gödel) structural recursion operators. We prove their totality,
by showing that the rules are strongly normalizing. A predicative proof of
this fact has been given in [1], based on Aczel’s notion of a set-based relation.
Our proof is predicative as well, but – being based on an extension of Tait’s
method of strong computability predicates – more along the standard line
of such proofs. Moreover, it extends the result to the present setting.

Related work The development of constructive theories of computable
functionals of finite type began with Gödel’s [18]. There the emphasis was
on particular computable functionals, the structural (or primitive) recursive
ones. In contrast to what was done later by Kreisel, Kleene, Scott and
Ershov, the domains for these functionals were not constructed explicitly,
but rather considered as described axiomatically by the theory.

Denotational semantics for PCF-like languages is well-developed, and
usually (as in Plotkin’s [25]) done in a domain-theoretic setting. The study
of the semantics of non-overlapping higher type recursion equations - called
here computation rules - has been initiated by Berger [11], again in a domain-
theoretic setting. Recently [8] he has introduced a “strict” variant of this
domain-theoretic semantics, and used it to prove strong normalization of
extensions of Gödel’s T by different versions of bar recursion. Information
systems have been conceived by Scott [30], as an intuitive approach to do-
mains for denotational semantics. The idea to consider atomic information
systems is due to Ulrich Berger (unpublished work); coherent information
systems have been introduced by Plotkin [26, p.210]. Taking up Kreisel’s
[20] idea of neighborhood systems, Martin-Löf developed in unpublished
(but somewhat distributed) notes [23] a domain theoretic interpretation of
his type theory. The intersection type discipline of Coppo and Dezani [5]
can be seen as a different style of presenting the idea of a neighborhood
system. The desire to have a more general framework for these ideas has
lead Martin-Löf, Sambin and others to develop a formal topology [13].

It seems likely that the method in [21, Section 3.5] (which is based on
an idea of Ulrich Berger) can be used to prove density in the present case,
but this would require some substantial rewriting.

The first proof of an adequacy theorem (not under this name) is due to
Plotkin [25, Theorem 3.1]; Plotkin’s proof is by induction on the types, and
uses a computability predicate. A similar result in a type-theoretic setting
is in Martin-Löf’s notes [23, Second Theorem]. Adequacy theorems have
been proved in many contexts [2, 4, 5, 23]. Coquand [14] – building on the
work of Martin-Löf [23] and Berger [8] – observed that the adequacy result
even holds for untyped languages, hence also for dependently typed ones.

The problem of proving strong normalization for extensions of typed
λ-calculi by higher order rewrite rules has been studied extensively in the

3

literature [32, 17, 33, 12, 1, 8]. Most of these proofs use impredicative
methods (e.g., by reducing the problem to strong normalization of second
order propositional logic, called system F by Girard [17]). Our definition of
the strong computability predicates and also the proof are related to Zucker’s
[34] proof of strong normalization of his term system for recursion on the
first three number or tree classes. However, Zucker uses a combinatory term
system and defines strong computability for closed terms only. Following
some ideas in an unpublished note of Berger, Benl (in his diploma thesis [6])
transferred this proof to terms in simply typed λ-calculus, possibly involving
free variables. Here it is adapted to the present context.

Organization of the paper In Section 2 atomic coherent information
systems are defined, and used as a concrete representation of the relevant
domains, based on non-flat and possibly infinitary free algebras. Section 3
deals with total and structure-total ideals; it is shown that the density theo-
rem holds. Section 4 introduces the term language, extending Plotkin’s PCF
by defined constants and computation rules. The denotational and opera-
tional semantics is defined, the former by an inductive definition of a relation
(~U, b) ∈ [[λ~x M]], the latter by conversions which include the computation
rules. We prove preservation of values under conversions. Section 5 contains
the proof of the adequacy theorem. The structural recursion operators are
taken up in Section 6, as an example of computation rules defining total ob-
jects. The paper concludes in Section 7 with remarks on an implementation
of some of its ideas, in the Minlog proof assistant www.minlog-system.de
under development in Munich.

2 Partial continuous functionals

Information systems have been introduced by Scott [30], as an intuitive
approach to deal constructively with ideal, infinite objects in function spaces,
by means of their finite approximations. One works with atomic units of
information, called tokens, and a notion of consistency for finite sets of
tokens. Finally there is an entailment relation, between consistent finite
sets of tokens and single tokens. The ideals (or objects) of an information
system are defined to be the consistent and deductively closed sets of tokens;
we write |A| for the set of ideals of A. One shows easily that |A| is a domain
w.r.t. the inclusion relation. Conversely, every domain with countable basis
can be represented as the set of all ideals of an appropriate information
system [22].

Here we take Scott’s notion of an information system as a basis to intro-
duce the partial continuous functionals. Call an information system atomic
if the entailment relation U ` b is given by ∃a∈U{a} ` b and hence deter-
mined by a transitive relation on A (namely {a} ` b, written a ≥ b). Call it

4

coherent [26, p.210] when a finite set U of tokens is consistent iff each two-
element subset of it is. We will show below that if B is atomic (coherent),
then so is the “function space” A → B. Since our algebras will be given by
atomic coherent information systems, this is the only kind of information
systems we will have to deal with.

2.1 Types

A free algebra is given by its constructors, for instance zero and successor
for the natural numbers. We want to treat other data types as well, like lists
and binary trees. When dealing with inductively defined sets, it will also be
useful to explicitely refer to the generation tree. Such trees are quite often
infinitely branching, and hence we allow infinitary free algebras.

The freeness of the constructors is expressed by requiring that their
ranges are disjoint and that they are injective. To allow for partiality –
which is mandatory when we want to deal with computable objects –, we
have to embed our algebras into domains. Both requirements together imply
that we need “lazy domains”.

Our type system is defined by two type forming operations: arrow types
ρ ⇒ σ and the formation of inductively generated types µ~α~κ, where ~α =
(αj)j=1,...,N is a list of distinct “type variables”, and ~κ = (κi)i=1,...,k is a list
of “constructor types”, whose argument types contain α1, . . . , αN in strictly
positive positions only.

For instance, µα(α, α ⇒ α) is the type of natural numbers; here the list
(α, α ⇒ α) stands for two generation principles: α for “there is a natural
number” (the 0), and α ⇒ α for “for every natural number there is a next
one” (its successor).

Definition 2.1. Let ~α = (αj)j=1,...,N be a list of distinct type variables.
Types ρ, σ, τ, µ ∈ T and constructor types κ ∈ KT(~α) are defined inductively
by

~ρ, ~σ1, . . . , ~σn ∈ T
~ρ ⇒ (~σ1 ⇒ αj1) ⇒ . . . ⇒ (~σn ⇒ αjn) ⇒ αj ∈ KT(~α)

(n ≥ 0)

κ1, . . . , κn ∈ KT(~α)
(µ~α (κ1, . . . , κn))j ∈ T

(n ≥ 1)
ρ, σ ∈ T

ρ ⇒ σ ∈ T

Here ~ρ ⇒ σ means ρ1 ⇒ . . . ⇒ ρm ⇒ σ, associated to the right. We
reserve µ for types of the form (µ~α (κ1, . . . , κk))j . The parameter types of µ
are the members of all ~ρ appearing in its constructor types κ1, . . . , κk.

Examples.

U := µα α, Unit
B := µα (α, α), Booleans

5

N := µα (α, α ⇒ α), Natural numbers
L(ρ) := µα (α, ρ ⇒ α ⇒ α), Lists
ρ⊗ σ := µα ρ ⇒ σ ⇒ α, (Tensor) product
ρ + σ := µα (ρ ⇒ α, σ ⇒ α), Sum
(tree, tlist) := µ(α, β) (N ⇒ α, β ⇒ α, β, α ⇒ β ⇒ β),
Bin := µα (α, α ⇒ α ⇒ α), Binary trees
O := µα (α, α ⇒ α, (N ⇒ α) ⇒ α), Ordinals
T0 := N,

Tn+1 := µα (α, (Tn ⇒ α) ⇒ α). Trees

Notice that there are many equivalent ways to define these types. For in-
stance, we could take U + U to be the type of booleans, and L(U) to be
the type of natural numbers.

A type is called finitary if it is a µ-type with all its parameter types ~ρ
finitary, and in all its constructor types

~ρ ⇒ (~σ1 ⇒ αj1) ⇒ . . . ⇒ (~σn ⇒ αjn) ⇒ αj (1)

the ~σ1, . . . , ~σn are all empty. In the examples above U, B, N, tree, tlist and
Bin are all finitary, whereas O and Tn+1 are not. L(ρ), ρ⊗ σ and ρ + σ are
finitary provided their parameter types are. An argument position in a type
is called finitary if it is occupied by a finitary type.

2.2 Function spaces via atomic coherent information systems

Definition 2.2. An atomic coherent information system (abbreviated acis)
is a triple (A,Con,≥) with A a countable set (the tokens, denoted a, b, . . .),
Con a nonempty set of finite subsets of A (the consistent sets or formal
neighborhoods, denoted U, V, . . .), and ≥ a transitive and reflexive relation
on A (the entailment relation) which satisfy

(a) ∅ ∈ Con, and {a} ∈ Con for every a ∈ A,

(b) U ∈ Con iff every two-element subset of U is in Con, and

(c) if {a, b} ∈ Con and b ≥ c, then {a, c} ∈ Con.

