Proof search in minimal logic

Helmut Schwichtenberg

Mathematisches Institut der Universitdt Miinchen,
schwicht@mathematik.uni-muenchen.de,
WWW home page: http://wuw.mathematik.uni-muenchen.de/~ schwicht/

1 Introduction

We describe a rather natural proof search algorithm for a certain fragment of
higher order (simply typed) minimal logic. This fragment is determined by re-
quiring that every higher order variable Y can only occur in a context Y x, where
x are distinct bound variables in the scope of the operator binding Y, and of
opposite polarity. Note that for first order logic this restriction does not mean
anything, since there are no higher order variables. However, when designing a
proof search algorithm for first order logic only, one is naturally led into this
fragment of higher order logic, where the algorithm works as well.

In doing this we rely heavily on Miller’s [1], who has introduced this type
of restriction to higher order terms (called patterns by Nipkow [2]), noted its
relevance for extensions of logic programming, and showed that the unification
problem for patterns is solvable and admits most general unifiers. The present
paper was motivated by the desire to use Miller’s approach as a basis for an
implementation of a simple proof search engine for (first and higher order) min-
imal logic. This goal prompted us into several simplifications, optimizations and
extensions, in particular the following.

— Instead of arbitrarily mixed prefixes we only use those of the form V3V.
Nipkow in [2] already had presented a version of Miller’s pattern unification
algorithm for such prefixes, and Miller in [1, Section 9.2] notes that in such
a situation any two unifiers can be transformed into each other by a variable
renaming substitution. Here we restrict ourselves to V3V-prefixes throughout,
i.e., in the proof search algorithm as well.

— The order of events in the pattern unification algorithm is changed slightly,
by postponing the raising step until it is really needed. This avoids unnec-
essary creation of new higher type variables. — Already Miller noted in [1,
p-515] that such optimizations are possible.

— The extensions concern the (strong) existential quantifier, which has been
left out in Miller’s treatment, and also conjunction. The latter can be avoided
in principle, but of course is a useful thing to have.

Moreover, since part of the motivation to write this paper was the necessity to
have a guide for our implementation, we have paid particular attention to write
at least the parts of the proofs with algorithmic content as clear and complete
as possible.

The paper is organized as follows. Section 2 defines the pattern unification
algorithm, and in section 3 its correctness and completeness is proved. Section 4
presents the proof search algorithm, and again its correctness and completeness
is proved. The final section 5 contains what we have to say about extensions to
A and 3.

2 The unification algorithm

We work in the simply typed A-calculus, with the usual conventions. For instance,
whenever we write a term we assume that it is correctly typed. Substitutions
are denoted by ¢,1, p. The result of applying a substitution ¢ to a term ¢
or a formula A is written as t@ or Ay, with the understanding that after the
substitution all terms are brought into long normal form.

@ always denotes a V3V-prefix, say VxIdyVz, with distinct variables. We call
x the signature variables, y the flexible variables and z the forbidden variables
of @, and write (J3 for the existential part Jy of Q.

Q@-terms are inductively defined by the following clauses.

— If w is a universally quantified variable in) or a constant, and r are ()-terms,
then ur is a Q-term.

— For any flexible variable y and distinct forbidden variables z from @, yz is
a @Q-term.

— If r is a QVz-term, then Azr is a ()-term.

Explicitely, r is a Q-term iff all its free variables are in (), and for every subterm

yr of r with y free in r and flexible in @, the r are distinct variables either

A-bound in r (such that yr is in the scope of this A) or else forbidden in Q.
@-goals and ()-clauses are simultaneously defined by

— If r are QQ-terms, then Pr is a ()-goal as well as a)-clause.

— If D is a @Q-clause and G is a @Q-goal, then D — G is a Q-goal.

— If G is a @-goal and D is a @-clause, then G — D is a @)-clause.

— If G is a QVx-goal, then VaG is a Q-goal.

— If D[y := Y 2] is a VaJy, YVz-clause, then VyD is a VaxIyVz-clause.

Explicitely, a formula A is a Q)-goal iff all its free variables are in @, and for
every subterm yr of A with y either existentially bound in A (with yr in the
scope) or else free in A and flexible in @), the r are distinct variables either -
or universally bound in A (such that yr is in the scope) or else free in A and
forbidden in Q.

A Q-substitution is a substitution of ()-terms.