We write U ≥ a for ∃b∈Ub ≥ a, and U ≥ V for ∀a∈V U ≥ a. – Any acis
is an information system in the sense of [30]; this follows from

Lemma 2.3. Let A = (A,Con,≥) be an acis. U ≥ V1, V2 implies V1 ∪V2 ∈
Con.

Proof. Let b1 ∈ V1, b2 ∈ V2. Then we have a1, a2 ∈ U such that ai ≥ bi.
From {a1, a2} ∈ Con we obtain {a1, b2} ∈ Con by (c), hence {b1, b2} ∈ Con
again by (c).

6

Definition 2.4. Let A = (A,ConA,≥A) and B = (B,ConB,≥B) be acis’s.
Define A → B = (C,Con,≥) by

C := ConA ×B,

{(U1, b1), . . . (Un, bn)} ∈ Con :↔ ∀i,j

(
Ui ∪ Uj ∈ ConA → {bi, bj} ∈ ConB

)
,

(U, b) ≥ (V, c) :↔ V ≥A U ∧ b ≥B c.

Lemma 2.5. Let A = (A,ConA,≥A) and B = (B,ConB,≥B) be acis’s.
Then A → B is an acis again.

Proof. Clearly ≥ is transitive and reflexive, and the conditions (a) and (b)
of an acis hold; it remains to check (c). So let {(U1, b1), (U2, b2)} ∈ Con and
(U2, b2) ≥ (V, c), hence V ≥ U2 and b2 ≥ c. We must show {(U1, b1), (V, c)} ∈
Con. So assume U1 ∪ V ∈ Con; we must show {b1, c} ∈ Con. Now U1 ∪ V ∈
Con and V ≥ U2 by the previous lemma imply U1 ∪ U2 ∈ Con. But then
{b1, b2} ∈ Con, hence {b1, c} ∈ Con by (c).

Scott [30] introduced the notion of an approximable map from A to B.
Such a map is given by a relation r between ConA and B, where r(U, b)
intuitively means that whenever we are given the information U ∈ ConA on
the argument, then we know that at least the token b appears in the value.

Definition 2.6. Let A and B be acis’s. A relation r ⊆ ConA × B is an
approximable map from A to B (written r : A → B) iff

(a) if r(U, b1) and r(U, b2), then {b1, b2} ∈ ConB, and

(b) if r(U, b), V ≥A U and b ≥B c, then r(V, c).

Theorem 2.7. Let A and B be acis’s. The ideals of A → B are exactly
the approximable maps from A to B.

Proof. We show that r ∈ |A → B| satisfies the axioms for approximable
maps. (a). Let r(U, b1) and r(U, b2). Then {b1, b2} ∈ ConB by the consis-
tency of r. (b). Let r(U, b), V ≥A U and b ≥B c. Then (U, b) ≥ (V, c) by
definition, hence r(V, c) by the deductive closure of r.

For the other direction suppose r : A → B is an approximable map. We
must show that r ∈ |A → B|. Consistency of r: Suppose r(U1, b1), r(U2, b2)
and U = U1 ∪ U2 ∈ ConA. We must show that {b1, b2} ∈ ConB. Now
by definition of approximable maps, from r(Ui, bi) and U `A Ui we obtain
r(U, bi), and hence {b1, b2} ∈ ConB. Deductive closure of r: Suppose r(U, b)
and (U, b) ≥ (V, c), i.e., V ≥A U ∧ b ≥B c. Then r(V, c) by definition of
approximable maps.

The set |A| of ideals for A carries a natural topology (the Scott topo-
logy), which has the deductive closures U of formal neighborhoods U as
basis. The continuous maps f : |A| → |B| and the ideals r ∈ |A → B| are

7

in a bijective correspondence. With any r ∈ |A → B| we can associate a
continuous |r| : |A| → |B|:

|r|(z) := { b ∈ B | r(U, b) for some U ⊆ z },

and with any continuous f : |A| → |B| we can associate f̂ ∈ |A → B|:

f̂(U, b) :⇐⇒ b ∈ f(U).

These assignments are inverse to each other, i.e., f = |f̂ | and r = |̂r|. – We
will usually write r(z) for |r|(z), and similarly f(U, b) for f̂(U, b). It will be
clear from the context where the mods and hats should be inserted.

2.3 Algebras with approximations

We can now define the acis of an algebra µj , given by constructors Ci. The
tokens are

• a special one – written ∗ –, which carries no information, and

• all type correct constructor expressions with an outermost Ci, where
at any finitary argument position we have a token, and at any other
argument position we have a formal neighborhood of the appropriate
type.

Two tokens are in the entailment relation ≥ if either the right hand one is
∗, or they start with the same constructor, and for each finitary argument
position either the argument tokens a, b located there satisfy a ≥ b, or the
formal neighborhoods U , V located there satisfy U ≥ V , as defined above
(notice that this is an inductive definition). A finite set of tokens is consistent
if each two-element subset is; two tokens are consistent if one of them is ∗,
or both start with the same constructor and have consistent tokens resp.
formal neighborhoods at corresponding argument positions.

For example, the tokens for the algebra N are as shown in Figure 1. A
token a entails another one b iff there is a path from a (up) to b (down). In
this case (and similarly for every finitary algebra) a finite set U of tokens is
consistent iff it has an upper bound.

Every constructor C generates

rC := { (~U, b) | b = ∗, or b = C~b with Ui ≥ bi },

with bi tokens or formal neighborhoods. The continuous map |rC| is defined
by

|rC|(~z) := { b | (~U, b) ∈ rC for some ~U ⊆ ~z }.

Hence the (continuous maps corresponding to) constructors are injective and
their ranges are disjoint, which is what we wanted to achieve.

8

•∗@
@@
•0

�
��
• S∗@

@@
•S0

�
��
• S(S∗)@

@@
•S(S0)

�
��
• S(S(S∗))@

@@
•S(S(S0))

�
��

...

Figure 1: Tokens and entailment for N

•⊥@
@@
•0

�
��
• S⊥@

@@
•S0

�
��
• S(S⊥)@

@@
•S(S0)

�
��
• S(S(S⊥))@

@@
•S(S(S0))

�
��

...
• ∞

Figure 2: Ideals and inclusion for N, i.e., its domain

The ideals x for µ are – as for any information system – the consistent and
deductively closed sets of tokens. Clearly all non-∗ tokens in x begin with
the same constructor. For instance, {S(S0), S(S∗), S∗, ∗}, {S(S∗), S∗, ∗},
{0, ∗}, {∗} are ideals for N, but also the infinite set {Sn∗ | n ≥ 0 }. The
ideals for N and their inclusion relation are pictured in Figure 2. Here we
have denoted the ideals {∗}, {0, ∗}, {Sn∗ | n ≥ 0 } by ⊥, 0, ∞, respectively,
and any other ideal by applications of (the continuous map corresponding to)
the constructor S to 0 or ⊥. The ambiguous notation – S denotes a symbol
in constructor expressions and also the continuous map |rS | – should not
lead to confusion.

3 Total functionals

Total ideals are important because one can prove their properties by (struc-
tural) induction. We also introduce the concept of structure-total ideals, first
for a free algebra µ and then for arbitrary types. They are more general,
because ideals at parameter positions need not be total, but still allow to ar-
gue by induction. An example of the latter notion are lists whose structure
(number of Cons’s) is known, but whose elements may be partial. This is

9

of interest, because for such “structure-total” objects an obvious induction
principle holds.

In [20] Kreisel states the important density theorem, which says that
any finite functional can be extended to a total one. Full proofs of various
versions of the density theorem are in [15, 7, 31, 27, 21]. Here we give a
proof for the practically important case where the base domains are not just
the flat domain of natural numbers, but non-flat and possibly parametrized
free algebras.

3.1 Total and structure-total ideals

It is well-known how one can single out the total functionals from the partial
ones. One good reason to be interested in total functionals is that for base
types, that is free algebras, we can prove properties of total objects by
structural induction. This is also true for the slightly more general class
of structure-total objects, where the arguments at parameter positions in
constructor terms need not be total. An example is a list whose length is
determined, but whose elements may be partial.

Definition 3.1. The total ideals of type ρ are defined inductively.

• Case µ. For an algebra µ, the total ideals x are those of the form
C~z with C a constructor of µ and ~z total (C denotes the continuous
function |rC|).

• Case ρ ⇒ σ. An ideal r of type ρ ⇒ σ is total iff for all total z of
type ρ, the result |r|(z) of applying r to z is total.

The structure-total ideals are defined similarly; the difference is that in case
µ the ideals at parameter positions of C need not be total. – We write
x ∈ Gρ to mean that x is a total ideal of type ρ.

For instance, for N the ideals 0, S0, S(S0) etc. in Figure 2 are total, but
⊥, S⊥, S(S⊥), . . . , ∞ are not. For L(ρ), precisely all ideals of the form
Cons(x1, . . . Cons(xn,Nil) . . .) are structure-total. The total ones are those
where in addition all list elements x1, . . . , xn are total.

For non-flat base domains it is easy to see that there are maximal but
not total ideals: ∞ is an example for N. This is less easy for flat base
domains; a counterexample has been given by Yuri Ershov in [16]; a more
perspicious one (at type (N ⇒ N) ⇒ N) is in [31].

Conversely, the total continuous functionals need not be maximal ideals
in Cρ: A counterexample is { (Sn0, 0) | n ∈ N }, which clearly is a total
object of type N ⇒ N representing the constant function with value 0.
However, addition of the pair ({∗}, 0) yields a different total object of type
N ⇒ N. However, it is easy to show both functionals are “equivalent” in
the sense that they have the same behaviour on total arguments.

10

3.2 Induction

The principle of induction over (the total ideals of) simultaneous free al-
gebras ~µ = µ~α~κ can now be formulated as follows; it clearly holds in our
domains. For readability let the variables xi, yj range over total ideals only.
For the constructor type

κi = ~ρ ⇒ (~σ1 ⇒ αj1) ⇒ . . . ⇒ (~σn ⇒ αjn) ⇒ αj ∈ KT(~α)

we have the step formula

Di := ∀
y

ρ1
1 ,...,yρm

m ,y
~σ1⇒µj1
m+1 ,...,y

~σn⇒µjn
m+n

.∀~x~σ1 P̂j1(ym+1~x) → · · · →

∀~x~σn P̂jn(ym+n~x) →

P̂j(C
~µ
i (~y)).

~y = yρ1
1 , . . . , yρm

m , y
~σ1⇒µj1
m+1 , . . . , y

~σn⇒µjn
m+n are the components of the ideal C~µ

i (~y)
of type µj under consideration, and

∀~x~σ1 P̂j1(ym+1~x), . . . ,∀~x~σn P̂jn(ym+n~x)

are the hypotheses available in the induction step. The induction axiom
Ind~x, ~A

µj
with ~x = (xµj

j)j=1,...,N and ~A = (Aj)j=1,...,N = (P̂j(x
µj

j))j=1,...,N then
proves the formula

D1 → · · · → Dk → ∀
x

µj
j

P̂j(xj).

We will often write Ind~x, ~A
j for Ind~x, ~A

µj
, and omit the upper indices ~x, ~A when

they are clear from the context. In case of a non-simultaneous free algebra,
i.e. of type µα κ, for Indx,A

µ we normally write Indx,A.

Examples. Again all variables are supposed to range over total ideals.

Indp,A : A[p := tt] → A[p := ff] → ∀pB A,

Indn,A : A[n := 0] → ∀n(A → A[n := Sn]) → ∀nN A,

Indl,A : A[l := Nil] → ∀x,l(A → A[l := Cons(x, l)]) → ∀lL(α) A

Indx,A : ∀y1 A[x := Inl(y1)] → ∀y2 A[x := Inr(y2)] → ∀xρ1+ρ2 A.

Induction over the structure-total ideals is defined similarly. For in-
stance, in the formula above expressing list induction Indl,A we can let x
range over arbitrary ideals, and l over the structure-total ones.

11

3.3 Dense and separating sets

We now prove the density theorem, which says that any finitely generated
functional (i.e., any U with U ∈ Conρ) can be extended to a total functional.

However, we need some assumptions on the base types for this theorem
to hold. Otherwise, density might fail for the trivial reason that there are
no total ideals at all (e.g., in µα (α → α)). A type µα1, . . . , αN (κ1, . . . , κn)
is said to have total ideals if for every j (1 ≤ j ≤ N) there is a constructor
type κij of form (1) with j1, . . . , jn < j. Then clearly for every j we have
a total ideal of type αj ; call it zj . Moreover, we assume that all base types
are finitary. Then their total ideals are finite and maximal, which will be
used in the proof.

Theorem 3.2 (Density). Assume that all base types are finitary and have
total ideals. Then for any U ∈ Conρ we can find an x ∈ Gρ such that U ⊆ x.

Proof. Call a type ρ dense if ∀U∈Conρ∃x∈Gρ U ⊆ x, and separating if

∀U1,U2∈Conρ

(
U1 ∪ U2 /∈ Conρ → ∃~z∈G InCon(U1(~z) ∪ U2(~z))

)
.

Here ~z ∈ G means that ~z is a sequence of total zi such that Uj~z is of a base
type µ. We prove by simultaneous induction on ρ that any type ρ is dense
and separating. This extended claim is needed for the inductive argument.

For base types µ both claims are easy: the fact that µ is separating is
obvious, and density for µ can be inferred from the induction hypothesis,
as follows. For simplicity of notation assume that µ is non-simultaneously
defined. Let U ∈ Conµ. Then (since µ is finitary) ∃b∀a∈U b ≥ a. In the
token b, replace every constructor symbol by its corresponding continuous
function, every token at a parameter argument position by a total ideal of
its type (which exists by induction hypothesis), and every ∗-token at a type-
µ-position by the total ideal z of type µ (which exists by assumption). The
result is the required total ideal.

ρ ⇒ σ is separating: This will follow from the inductive hypotheses
that ρ is dense and σ is separating. So let W,W ′ ∈ Conρ⇒σ such that
W ∪W ′ /∈ Conρ⇒σ. Then there are (U, a) ∈ W and (U ′, a′) ∈ W ′ such that
U ∪ U ′ ∈ Conρ but {a, a′} /∈ Conσ. Since ρ is dense, we have a z ∈ Gρ such
that U ∪U ′ ⊆ z. Hence a ∈ W (z) and a′ ∈ W ′(z). Now since σ is separating
there are ~z ∈ G such that

InCon({a}(~z) ∪ {a′}(~z)),

hence also
InCon(W (z, ~z) ∪W ′(z, ~z)).

This concludes the proof that ρ ⇒ σ is separating.
ρ ⇒ σ is dense: This will follow from the inductive hypotheses that ρ

is separating and σ is dense. So fix W = { (Ui, ai) | i ∈ I } ∈ Conρ⇒σ.

12

Consider i, j such that {ai, aj} /∈ Conσ. Then Ui ∪ Uj /∈ Conρ. Since ρ is
separating, there are ~zij ∈ G and kij , lij ∈ Gµ such that with kij := Ui(~zij)
and lij := Uj(~zij)

InCon(kij ∪ lij).

We clearly may assume that ~zij = ~zji and (kij , lij) = (lji, kji).
Now define for any U ∈ Conρ a set IU of indices i ∈ I such that “U

behaves as Ui with respect to the ~zij”. More precisely, let

IU := { i ∈ I | ∀j({ai, aj} /∈ Conσ → U(~zij) = kij) }.

We first show that
{ ai | i ∈ IU } ∈ Conσ. (2)

It suffices to show that {ai, aj} ∈ Conσ for all i, j ∈ IU . So let i, j ∈ IU and
assume {ai, aj} /∈ Conσ. Then U(~zij) = kij as i ∈ IU and U(~zji) = kji as
j ∈ IU , and because of ~zij = ~zji and InCon(kij ∪ kji) (recall lij = kji) we
could conclude that U(~zij) would be inconsistent. This contradiction proves
{ai, aj} ∈ Conσ and hence (2).

Since (2) holds and σ is dense by induction hypothesis, we can find
yIU

∈ Gσ such that ai ∈ yIU
for all i ∈ IU . Define r ⊆ Conρ × Cσ by

r(U, a) ⇐⇒

{
a ∈ yIU

, if U(~zij) is finite and maximal for all ~zij ;
∃i∈IU

ai ≥σ a, otherwise.

We will show that r ∈ Gρ⇒σ and W ⊆ r.
For W ⊆ r we have to show r(Ui, ai) for all i ∈ I. But this holds, since

clearly i ∈ IUi and also ai ∈ yIUi
.

We now show that r is an approximable map, i.e., that r ∈ |Cρ⇒σ|. To
prove this we have to verify the defining properties of approximable maps.

(a). r(U, b1) and r(U, b2) implies {b1, b2} ∈ Conσ. If U(~zij) is finite and
maximal for all ~zij , the claim follows from the consistency of yIU

. If not, the
claim follows from Lemma 2.3.

(b). r(U, b), V ≥A U and b ≥B c implies r(V, c). First assume that
U(~zij) is finite and maximal for all ~zij . Then also V (~zij) is maximal for all
~zij . From r(U, b) we get b ∈ yIU

. We have to show that c ∈ yIV
. But since

U(~zij) and V (~zij) are maximal for all ~zij and V ≥ρ U , they must have the
same values on the ~zij , hence IU = IV , so yIU

= yIV
and therefore c ∈ yIV

by deductive closure. Now assume the contrary. From r(U, b) we get ai ≥σ b
for some i ∈ IU . From V ≥ρ U we can conclude IU ⊆ IV , by the definition
of IU . Hence i ∈ IV , and also b ∈ yIV

(since ai ∈ yIU
for all i ∈ IU , and yIV

is deductively closed). Therefore r(V, b) and hence r(V, c).
This concludes the proof that r is an approximable map. It remains to

prove r ∈ Gρ⇒σ. So let x ∈ Gρ. We must show

|r|(x) = { a ∈ Cσ | ∃U⊆x r(U, a) } ∈ Gσ.