A unification problem U consists of a VIV-prefix) and a conjunction C of
equations between Q-terms of the same type, i.e., A\?:l r; = ;- We may assume
that each such equation is of the form Axzr = Azs with the same @ (which may
be empty) and r,s of ground type.

A solution to such a unification problem I/ is a @-substitution ¢ such that
for every i, rip = s;¢ holds (i-e., ;o and s;p have the same normal form). We

sometimes write C' as 7 = s, and (for obvious reasons) call it a list of unification
pairs.

We now define the unification algorithm. It takes a unification problem U =
QC and returns a substitution p and another patter unification problem U’ =
Q'C'. Note that p will be neither a @-substitution nor a @'-substitution, but
will have the property that

— p is defined on flexible variables of () only, and its value terms have no free
occurrences of forbidden variables from @,

— if G is a Q-goal, then Gp is a Q'-goal, and

— whenever ¢' is an U’-solution, then (p o ¢')[Q3 is an U-solution.

To define the unification algorithm, we distinguish cases according to the form
of the unification problem, and either give the transition done by the algorithm,
or else state that it fails.

Case identity, i.e., @.r = r A C. Then

Qr=rNnC =, QC.

Case &, i.e., Q. xr = Ax sAC. We may assume here that the bound variables
x are the same on both sides.

RQAr=XxsANC =, QVx.r=sAC.
Case rigid-rigid, i.e., Q.fr = fs A C.
Qfr=fsnC=.Qr=snAC.
Case flex-flex with equal heads, i.e., Q.uy = uz A C.
Quy=uzAC =,Q .Cp

with p = [u := dy.vw'w], Q' is @ with Ju replaced by Ju’, and w an enumeration
of {yi | yi = z; } (note A\y.vw'w = Az.v'w).
Case flex-flex with different heads, i.e., Q.uy = vz A C.

Quy =vzANC =, Q'Cp,

where p and Q' are defined as follows. Let w be an enumeration of the variables
both in y and in z. Then p = [u,v := Ay.v'w, Az.v'w], and Q' is Q with Ju,Jv
removed and Ju’ inserted.

Case flex-rigid, i.e., Q.uy = t A C with ¢ rigid, i.e., not of the form vz with
flexible v.

Subcase occurrence check: ¢ contains (a critical subterm with head) u. Fail.

Subcase pruning: ¢ contains a subterm vw;zw, with Jv in @, and z free in
t but not in y.

Quy=tANC=,Quy=tpACp

where p = [v 1= Awy, 2, w2 V' wiws], Q' is @ with Jv replaced by Fv'.

Subcase pruning impossible: Ayt (after all pruning steps are done still) has a
free occurrence of a forbidden variable z. Fail.
Subcase explicit definition: otherwise.

Quy=tNC=,Q'Cp

where p = [u := Ayt], and Q' is obtained from @ by removing Ju.

This concludes the definition of the unification algorithm.

Our next task is to prove that this algorithm indeed has the three properties
stated above. The first one (p is defined on flexible variables of @) only, and its
value terms have no free occurrences of forbidden variables from @) is obvious
from the definition. We now prove the second one; the third one will be proved
in the next section.

Lemma 1. If Q =, Q' and G is a Q-goal, then Gp is a Q'-goal.

Proof. We distinguish cases according to the definition of the unification algo-
rithm.

Cases identity, £ and rigid-rigid. Then p = £ and the claim is trivial.

Case flex-flex with equal heads. Then p = [u := Ay.w'w] with w a sublist
of y, and Q' is @ with Ju replaced by Ju'. Then clearly Glu := \y.v'w] is a
Q'-goal (recall that after a substitution we always normalize).

Case flex-flex with different heads. Then p = [u,v := Ay.v'w, A\z.v'w] with
w an enumeration of the variables both in ¥ and in 2z, and Q' is Q with Ju, Jv
removed and Ju' inserted. Again clearly Glu,v := Ay.v/'w, \z.v'w] is a Q'-goal.

Case flex-rigid, Subcase pruning: Then p = [v := Awy, z, w2.v'wiws], and
Q' is Q with Jv replaced by Fv'. Suppose G is a @-goal. Then clearly G[v :=
Awr, z, wa.v'wiws] is a Q'-goal.