13

Now x(~zij) is total for all i, j, hence by our assumption on base types finite
and maximal. So there is some Uij ⊆ x such that Uij(~zij) = x(~zij). Let
U ⊆ x be the union of all the Uij . Then by definition r(U, a) for all a ∈ yIU

.
Therefore yIU

⊆ |r|(x) and hence |r|(x) ∈ Gσ.

4 Terms; denotational and operational semantics

For every type ρ, we have defined what a partial continuous functional of
type ρ is: an ideal consisting of tokens at this type. These tokens or rather
the formal neighborhoods formed from them are syntactic in nature; they
are reminiscent to Kreisel’s “formal neighborhoods” [20, 23, 14]. However
– in contrast to [23] – we do not have to deal separately with a notion of
consistency for formal neighborhoods: this concept is built into information
systems.

Let us now turn our attention to a formal (functional programming)
language, in the style of Plotkin’s PCF [25], and see how we can provide a
denotational semantics (that is, a “meaning”) for the terms of this language.
A closed term M of type ρ will denote a partial continuous functional of this
type, that is, a consistent and deductively closed set of tokens of type ρ. We
will define this set inductively.

It will turn out that these sets are recursively enumerable. In this sense
each closed term M of type ρ denotes a computable partial continuous func-
tional of type ρ. However, it is not a good idea to define a computable
functional in this way, by providing a recursive enumeration of its tokens.
We rather want to be able to use recursion equations for such definitions.
Therefore we extend the term language by constants D defined by certain
“computation rules”, as in [11, 8]. Our semantics will cover these as well.

There are some natural questions one can have for such a term language:

1. Preservation of values under conversion (as in [23, First Theorem]).
Here we need to include applications of computation rules.

2. An adequacy theorem (as in [25, Theorem 3.1] or [23, Second The-
orem]), which in our setting says that whenever a closed term has a
proper token in the ideal it denotes, then it evaluates to a constructor
term entailing this token.

3. Strong normalization, that is, termination of arbitrary conversions,
provided the only defined constants are the structural recursion oper-
ators.

Properties 1, 2 and 3 will be proved in the present section, in Section 5 and
in Section 6, respectively.

Coquand [14] observed that the types play only a somewhat minor role
in this setup. It suffices to know the arity (a natural number) of the con-
stants (constructors and defined constants), to guide the definitions. An

14

interesting consequence is that one can use this approach for dependently
typed languages as well, for instance, the terms of Martin-Löf’s type theory.

4.1 Terms

Terms are built from (typed) variables and (typed) constants (constructors
C or defined constants D, see below) by (type-correct) application and ab-
straction:

M,N ::= xρ | Cρ | Dρ | (λxρ Mσ)ρ⇒σ | (Mρ⇒σNρ)σ.

Every defined constant comes with a system of computation rules, consisting
of finitely many equations D ~Pi = Mi (i = 1, . . . , n) with constructor patterns
~Pi, such that ~Pi and ~Pj (i 6= j) are non-unifiable. Constructor patterns
are lists of applicative terms with distinct variables, defined inductively as
follows (we write ~P (~x) to indicate all variables in ~P ; notice that x can
be a variable for a formal neighborhood, and that all expressions must be
type-correct):

• x(x) is a constructor pattern.

• If C is a constructor and ~P (~x) a constructor pattern, then (C ~P)(~x)
is a constructor pattern.

• If ~P (~x) and Q(~y) are constructor patterns whose variables ~x and ~y
are disjoint, then (~P ,Q)(~x, ~y) is a constructor pattern.

4.2 Ideals as meaning of terms

How can we use computation rules to define an ideal z in a function space?
The general idea is to inductively define the set of tokens (U, b) that make up
z. However, since arbitrary terms are allowed on the right, we need to define
the value [[λ~x M]], where M is a term with free variables among ~x. Since this
value is a token set, we can define inductively the relation (~U, b) ∈ [[λ~xM]].

We use the following notation. (~U, b) means (U1, . . . (Un, b) . . .), and at
argument positions of constructors we use b for tokens as well as for formal
neighborhoods. (~U, V) ⊆ [[λ~x M]] means (~U, b) ∈ [[λ~x M]], for all (finitely
many) b ∈ V .

Definition 4.1 (Inductive, of (~U, b) ∈ [[λ~x M]]).

Ui ≥ b

(~U, b) ∈ [[λ~x xi]]
(V),

(~U, V) ⊆ [[λ~x N]] (~U, V, c) ∈ [[λ~x M]]

(~U, c) ∈ [[λ~x.MN]]
(A).

For every constructor C we have

(~U, ~V , ∗) ∈ [[λ~x C]]
(C∗),

~V ≥ ~b

(~U, ~V ,C~b) ∈ [[λ~x C]]
(C).

15

For every defined constant D we have

(~U, ~V , ∗) ∈ [[λ~x D]]
(D∗),

(~U, ~V , b) ∈ [[λ~x, ~y M]]

(~U, ~P (~V), b) ∈ [[λ~x D]]
(D),

with one such rule (D) for every computation rule D ~P (~y) = M .

Here are some simple consequences of this definition. First we show a
useful property of constructors:

Lemma 4.2. For b 6= ∗, (~U, b) ∈ [[λ~x.C ~N]] iff there are ~c ≥ ~b such that
b = C~b and (~U, ci) ∈ [[λ~x Ni]] (i = 1, . . . , n).

Proof. Assume (~U, ci) ∈ [[λ~x Ni]] (ci ≥ bi, i = 1, . . . , n). For j = 0, . . . , n we
show (~U, {cj+1}, . . . , {cn}, C~b) ∈ [[λ~x.CN1 . . . Nj]]. In case j = 0 use (C):

{c1} ≥ b1 . . . {cn} ≥ bn

(~U, {c1}, . . . , {cn}, C~b) ∈ [[λ~x C]]
.

In the step from j − 1 to j use (A):

(~U, cj) ∈ [[λ~x Nj]] (~U, {cj}, . . . , {cn}, C~b) ∈ [[λ~x.CN1 . . . Nj−1]]

(~U, {cj+1}, . . . , {cn}, C~b) ∈ [[λ~x.CN1 . . . Nj]]
.

For j = n the claim follows. – For the other direction, observe that only (A)
could have been applied. Hence the argument can be read backwards.

Using the fact that the left hand sides of computation rules are non-
unifiable we can prove:

Lemma 4.3. [[λ~x M]] is an ideal, i.e., consistent and deductively closed.

Proof. Induction on (~U, b) ∈ [[λ~x M]].
(1) Consistency. Case (V). Assume (~U1, b1), (~U2, b2) ∈ [[λ~x xi]], and that

~U1 and ~U2 are pairwise consistent. We must show {b1, b2} ∈ Con. By (V),
U1i ≥ b1 and U2i ≥ b2. Now {b1, b2} ∈ Con follows from U1i ∪ U2i ∈ Con.

Case (C). Assume (~U1, ~V1, C~b1), (~U2, ~V2, C~b2) ∈ [[λ~x C]], and that ~U1, ~V1

and ~U2, ~V2 are pairwise consistent. We must show {C~b1, C~b2} ∈ Con. By
(C), ~Vi ≥ ~bi (i = 1, 2). From the pairwise consistency of ~V1 and ~V2 we obtain
the pairwise consistency of ~b1 and ~b2. Hence {C~b1, C~b2} ∈ Con.

Case (A). Let (~U1, c1), (~U2, c2) ∈ [[λ~x.MN]], with ~U1 and ~U2 pairwise
consistent. We show {c1, c2} ∈ Con. By (A), (~U1, V1), (~U2, V2) ⊆ [[λ~x N]],
so by IH V1 ∪ V2 ∈ Con. Similarly, again by (A), (~U1, V1, c1), (~U2, V2, c2) ∈
[[λ~x M]], hence {c1, c2} ∈ Con by IH.

Case (D). Let (~Ui, ~Pi(~Vi), bi) ∈ [[λ~xD]] (i = 1, 2), and assume that
~U1, ~P1(~V1) and ~U2, ~P2(~V2) are pairwise consistent. From the fact that the

16

left hand sides of computation rules are non-unifiable we can infer ~P1 = ~P2,
and that ~V1 and ~V2 are pairwise consistent. Then {b1, b2} ∈ Con by IH.

(2) Closure under ≥. Case (V). Assume ~V ≥ ~U and b ≥ c. We must
show (~V , c) ∈ [[λ~x xi]]. By (V) it suffices to show Vi ≥ c. But this follows
from Vi ≥ Ui ≥ b ≥ c.

Case (C). Assume ~U1 ≥ ~U , ~V1 ≥ ~V and C~b ≥ C~c. We must show
(~U1, ~V1, C~c) ∈ [[λ~x C]]. By (C) it suffices to show ~V1 ≥ ~c. But this follows
from ~V1 ≥ ~V ≥ ~b ≥ ~c.

Case (A). The IH clearly suffices here.
Case (D). Assume ~U1 ≥ ~U , ~Z ≥ ~P (~V) and b ≥ b1. Notice that ~Z ≥

~P (~V) implies ~Z = ~P (~V1) with ~V1 ≥ ~V , so we must show (~U1, ~P (~V1), b1) ∈
[[λ~x D]]. By IH we have (~U1, ~V1, b1) ∈ [[λ~x, ~y M]]. Now use (D).

4.3 Preservation of values

We now prove that our definition above of the meaning of a term is reason-
able in the sense that an application of the standard (β- and η-) conversions
and also of a computation rule does not change the meaning of a term. For
the β-conversion part of this proof it is helpful to first introduce a more
standard notation, which involves variable environments.

Definition 4.4. Assume that all free variables in M are among ~x.

[[M]]~U~x := { b | (~U, b) ∈ [[λx M]] }, [[M]]~u~x :=
⋃
~U⊆~u

[[M]]~U~x .

We have a useful monotonicity property, which follows from the deduc-
tive closure of [[λ~x M]].

Lemma 4.5. (a) If ~V ≥ ~U , b ≥ c and b ∈ [[M]]~U~x , then c ∈ [[M]]~V~x .

(b) If ~v ⊇ ~u, b ≥ c and b ∈ [[M]]~u~x, then c ∈ [[M]]~v~x.

Proof. (a). By the deductive closure of [[λ~x M]], ~V ≥ ~U , b ≥ c and (~U, b) ∈
[[λ~xM]] together imply (~V , c) ∈ [[λ~x M]]. (b) follows from (a).

Lemma 4.6. (a) [[xi]]~u~x = ui.

(b) [[λy M]]~u~x = { (V, b) | b ∈ [[M]]~u,V
~x,y }.

(c) [[MN]]~u~x = [[M]]~u~x[[N]]~u~x.

Proof. (b). It suffices to prove this with ~U for ~u. But (V, b) ∈ [[λy M]]~U~x and

b ∈ [[M]]
~U,V
~x,y are both equivalent to (~U, V, b) ∈ [[λ~x, y M]].

17

(c).

c ∈ [[M]]~u~x[[N]]~u~x
↔ ∃V⊆[[N]]~u

~x
(V, c) ∈ [[M]]~u~x (application in acis’s)

↔ ∃V⊆[[N]]~u
~x
∃~U⊆~u (V, c) ∈ [[M]]~U~x

↔ ∃~U1⊆~u∃V⊆[[N]]
~U1
~x

∃~U⊆~u (V, c) ∈ [[M]]~U~x

↔(∗) ∃~U⊆~u∃V⊆[[N]]
~U
~x

(V, c) ∈ [[M]]~U~x

↔ ∃~U⊆~u∃V .(~U, V) ⊆ [[λ~x N]] ∧ (~U, V, c) ∈ [[λ~x M]]

↔ ∃~U⊆~u (~U, c) ∈ [[λ~x.MN]] (by (A))

↔ ∃~U⊆~u c ∈ [[MN]]~U~x
↔ c ∈ [[MN]]~u~x.

Here is the proof of the equivalence marked (∗). The upwards direction is
obvious. For the downwards direction we use monotonicity. Assume ~U1 ⊆ ~u,
V ⊆ [[N]]

~U1
~x , ~U ⊆ ~u and (V, c) ∈ [[M]]~U~x . Let ~U2 := ~U1 ∪ ~U ⊆ ~u. Then by

monotonicity V ⊆ [[N]]
~U2
~x and (V, c) ∈ [[M]]

~U2
~x .

Corollary 4.7. [[λy M]]~u~xv = [[M]]~u,v
~x,y.

Proof.

b ∈ [[λy M]]~u~xv ↔ ∃V⊆v (V, b) ∈ [[λy M]]~u~x (application in acis’s)

↔ ∃V⊆v b ∈ [[M]]~u,V
~x,y (by the lemma)

↔ b ∈ [[M]]~u,v
~x,y.

Lemma 4.8 (Substitution). [[M]]
~u,[[N]]~u~x
~x,z = [[M [z := N]]]~u~x.

Proof. Case λy M . For readability we leave out ~x and ~u.

[[λy M]][[N]]
z = { (V, b) | b ∈ [[M]][[N]],V

z,y }
= { (V, b) | b ∈ [[M [z := N]]]Vy } (by IH)

= [[λy.M [z := N]]] (by the lemma)
= [[(λy M)[z := N]]].

The other cases are easy.

Lemma 4.9. [[(λy M)N]]~u~x = [[M [y := N]]]~u~x.

18

Proof. For readability we leave out ~x and ~u. By the last two lemmas and
the corollary, [[(λy M)N]] = [[λy M]][[N]] = [[M]][[N]]

y = [[M [y := N]]].

Lemma 4.10. [[λy.My]]~u~x = [[M]]~u~x, if y /∈ FV(M).

Proof. For readability we leave out ~x and ~u.

(V, b) ∈ [[λy.My]] ↔ b ∈ [[My]]Vy
↔ b ∈ [[M]]V
↔ ∃U⊆V (U, b) ∈ [[M]] (application in acis’s)

↔ (V, b) ∈ [[M]],

where in the last step we have used monotonicity.

To prove preservation of values under computation rules, the following
observation will be needed: (it removes the need for “(generalized) prede-
cessor functions” [11, 8]):

Lemma 4.11. (~U, ~V , b) ∈ [[λ~x, ~y.M [z := C~y]]] iff (~U,C~V , b) ∈ [[λ~x, z M]].

Proof. Induction on (~U, ~V , b) ∈ [[λ~x, ~y.M [z := C~y]]], and cases on the form
of M . Case MN .

(~U, ~V , c) ∈ [[λ~x, ~y.M [z := C~y]N [z := C~y]]]

↔ ∃Z .(~U, ~V , Z) ⊆ [[λ~x, ~y N [z := C~y]]] ∧ (~U, ~V , Z, c) ∈ [[λ~x, ~y M [z := C~y]]]

↔ ∃Z .(~U,C~V , Z) ⊆ [[λ~x, z N]] ∧ (~U,C~V , Z, c) ∈ [[λ~x, z M]] (by IH)

↔ (~U,C~V , c) ∈ [[λ~x, z.MN]] (by (A)).

Case z.

(~U, ~V , c) ∈ [[λ~x, ~y.C~y]] = [[λ~x C]] ↔ ∃~b.~V ≥ ~b ∧ C~b ≥ c,

↔ C~V ≥ c,

↔ (~U,C~V , c) ∈ [[λ~x, z z]].

In all other cases both sides are clearly equivalent.

We can now prove preservation of values under computation rules:

Lemma 4.12. For every computation rule D ~P (~y) = M of a defined con-
stant D, [[λ~y.D ~P (~y)]] = [[λ~y M]].

Proof. The following are equivalent:

(~V , b) ∈ [[λ~y.D ~P (~y)]]

(~P (~V), b) ∈ [[D]] = [[λ~z.D~z]] (by Lemma 4.11)

(~V , b) ∈ [[λ~y M]],

where the last step is by definition.

19

4.4 Examples

We consider the doubling function D : N ⇒ N, addition +: N ⇒ N ⇒ N
and the fixed point operators Yρ. Structural recursion could be treated as
well.

Doubling D : N ⇒ N is defined by the computation rules

D0 = 0, D(Sn) = S(S(Dn)).

We prove

({Sn0}, S2n0) ∈ [[D]] and ({Sna}, S2n∗) ∈ [[D]] for all a,

by induction on n: For the first claim, in the base case we have 0 ∈ [[0]] by
(C), hence ({0}, 0) ∈ [[D]] by (D). In the step case, from ({Sn0}, S2n0) ∈ [[D]]
we obtain ({Sn0}, S2(S2n0)) ∈ [[λy.S2(Dy)]] by Lemma 4.11, and hence
({S(Sn0)}, S2(S2n0)) ∈ [[D]] by (D). For the second claim, in the base case
use ({a}, ∗) ∈ [[D]] (which holds generally), and in the step case the argument
is the same.

Conversely, assume (U, b) ∈ [[D]]. Then either b = ∗ and U is arbitrary,
or b = 0 and 0 ∈ U , or else (U, b) ∈ [[D]] is a conclusion of (D), hence of
the form (SV, b) ∈ [[D]] with (V, b) ∈ [[λy.S2(Dy)]]. But then b = S2c and
(V, c) ∈ [[D]]. Argueing by induction on the generation of [[D]], we conclude
that either b = S2n0 and Sn0 ∈ U , or b = S2n∗ and Sna ∈ U for some a.

Addition +: N ⇒ N ⇒ N is defined by the computation rules

n + 0 = n, n + Sm = S(n + m).

As above one shows that (U, b) ∈ [[λm.0 + m]] iff either b = ∗ and U is
arbitrary, or b = 0 and 0 ∈ U , or b = Sn0 and Sn0 ∈ U , or b = Sn∗ and
Sna ∈ U for some a. So we can conclude that [[λm.0 + m]] = [[λm m]]. This
is of interest, because it allows us to replace 0 + M by M for an arbitrary
(not necessarily total) term M without affecting the values.

Fixed points The computation rule Yρf = f(Yρf) defines the fixed point
operator Yρ of type (ρ ⇒ ρ) ⇒ ρ.