Case flex-rigid, Subcase explicit definition: Then p = [u := Ayt] with a Q-
term Ayt without free occurrences of forbidden variables, and Q' is obtained
from @ by removing Ju. Suppose G is a @-goal. Then clearly G[u := Ayt] form)
is a)'-goal.

Let Q —, Q' mean that for some C,C" we have QC =, Q'C’. Write
Q —; Q' if there are py,...,p, and Q1,...,Qn 1 such that

Q—p Q1 —py oo —p_y Qn1 —p, Q',

and p=pro---0pp.
Corollary 1. If Q — Q' and G is a Q-goal, then Gp is a Q'-goal.

3 Correctness and completeness of the unification
algorithm

Lemma 2. Let a unification problem U consisting of a YIV-prefix Q and a list
r = 8 of unification pairs be given. Then either

— the unification algorithm makes a transition U =>, U', and

&' U'-solutions — U-solutions
@' = (po¢)lQ3

is well-defined and we have ®: U-solutions — U'-solutions such that &' is
inverse to @, i.e. &' (Pp) = ¢, or else
— the unification algorithm fails, and there is no U-solution.

Proof. Case identity, i.e., Q.r = r A C =>. QC. Let @ be the identity.

Case &, ie., QAxr = dxs NC =, QVx.r = s A C. Let again ® be the
identity.

Case rigid-rigid, i.e., Q.fr = fs N\C =, Q.r = s AC. Let again & be the
identity.

Cuse flex-flex with equal heads, i.e.,, Quy = uz AC =, Q'.Cp with p =
[u = Ay.u'w], Q" is Q with Ju replaced by Ju’, and w an enumeration of those
y; which are identical to z; (i.e., the variable at the same position in z). Notice
that Ay.w'w = Az.uw/w.

1. &' is well-defined: Let ¢’ be a U’-solution, i.e., assume that Cpy' holds.
We must show that ¢ := (p o ¢')[Q3 is a U-solution.

For uy = uz: We must show (up)y = (up)z. But up = upp’ = (Ay.u'w)y’.
Hence (up)y = (uyp)z by the construction of w.

For (r = s) € C: We need to show (r = s)¢. But by assumption (r = s)pyp
holds, and r = s has all its flexible variables from Q5.

2. Definition of &: U-solutions — U’-solutions. Let a -substitution ¢ be
given such that (uy = uz)p and Cyp. Define u'(Pp) := Iw.(up)w0 (w.l.o.g),
and v(Pyp) := v for every other variable v in Q3.

Py =: ¢ is a U'-solution: Let (r = s) € C. Then (r = s)p by assumption,
for ¢ is a @-substitution such that C'¢ holds. We must show

!

(r=s)pyp'.

Notice that our assumption (up)y = (up)z implies that the normal form of both
sides can only contain the variables in w. Therefore

upp' = (\y.u'w)y’
= Ay.(Aw.(up)w0)w
= Ay.(up)wo
= Ay.(up)y
= USD

and hence (r = s)pyp’.
3. &' (D) = ¢: So let ¢ be an U-solution, and ¢' := $p. Then
u(®@'¢') =u((po¢)1Qa)
= upy'
= uyp, as proved in 2.

For every other variable v in ()5 we obtain

v(@'¢") =v((po¢)Qa)
= vpy'
= USDI
= vp.

Case flex-flex with different heads, i.e., f is Q.uy = vzAC. Let w be an enu-
meration of the variables both in y and in z. Then p = [u, v := Ay.v'w, Az.v'w],
Q@' is Q with Ju, Jv removed and Ju' inserted, and U’ = Q'Cp.

1. @' is well-defined: Let ¢’ be a U'-solution, i.e., assume that Cpy' holds.
We must show that ¢ := (p o ¢')[Q3 is a U-solution.

For uy = vz: We need to show (up)y = (vp)z. But (up)y = (upp')y =
M. (u'p"w)y = (v'¢")w, and similarly (vyp)z = (u'¢")w.

For (r = s) € C: We need to show (r = s)p. But since ' is a new variable,
o and p o ¢ coincide on all variables free in r = s, and we have (r = s)py’ by
assumption.

2. Definition of &: U-solutions — U’-solutions. Let a Q-substitution ¢ be
given such that (uy = vz)p and Cy. Define

u' (@) = Aw.(up)w0 w.l.o.g.; 0 arbitrary
V' (D) := Aw.(vyp) 0w
w(Pyp) = wy otherwise, i.e., w # u', v, u flexible.