5 Adequacy

The adequacy theorem of Plotkin [25, Theorem 3.1] says that whenever the
value of a closed term M is a numeral, then M head-reduces to this nu-
meral. So in this sense the (denotational) semantics is (computationally)
“adequate”. Plotkin’s proof is by induction on the types, and uses a com-
putability predicate. We prove an adequacy theorem in our setting, for
arbitrary computation rules.

20

5.1 Operational semantics

Recall that a token of a base type µ is either ∗ or a constructor expression
(possibly involving ∗) whose outermost constructor is for µ. We use B to
denote both, constructors C and defined constants D.

Definition 5.1 (M �1 N , M head-reduces to N).

(λx M)N �1 M [x := N],
M �1 M ′

MN �1 M ′N
,

D ~P (~N) �1 M [~y := ~N] for D ~P (~y) = M a computation rule,
M �1 M ′

Ba1 . . . anM �1 Ba1 . . . anM ′ for n < ar(B).

� denotes the reflexive transitive closure of �1.

Clearly for every term M there is at most one M ′ such that M �1 M ′;
call M normal if there is no such M ′.

We define an “operational interpretation” [23] of formal neighborhoods
U . To this end we define a notion M ∈ [a], for M closed, by induction on
the type of the token a, and write M ∈ [U] for ∀a∈U M ∈ [a].

Definition 5.2. (a) For a of base type µ, M ∈ [a] iff ∃b≥a M � b.

(b) M ∈ [(U, b)] iff M � λx M ′ or M � B ~M with length of ~M less than
ar(B), and ∀N∈[U] MN ∈ [b].

Lemma 5.3. If M � N , N ∈ [V] and V ≥ U , then M ∈ [U].

Proof. Induction on N ∈ [b].

Theorem 5.4 (Adequacy). If (~U, b) ∈ [[λ~x M]] with b a proper token, then
λ~x M ∈ [(~U ′, b′)] for some (~U ′, b′) ≥ (~U, b).

Proof. By induction on the rules defining (~U, b) ∈ [[λ~xM]], and cases on the
form of M .

Case xi.
Ui ≥ b

(~U, b) ∈ [[λ~x xi]]
(V).

We need (~U ′, b′) ≥ (~U, b) such that λ~x xi ∈ [(~U ′, b′)], i.e., ∀ ~K∈[~U ′] Ki ∈ [b′].

Take ~U ′ = ~U , b′ = b. Let Ki ∈ [Ui]. Then by definition Ki ∈ [b′].
Case MN .

(~U, V) ⊆ [[λ~x N]] (~U, V, c) ∈ [[λ~x M]]

(~U, c) ∈ [[λ~x.MN]]
(A).

We need to find some (~U ′, c′) ≥ (~U, c) such that λ~x.MN ∈ [(~U ′, c′)], i.e.,
∀ ~K∈[~U ′] (MN)[~x := ~K] ∈ [c′].

21

By IH, for all b ∈ V we have some (~U1, b
′) ≥ (~U, b) such that λ~x N ∈

[(~U1, b
′)], i.e., ∀ ~K∈[~U1] N [~x := ~K] ∈ [b′]. Recall that (~U1, b

′) ≥ (~U, b) means
~U ≥ ~U1 and b′ ≥ b. Hence we can pick the same U1 for all b ∈ V , and

∀ ~K∈[~U1] N [~x := ~K] ∈ [V].

Also, by IH we have (~U2, V
′, c′) ≥ (~U, V, c) such that λ~x M ∈ [(~U2, V

′, c′)],
i.e.,

∀ ~K∈[~U2] M [~x := ~K] ∈ [(V ′, c′)].

Recall that (~U2, V
′, c′) ≥ (~U, V, c) means ~U ≥ ~U2, V ≥ V ′ and c′ ≥ c.

Let ~U ′ := ~U1 ∪ ~U2 (component wise union), and fix ~K ∈ ~U ′. Clearly
~K ∈ [~U1] and ~K ∈ [~U2]. From M [~x := ~K] ∈ (V ′, c′) we know that M [~x :=
~K] � λx M ′ or M � B ~M with length of ~M less than ar(B), and also
∀L∈[V ′].M [~x := ~K]L ∈ [c′].

Since N [~x := ~K] ∈ [V] and hence ∈ [V ′] we obtain (MN)[~x := ~K] ∈ [c′],
as required.

Case D.
(~U, ~V , b) ∈ [[λ~x, ~y M]]

(~U, ~P (~V), b) ∈ [[λ~x D]]
(D),

with D ~P (~y) = M be a computation rule. We need (~U ′, ~Z, b′) ≥ (~U, ~P (~V), b)
such that λ~xD ∈ [(~U ′, ~Z, b′)]. Recall that (~U ′, ~Z, b′) ≥ (~U, ~P (~V), b) means
~U ≥ ~U ′, ~P (~V) ≥ ~Z and b′ ≥ b.

By IH we have (~U ′, ~V ′, b′) ≥ (~U, ~V , b) such that λ~x, ~y M ∈ [(~U ′, ~V ′, b′)],
i.e.,

∀ ~K∈[~U ′]∀ ~N∈[~V ′] M [~y := ~N] ∈ [b′].

Recall that (~U ′, ~V ′, b′) ≥ (~U, ~V , b) means ~U ≥ ~U ′, ~V ≥ ~V ′ and b′ ≥ b.
Pick the required ~U ′, b′ as the ones provided by the IH, and ~Z := ~P (~V ′).

We must show λ~xD ∈ [(~U ′, ~P (~V ′), b′)], i.e.,

∀ ~K∈[~U ′]∀~L∈[~P (~V ′)] D
~L ∈ [b′].

Now fix ~K ∈ [~U ′] and ~L ∈ [~P (~V ′)]. Then ~L = ~P (~N) with ~N ∈ [~V ′]. From
D ~P (~N) �1 M [~y := ~N] and M [~y := ~N] ∈ [b′] the claim follows.

Case C.
~V ≥ ~b

(~U, ~V ,C~b) ∈ [[λ~x C]]
(C).

We need (~U ′, ~V ′, b′) ≥ (~U, ~V ,C~b) such that λ~x C ∈ [(~U ′, ~V ′, b′)]. Recall that
(~U ′, ~V ′, b) ≥ (~U, ~V ,C~b) means ~U ≥ ~U ′, ~V ≥ ~V ′ and b′ ≥ C~b.

Pick ~U ′ := ~U , ~V ′ := ~V and b′ := C~b. We must show λ~x C ∈ [(~U, ~V ,C~b)],
i.e.,

∀ ~K∈[~U]∀~L∈[~V] C
~L ∈ [C~b].

This follows from ~V ≥ ~b.

22

6 Strong normalization for structural recursion

It is well-known that in a system of simultaneously defined free algebras
every term (possibly involving recursion operators) is strongly normalizing.
However, the standard proof reduces the problem to strong normalization
of second order propositional logic (called system F by Girard [17]). This
latter result requires a method not formalizable in analysis. Here we give a
much simpler proof, which only uses predicative methods.

6.1 Structural recursion

The inductive structure of the types ~µ = µ~α~κ corresponds to two sorts of
constants. With the constructors C~µ

i : κi[~µ] we can construct elements of
a type µj , and with the recursion operators R~µ,~τ

µj we can construct total
functionals from µj to τj by recursion on the structure of ~µ. In order to
define the type of the recursion operators w.r.t. ~µ = µ~α~κ and result types
~τ , we first define for

κi = ~ρ ⇒ (~σ1 ⇒ αj1) ⇒ . . . ⇒ (~σn ⇒ αjn) ⇒ αj ∈ KT(~α)

the step type

δ~µ,~τ
i := ~ρ ⇒ (~σ1 ⇒ µj1) ⇒ . . . ⇒ (~σn ⇒ µjn) ⇒

(~σ1 ⇒ τj1) ⇒ . . . ⇒ (~σn ⇒ τjn) ⇒ τj .

Here ~ρ, (~σ1 ⇒ µj1), . . . , (~σn ⇒ µjn) correspond to the components of the
object of type µj under consideration, and (~σ1 ⇒ τj1), . . . , (~σn ⇒ τjn) to the
previously defined values. The recursion operator R~µ,~τ

µj has type

R~µ,~τ
µj

: δ~µ,~τ
1 ⇒ . . . ⇒ δ~µ,~τ

k ⇒ µj ⇒ τj

(recall that k is the total number of constructors for all types µ1, . . . , µN).
We will often write R~µ,~τ

j for R~µ,~τ
µj , and omit the upper indices ~µ, ~τ when

they are clear from the context. In case of a non-simultaneous free algebra,
i.e., of type µα κ, for Rµ,τ

µ we write Rτ
µ.

Examples.

ttB := CB
1 , ffB := CB

2 ,

Rτ
B : τ ⇒ τ ⇒ B ⇒ τ,

0N := CN
1 , SN⇒N := CN

2 ,

Rτ
N : τ ⇒ (N ⇒ τ ⇒ τ) ⇒ N ⇒ τ,

NilL(α) := CL(α)
1 , Consα⇒L(α)⇒L(α) := CL(α)

2 ,

23

Rτ
L(α) : τ ⇒ (α ⇒ L(α) ⇒ τ ⇒ τ) ⇒ L(α) ⇒ τ,(

Inlρσ

)ρ⇒ρ+σ := Cρ+σ
1 ,(

Inrρσ

)σ⇒ρ+σ := Cρ+σ
2 ,

Rτ
ρ+σ : (ρ ⇒ τ) ⇒ (σ ⇒ τ) ⇒ ρ + σ ⇒ τ,(
⊗+

ρσ

)ρ⇒σ⇒ρ⊗σ := Cρ⊗σ
1 ,

Rτ
ρ⊗σ : (ρ ⇒ σ ⇒ τ) ⇒ ρ⊗σ ⇒ τ.

6.2 Conversion

To define the conversion relation, it will be useful to employ the following
notation. Let ~µ = µ~α~κ and

κi = ρ1 ⇒ . . . ⇒ ρm ⇒ (~σ1 ⇒ αj1) ⇒ . . . ⇒ (~σn ⇒ αjn) ⇒ αj ∈ KT(~α),

and consider C~µ
i

~N . Then we write ~NP = NP
1 , . . . , NP

m for the parameter
arguments Nρ1

1 , . . . , Nρm
m and ~NR = NR

1 , . . . , NR
n for the recursive arguments

N
~σ1⇒µj1
m+1 , . . . , N

~σn⇒µjn
m+n , and nR for the number n of recursive arguments.

We define a conversion relation 7→ρ between terms of type ρ by

(λxM)N 7→ M [x := N] (3)
λx.Mx 7→ M if x /∈ FV(M) (M not an abstraction) (4)

(Rj
~M)µj⇒τj (C~µ

i
~N) 7→ Mi

~N
(
(Rj1

~M) ◦NR
1

)
. . .

(
(Rjn

~M) ◦NR
n

)
(5)

Here we have written Rj for R~µ,~τ
µj .

The one step reduction relation → can now be defined as follows. M →
N if N is obtained from M by replacing a subterm M ′ in M by N ′, where
M ′ 7→ N ′. The reduction relations →+ and →∗ are the transitive and the
reflexive transitive closure of →, respectively. For ~M = M1, . . . ,Mn we
write ~M → ~M ′ if Mi → M ′

i for some i ∈ {1, . . . , n} and Mj = M ′
j for all

i 6= j ∈ {1, . . . , n}. A term M is normal (or in normal form) if there is no
term N such that M → N .

Clearly normal closed terms are of the form C~µ
i

~N .

6.3 Strong computability predicates

Definition 6.1. The set SN of strongly normalizable terms is inductively
defined by

(∀N.M → N ⇒ N ∈ SN) ⇒ M ∈ SN (6)

Note that with M clearly every subterm of M is strongly normalizable.

24

Definition 6.2. We define strong computability predicates SCρ by induction
on ρ.

Case µj = (µ~α~κ)j . Then M ∈ SCµj if

∀N.M → N ⇒ N ∈ SC, and (7)

M = C~µ
i

~N ⇒ ~NP ∈ SC ∧
nR∧∧
p=1

∀ ~K∈SC NR
p

~K ∈ SCµjp . (8)

Case ρ ⇒ σ.

M ∈ SCρ⇒σ :⇐⇒ ∀N∈SCρ MN ∈ SCσ.

Notice that the reference to ~NP ∈ SC and ~K∈SC in (8) is legal, because
the types ~ρ, ~σi of ~N, ~K must have been generated before µj . Note also that
by (8) C~µ

i
~N ∈ SC implies ~N ∈ SC.

We now set up a sequence of lemmas leading to a proof that every term
is strongly normalizing.

Lemma 6.3. If M ∈ SCρ and M → M ′, then M ′ ∈ SC.

Proof. Induction on ρ. Case µ. By (7). Case ρ ⇒ σ. Assume M ∈ SCρ⇒σ

and M → M ′; we must show M ′ ∈ SC. So let N ∈ SCρ; we must show
M ′N ∈ SCσ. But this follows from MN → M ′N and MN ∈ SCρ by
induction hypothesis (IH) on σ.

Lemma 6.4. ∀ ~M∈SN. ~M ∈ SC ⇒ (x ~M)µ ∈ SC.

Proof. Induction on ~M ∈ SN. Assume ~M ∈ SN and ~M ∈ SC; we must show
(x ~M)µ ∈ SC. So assume x ~M → N ; we must show N ∈ SC. Now by the
form of the conversion rules N must be of the form x ~M ′ with ~M → ~M ′.
But ~M ′ ∈ SC by Lemma 6.3, hence x ~M ′ ∈ SC by IH for ~M ′.

Lemma 6.5. (a) SCρ ⊆ SN, (b) x ∈ SCρ.

Proof. By simultaneous induction on ρ. Case µj = (µ~α~κ)j . (a). We show
M ∈ SCµj ⇒ M ∈ SN by (side) induction on M ∈ SCµj . So assume
M ∈ SCµj ; we must show M ∈ SN. But for every N with M → N we have
N ∈ SC by (7), hence N ∈ SN by the side induction hypothesis SIH. (b).
x ∈ SCµj holds trivially.

Case ρ ⇒ σ. (a). Assume M ∈ SCρ⇒σ; we must show M ∈ SN. By
IH(b) for ρ we have x ∈ SCρ, hence Mx ∈ SCσ, hence Mx ∈ SN by IH(a)
for σ. But Mx ∈ SN clearly implies M ∈ SN. (b). Let ~M ∈ SC~ρ with
ρ1 = ρ; we must show x ~M ∈ SCµ. But this follows from Lemma 6.4, using
IH(a) for ~ρ.

Corollary 6.6. ~N ∈ SC ⇒ C~µ
i

~N ∈ SC, i.e. C~µ
i ∈ SC.

25

Proof. First show ∀ ~N∈SN. ~N ∈ SC ⇒ C~µ
i

~N ∈ SC by induction on ~N ∈ SN as
in Lemma 6.4, and then use Lemma 6.5(a).

Lemma 6.7. ∀M,N, ~N∈SN.M [x := N] ~N ∈ SCµ ⇒ (λxM)N ~N ∈ SCµ.

Proof. By induction on M,N, ~N ∈ SN. Let M,N, ~N ∈ SN and assume
M [x := N] ~N ∈ SC; we must show (λxM)N ~N ∈ SC. Assume (λxM)N ~N →
K; we must show K ∈ SC. Case K = (λxM ′)N ′ ~N ′ with M,N, ~N →
M ′, N ′, ~N ′. Then M [x := N] ~N →∗ M ′[x := N ′] ~N ′, hence by (7) from our
assumption M [x := N] ~N ∈ SC we can infer M ′[x := N ′] ~N ′ ∈ SC, therefore
(λxM ′)N ′ ~N ′ ∈ SC by IH. Case K = M [x := N] ~N . Then K ∈ SC by
assumption.

Corollary 6.8. ∀M,N, ~N∈SN.M [x := N] ~N ∈ SCρ ⇒ (λxM)N ~N ∈ SCρ.

Proof. By induction on ρ, using Lemma 6.5(a).

Lemma 6.9. ∀N∈SCµj ∀ ~M,~L∈SN. ~M, ~L ∈ SC ⇒ Rj
~MN~L ∈ SCµ.

Proof. By main induction on N ∈ SCµj , and side induction on ~M, ~L ∈ SN.
Assume

Rj
~MN~L → L.

We must show L ∈ SC.
Case 1. Rj

~M ′N ~L′ ∈ SC by the SIH.
Case 2. Rj

~MN ′~L ∈ SC by the main induction hypothesis (IH).
Case 3. N = C~µ

i
~N and

L = Mi
~N

(
(Rj

~M) ◦NR
1

)
. . .

(
(Rj

~M) ◦NR
n

)
~L.

~M, ~L ∈ SC by assumption. ~N ∈ SC follows from N = C~µ
i

~N ∈ SC by (8).
Note that for all recursive arguments NR

p of N and all strongly computable
~K by (8) we have the IH for NR

p
~K available. It remains to show (Rj

~M) ◦
NR

p = λ~xp.Rj
~M(NR

p ~xp) ∈ SC. So let ~K, ~Q ∈ SC be given. We must show
(λ~xp.Rj

~M(NR
p ~xp)) ~K ~Q ∈ SC. By IH for NR

p
~K we haveRj

~M(NR
p

~K) ~Q ∈ SC,
since by Lemma 6.5(a) ~K, ~Q ∈ SN. Now Corollary 6.8 yields the claim.

Corollary 6.10. Rj ∈ SC.

Definition 6.11. A substitution ξ is strongly computable, if ξ(x) ∈ SC for
all variables x. A term M is strongly computable under substi¡tution, if
Mξ ∈ SC for all strongly computable substitutions ξ.

Theorem 6.12. Every term is strongly computable under substitution.