Since by assumption (up)y = (vp)z, the normal forms of both (uy)y and (vy)z
can only contain the common variables w from y, z free. Hence, for ¢’ := ¢,
upy' = up by the argument in the previous case, and similarly vpp' = vep. Since
ro = sp ((r = s) € C arbitrary) by assumption, and p only affects v and v,
we obtain rpyp’ = spy', as required. &'(Pp) = ¢ can now be proved as in the
previous case.

Case flex-rigid, U is Quy =t AC.

Subcase occurrence check: ¢ contains (a critical subterm with head) u. Then
clearly there is no @-substitution ¢ such that (up)y = te.

Subcase pruning: Here ¢ contains a subterm vw;zws with Jv in @, and z
free in t. Then p = [v := Mwy, 2, w2 V'wiws], Q' is @ with Jv replaced by F',
and U' = Q".uy =tp A Cp.

1. &' is well-defined: Let ¢’ be a U'-solution, i.e., (up')y = tpy', and rpy’ =
spy' for (r = s) € C. We must show that ¢ := (po ¢')[Q3 is a U-solution.

For uy = t: We need to show (up)y = tpy'. But

(up)y = (upy')y
= (up')y since p does not touch u
= tpp

For (r = s) € C: We need to show (r = s)¢. But since v' is a new variable,
= (po¢")Q3 and po ¢' coincide on all variables free in r = s, and the claim
follows from (r = s)pyp’.

! by assumption.

2. Definition of @: U-solutions — U’-solutions. For a U-solution ¢ define

’Ul(¢g0) =)\wl,wz.(vcp)'wlo'wz
w(Pp) = wp otherwise, i.e., w # v', v flexible.

Since by assumption (up)y = ty, the normal form of tp cannot contain z free.
Therefore, for ¢’ := &,

vpp' = (Awy, z,wa.v' wiws) '
= \wy, z, w2.(Aw1, wa.(ve)wi 0ws)wi ws
= dw1, 2, w2.(vp)w 0w,
= dw1, 2, w2. (VY)W 2w,

= vp.

Hence ¢' = & satisfies (up')y = tpy'. For r = s this follows by the same
argument. ®'(Pp) = ¢ can again be proved as in the previous case.

Subcase pruning impossible: Then Ayt has an occurrence of a universally
quantified (i.e., forbidden) variable z. Therefore clearly there is no)-substitution
o such that (up)y = tep.

Subcase explicit definition. Then p = [u := Ayt], Q' is obtained from @ by
removing Ju, and U' = Q'Cp. Note that p is a @Q'-substitution, for we have
performed the pruning steps.

1. &' is well-defined: Let ¢’ be a U'-solution, i.e., rpp’ = spy’ for (r = s) € C.
We must show that ¢ := (p o ¢')[Q3 is an U-solution.

For uy = t: We need to show (upy')y = tpy'. But

(upp)y = ((Myt)¢")y
= t(p'
= tpy' since u does not appear in .

For (r = s) € C: We need to show (r = s)p. But this clearly follows from
(r=s)py'.

2. Definition of ¢: U-solutions — U’'-solutions, and proof of &' (Py) = ¢. For
a U-solution ¢ define $p = ¢[Q3. Then

upy' = Myty' = Mytp = up,

and clearly vpp' = v for all other flexible . For (r = s) € C, from rp = sp we
easily obtain r¢' = s¢'.

It is not hard to see that the unification algorithm terminates, by defining a
measure that decreases with each transition.

Corollary 2. Given a unification problem U = QC, the unification algorithm
either returns #f, and there is no U-solution, or else returns a pair (Q', p)
with a “transition” substitution p and a prefiz Q' (i.e., a unification problem U’

with no unification pairs) such that for any Q'-substitution ¢', (po¢')|Q3 is an
U-solution, and every U-solution can be obtained in this way. Since the empty
substitution is a Q'-substitution, p|Q3 is an U-solution, which is most general
in the sense stated.

unif(Q,r = 8) denotes the result of the unification algorithm at i = Qr = s.

4 Proof search

A @Q-sequent has the form P = G, where P is a list of @-clauses and G is a
Q-goal.

We write M[P] to indicate that all assumption variables in the derivation M
concern clauses in P.