26

Proof. Induction on the term M . Case x. xξ ∈ SC, since ξ is strongly
computable. Case C~µ

i . By Corollary 6.6. Case Rj . By Corollary 6.10.
Case MN . By IH Mξ,Nξ ∈ SC, hence (MN)ξ = (Mξ)(Nξ) ∈ SC. Case
λxM . Let ξ be a strongly computable substitution; we must show (λxM)ξ =
λxMξx

x ∈ SC. So let N ∈ SC; we must show (λxMξx
x)N ∈ SC. By IH

MξN
x ∈ SC, hence (λxMξx

x)N ∈ SC by Corollary 6.8.

Corollary 6.13. Every term is strongly normalizable.

7 Implementation

This “logic for computable functionals” is the basis for the Minlog proof
assistant www.minlog-system.de, under development in Munich. It treats
partial functionals as first class citizens: variables range over all partial
continuous functionals of a given type. Since these functionals are viewed
as sets of tokens, we in fact quantify over sets, so we have a second order
theory. However, the existence axioms – here in the form of which terms
are allowed in ∀-elimination – are weak in the sense that these terms involve
quantifiers over functionals, so our theory remains predicative.

In contrast to [24], formulas and types are kept separate. This makes it
possible to avoid dependent types, which simplifies the theory considerably.
More importantly, by separating the logic rules from type theory one avoids
the well-known difficulty then when propositions are viewed as types and
types as domains, then – as every domain is inhabited by its bottom element
– every proposition would have a proof.

Types are built from base types (non-flat and possibly infinitary free
algebras, with type parameters) by forming function spaces; this suffices
for our intended mathematical applications. For more metamathematical
subjects one may also add universe formation processes, as in [9]. Decidable
predicates are viewed as boolean valued functions (and hence the rewrite
mechanism described below applies to them), and inductive definitions are
the common way to introduce undecidable predicates. In addition to free
type variables also free predicate variables are allowed. They are viewed
as placeholders for formulas (or more precisely, comprehension terms, that
is formulas with some variables abstracted). However, in comprehension
terms quantification over predicate variables is not allowed, since this would
form a glaring impredicativity: we then would define a predicate (by the
comprehension term) with reference to the totality of all predicates, to which
the one to be defined belongs. A central application domain for the Minlog
proof assistant is program extraction from constructive (and also classical
[10]) proofs. This is done by means of a realizability interpretation, which
requires – when the formula to be realized is given by an inductively defined
predicate – a (possibly non-finitary) free algebra as domain of the realizers.

27

Computable functionals are defined by “computation rules” [11, 8]; these
rules are added to the standard conversion rules of typed λ-calculus. To
simplify equational reasoning, the system identifies terms with the same
normal form. Then it clearly is desirable to use other equations as rewrite
rules as well; for instance, we not only want to rewrite M +0 into M (which
is an instance of a computation rule), but also 0 + M into M . To justify
this we need to prove 0+ m̂ = m̂, where m̂ ranges over all (possibly partial)
objects of type N. The standard way to prove such equations is of course
induction. However, induction is only valid for total objects (or – for types
with parameters – “structure-total” objects; cf. Section 3.1), hence cannot be
used for equations involving partial variables. Here the approach developed
in the present paper helps: one can prove the equality of the values of the
two terms, by showing that both contain the same tokens, and then use
reflection to conclude that the terms must be equal. The present paper
aims at preparing the ground for such proofs.

References

[1] Andreas Abel and Thorsten Altenkirch. A predicative strong normaliza-
tion proof for a λ-calculus with interleaving inductive types. In Types for
Proofs and Programs, International Workshop, TYPES ’99, Lökeberg,
Sweden, June 1999, volume 1956 of LNCS, pages 21–40. Springer Ver-
lag, Berlin, Heidelberg, New York, 2000.

[2] Samson Abramsky. Domain theory in logical form. Annals of Pure and
Applied Logic, 51:1–77, 1991.

[3] Samson Abramsky and Achim Jung. Domain theory. In S. Abramsky,
D. M. Gabbay, and T. S. E. Maibaum, editors, Handbook of Logic in
Computer Science, volume 3, pages 1–168. Clarendon Press, 1994.

[4] Roberto M. Amadio and Pierre-Louis Curien. Domains and Lambda-
Calculi. Cambridge University Press, 1998.

[5] Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini.
A filter lambda model and the completeness of type assignment. The
Journal of Symbolic Logic, 48(4):931–940, 1983.

[6] Holger Benl. Konstruktive Interpretation induktiver Definitionen. Mas-
ter’s thesis, Mathematisches Institut der Universität München, 1998.

[7] Ulrich Berger. Total sets and objects in domain theory. Annals of Pure
and Applied Logic, 60:91–117, 1993.

[8] Ulrich Berger. Continuous semantics for strong normalization. In Proc.
CiE 2005, volume 3526 of LNCS, pages 23–34, 2005.

28

[9] Ulrich Berger, Stefan Berghofer, Pierre Letouzey, and Helmut Schwicht-
enberg. Program extraction from normalization proofs. Studia Logica,
82:27–51, 2006.

[10] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined
program extraction from classical proofs. Annals of Pure and Applied
Logic, 114:3–25, 2002.

[11] Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Term
rewriting for normalization by evaluation. Information and Compu-
tation, 183:19–42, 2003.

[12] Frédéric Blanqui, Jean-Pierre Jouannaud, and Mitsuhiro Okada. The
Calculus of Algebraic Constructions. In RTA’99. LNCS 1631, 1999.

[13] Thierry Coquand, Giovanni Sambin, Jan Smith, and Silvio Valentini.
Inductively generated formal topologies. Annals of Pure and Applied
Logic, 124:71–106, 2003.

[14] Thierry Coquand and Arnaud Spiwack. Proof of normalisation using
domain theory. Slides of a talk, October 2005.

[15] Yuri L. Ershov. Everywhere defined continuous functionals. Algebra i
Logika, 11(6):656–665, 1972.

[16] Yuri L. Ershov. Maximal and everywhere defined functionals. Algebra
i Logika, 13(4):374–397, 1974.

[17] Jean-Yves Girard. Une extension de l’interprétation de Gödel à
l’analyse, et son application à l’élimination des coupures dans l’analyse
et la théorie des types. In J.E. Fenstad, editor, Proceedings of the
Second Scandinavian Logic Symposium, pages 63–92. North–Holland,
Amsterdam, 1971.

[18] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des
finiten Standpunkts. Dialectica, 12:280–287, 1958.

[19] Stephen C. Kleene. Countable functionals. In A. Heyting, editor, Con-
structivity in Mathematics, pages 81–100. North–Holland, Amsterdam,
1959.

[20] Georg Kreisel. Interpretation of analysis by means of constructive func-
tionals of finite types. In A. Heyting, editor, Constructivity in Mathe-
matics, pages 101–128. North–Holland, Amsterdam, 1959.

[21] Lill Kristiansen and Dag Normann. Total objects in inductively defined
types. Archive for Mathematical Logic, 36(6):405–436, 1997.

29

[22] Kim G. Larsen and Glynn Winskel. Using information systems to solve
recursive domain equations. Information and Computation, 91:232–258,
1991.

[23] Per Martin-Löf. The domain interpretation of type theory. Talk at the
workshop on semantics of programming languages, Chalmers Univer-
sity, Göteborg, August 1983.

[24] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[25] Gordon D. Plotkin. LCF considered as a programming language.
Theoretical Computer Science, 5:223–255, 1977.

[26] Gordon D. Plotkin. Tω as a universal domain. Journal of Computer
and System Sciences, 17:209–236, 1978.

[27] Helmut Schwichtenberg. Density and choice for total continuous func-
tionals. In P. Odifreddi, editor, Kreiseliana. About and Around Georg
Kreisel, pages 335–362. A.K. Peters, Wellesley, Massachusetts, 1996.

[28] Dana Scott. A type theoretical alternative to ISWIM, CUCH, OWHY.
Published in Theoret. Comput. Sci. 121 (1993), 411–440, 1969.

[29] Dana Scott. Outline of a mathematical theory of computation. Tech-
nical Monograph PRG–2, Oxford University Computing Laboratory,
1970.

[30] Dana Scott. Domains for denotational semantics. In E. Nielsen and
E.M. Schmidt, editors, Automata, Languages and Programming, vol-
ume 140 of LNCS, pages 577–613. Springer Verlag, Berlin, Heidelberg,
New York, 1982. A corrected and expanded version of a paper prepared
for ICALP’82, Aarhus, Denmark.

[31] Viggo Stoltenberg-Hansen, Edward Griffor, and Ingrid Lindström.
Mathematical Theory of Domains. Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 1994.

[32] William W. Tait. Normal form theorem for bar recursive functions of
finite type. In J.E. Fenstad, editor, Proceedings of the Second Scandi-
navian Logic Symposium, pages 353–367. North–Holland, Amsterdam,
1971.

[33] Anne S. Troelstra, editor. Metamathematical Investigation of Intuition-
istic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathe-
matics. Springer Verlag, Berlin, Heidelberg, New York, 1973.

30

[34] Jeffrey Zucker. Iterated inductive definitions, trees and ordinals. In A.S.
Troelstra, editor, Mathematical Investigation of Intuitionistic Arith-
metic and Analysis, volume 344 of Lecture Notes in Mathematics, pages
392–453. Springer Verlag, Berlin, Heidelberg, New York, 1973.

31