Write ™ S for a set S of sequents if there are derivations Mf [P;] in long
normal form for all (P; = G;) € S such that > #M; < n. Let <" S mean
Im<n F™ S.

We now prove correctness and completeness of the proof search procedure:
correctness is the if-part of the two lemmata to follow, and completeness the
only-if-part.

Lemma 3. Let Q be a VIV-prefiz, {P = VYe.D — A} US Q-sequents with x, D
not both empty. Then we have for every substitution p:

© is a Q-substitution such that F" ({P =Vae.D —» A} U S)cp
if and only if
¢ is a QVx-substitution such that <" ({PUD = A} U S)e.

Proof. “If”. Let ¢ be a QVa-substitution and <" ({PUD = A}US)¢p. So we
have
NA°[Dp U Py).

Since ¢ is a QVa-substitution, no variable in & can be free in Py, or free in yy
for some y € dom(y). Hence

M(V"”'D_’A)w[’l)go] = Az PN

is a correct derivation.
“Only if”. Let ¢ be a Q-substitution and F" ({P = Ve.D — A} US) . This
means we have a derivation (in long normal form)

M(Vw.D—)A)gp[zp(’O] —)\w)\chp‘NA@[D(pU,P(p].

Now #N < #M, hence F<" ({PUD = A} U S)y, and ¢ clearly is a QVz-
substitution.

Lemma 4. Let () be a YIV-prefiz, {P = Pr}US Q-sequents and ¢ a substitu-
tion. Then

¢ is a Q-substitution such that " ({P = Pr}uUS)e

if and only if there is a clause V.G — Ps in P such that the following holds.
Let z be the final universal variables in @, x be new (“raised”) variables such
that X;z has the same type as x;, let Q* be) with the existential variables
extended by x, and let x indicate the substitution [x1,...,Tn = X12,...,Xp2].
Then unif(Q*,r = s*) = (Q',p) and there is a Q'-substitution @' such that
F<m ({P = G*}US)py!, and o = (po ¢')[Qs.

Proof. “If”. Let unif(Q*,r = s*) = (Q', p), and assume that ¢’ is a Q'-substitu-
tion such that N; - (P = G*)py'. Let ¢ = (p 0 ¢')[Q3. From unif(Q*, 7 =
s*) = (Q’, p) we know rp = s*p, hence ro = s*py'. Then

u(V:z:.G—>Ps)<p ((mp(pl)z)NG*pqo'

derives Ps*pyp' (i.e., Pry) from Pey.

“Only if 7. Assume ¢ is a @Q-substitution such that - (P = Pr)yp, say by
u(Ve-GoPs)og N(Go)lw=t] with Va.G — Ps a clause in P, and with additional
assumptions from Py in N. Then r¢ = (sp)[z := t]. Since we can assume that
the variables are new and in particular not range variables of ¢, with

Y:=pUz =t

we have rp = s9. Let z be the final universal variables in @, be new (“raised”)
variables such that X;z has the same type as x;, let Q* be () with the existential
variables extended by «, and for terms and formulas let * indicate the substitu-
tion [z1,...,2n := X12,...,Xpn2]. Moreover, let

9* = SOU [Xla---aXn =)\z.tl,...,)\z.tn].

Then r¥* = ro = s = §*9*, i.e., ¥* is a solution to the unification problem
given by @* and r = s. Hence by Lemma 2 unif (Q*,r = s*) = (Q’, p) and there
is a Q'-substitution ¢’ such that 9* = (p o ¢')[Q%, hence ¢ = (po ¢')[Q3. Also,
(Gp)[z :=t] = GY = G*¥* = Gpy'.

A state is a pair (@, S) with @ a prefix and S a finite set of Q-sequents. By
the two lemmas just proved we have state transitions

(Q,{P =Vz.D - A}US) »° (QVz,{PUD = A}US)
(Q,{P=Prius)=*(Q,{P=G*}uUS)p),

where in the latter case there is a clause V&.G — Ps in P such that the following
holds. Let z be the final universal variables in @, x be new (“raised”) variables
such that X;z has the same type as x;, let @* be @) with the existential variables
extended by x, and let x indicate the substitution [z1,...,2, := X12,...,Xp2],
and unif (Q*,r = s*) = (Q', p).

Notice that by Lemma 1, if P = Pr is a Q-sequent (which means that
NP — Pris a Q-goal), then (P = G*)p is a Q’-sequent.

Theorem 1. Let) be a prefiz, and S be a set of Q)-sequents. For every substi-
tution @ we have: ¢ is a Q-substitution satisfying = S iff there is a prefix Q'
a substitution p and a Q'-substitution ¢’ such that

(Q,8) =" (Q',0),
o=(po¢)Qs=.

Examples. 1. The sequent Vy.VzRyz — Q,Vy1,y2Ry1y2 = @ leads first to
Yy1,y2Ry1y2 = Ryz under JyVz, then to y; = y Ays = z under FyVz3y;, yo, and
finally to Y12 = y AY22z = z under Jy, Y1, Y5Vz, which has the solution Y; = Azy,
Yo = Azz.

2. VyVzRyz — Q,Vy1Ry1y1 = @ leads first to Vy;1Ry1y1 = Ryz under
JyVz, then to y1 = y Ayy = z under JyVzIy;, and finally to Yiz =y AYiz =2
under Jy, Y1Vz, which has no solution.

3. Here is a more complex example (derived from proofs of the Orevkov-
formulas), for which we only give the derivation tree.

V25021 (¥) R0z Rzz

SOZl—>L 5021
1
Vy(Vleyzl—u_)—u_ Rzz1—>J_
(V21 Rzz1— L)— L Vo Rz — L
Vy.(VzRyz—L1)—L R()jj
(VzR0z—1)—L VzR0z— 1

L

where (x) is a derivation from Hyp;: Vz,21.R0z = Rzz; — S02;.

5 Extension by A and 4

The extension by conjunction is rather easy; it is even superfluous in princi-
ple, since conjunctions can always be avoided at the expense of having lists of
formulas instead of single formulas.

However, having conjunctions available is clearly useful at times, so let’s add
it. This requires the notion of an elaboration path for a formula (cf. [1]). The
reason is that the property of a formula to have a unique atom as its head is
lost when conjunctions are present. An elaboration path is meant to give the
directions (left or right) to go when we encounter a conjunction as a strictly
positive subformula. For example, the elaboration paths of VxAA (B A C —
D AVYyE) are (left), (right,left) and (right,right). Clearly, a formula is
equivalent to the conjunction (over all elaboration paths) of all formulas obtained
from it by following an elaboration path (i.e., always throwing away the other
part of the conjunction). In our example,

VzAA (BAC — D AVYE) < YzAA (BAC = D) A (BAC — VyE).

In this way we regain the property of a formula to have a unique head, and our
previous search procedure continues to work.

For the existential quantifier 3 the problem is of a different nature. We chose
to introduce 3 by means of axiom schemata. Then the problem is which of such
schemes to use in proof search, given a goal G and a set P of clauses. We might
proceed as follows.

List all prime, positive and negative existential subformulas of P = G, and
remove any formula from those lists which is of the form of another one!. For
every positive existential formula — say 3zB — add (the generalization of) the
existence introduction scheme

3:’3: Vz.B — Az B

to P. Moreover, for every negative existential formula — say dxA — and every
(prime or existential) formula C' in any of those two lists, exept the formula x4
itself, add (the generalization of) the existence elimination scheme

JoacdrA > (VoA C) = C

to P. Then start the search algorithm as described in section 4. The normal
form theorem for the natural deduction system of minimal logic with 3 then
guarantees completeness.

However, experience has shown that this complete search procedure tends to
be trapped in too large a search space. Therefore in our actual implementation we
decided to only take instances of the existence elimination scheme with ezistential
conclusions.

Acknowledgements I have benefitted from a presentation of Miller’s [1] given by
Ulrich Berger, in a logic seminar in Miinchen in June 1991.

References

1. Dale Miller. A logic programming language with lambda—abstraction, function vari-
ables and simple unification. Journal of Logic and Computation, 2(4):497-536, 1991.

2. Tobias Nipkow. Higher-order critical pairs. In R. Vemuri, editor, Proceedings of the
Sizth Annual IEEE Symposium on Logic in Computer Science, pages 342-349, Los
Alamitos, 1991. IEEE Computer Society Press.

! To do this, for patterns the dual of the theory of “most general unifiers”, i.e., a
theory of “most special generalizations”, needs to be developed.

